Supporting Information

Unveiling the Origin of High catalytic Activity of WO₃/MWCNTs Nanocomposites for Hydrogen Evolution Reaction

Nitesh Dogra^a, Sunil Singh Kushvaha^b, Avijit Dewasi^c Sandeep Sharma^{*c}

^a Department of Physics, Guru Nanak Dev University Amritsar, Punjanb-143005, India

^b CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India

^c Department of Physics and Photonics Science, National Institute of Technology,

Hamirpur, Himachal Pradesh-177005, India.

*Corresponding author. Email: sandeepscl@gmail.com, sandeep.phy@nith.ac.in

Phone: +91 9780555783

Sample	I_D	I_G	I_D/I_G
W/C-5	481.33	586.32	0.82
W/C-10	1569.44	1873.8	0.83
W/C-14	3091.32	3664.26	0.84
W/C-18	5302.24	6140.79	0.86

Table S1: Intensity ratio for various synthesized composite.

1 Calculation of hydrogen coverage (θ_H)

The calculation of hydrogen coverage (θ_H) is an important step for determining the rate-limiting step. It is well predicted from the previous studies if hydrogen coverage is high i.e., $\theta_H \approx 1$, the reaction proceeds through the Volmer-Tafel mechanism and the recombination (Tafel) step is the rate-limiting step.[1, 2] While for low adsorption of hydrogen on the active sites, value of $\theta_H=0$ and Volmer is the rate determining step [3]. When $\theta_H \rightarrow 1$, reaction proceeds through Volmer-Heyrovsky step and Heyrovsky is rate determining step [4]. The hydrogen surface coverage is calculated by following the procedure given by Elhamid et. al. [5]. In Tafel region, the rate of proton discharge (i_c) is given by:

$$i_c = Fk_1 C_{H^+} (1 - \theta_H) \exp(\frac{-F}{RT} \alpha \eta)$$
(S1)

$$= i'_{o}(1-\theta_{H}) \exp(\frac{-F}{RT}\alpha\eta)$$
(S2)

Here, $i'_o = Fk_1C_{H^+} = i_o/(1-\theta^e_H)$, where i_o is defined as as exchange current density in an equilibrium, here $\theta^e_H = 0$, C_{H^+} is concentration of hydrogen ions, α is transfer coefficient of HER, F is Faraday's constant (C mol⁻¹), k_1 is rate constant and η is overpotential. The rate equation for recombination step and desorption step can be written by taking an assumption of $i_r = i_c$

$$i_r = i_c = Fk_2\theta_H^2$$
 (for recombination) (S3)

$$\theta_H = \sqrt{\frac{i_c}{Fk_2}} \tag{S4}$$

$$i_r = i_c = Fk_1\theta_H \qquad (for \ desorption) \tag{S5}$$

$$\theta_H = \frac{v_c}{Fk_1} \tag{S6}$$

After rearranging the equation number S5 and S6 we get [2, 6]

$$i_c \exp(\frac{F}{RT}\alpha\eta) = i'_o(1-\theta_H)$$
(S7)

From Equations S8 and S9, we obtain

$$i_c \exp(\frac{F}{RT}\alpha\eta) = i'_o(1 - \sqrt{\frac{i_c}{Fk_2}})$$
(S8)

 $i_c \exp(\frac{F}{RT} \alpha \eta)$ is termed as a charging function. Figure S4, panel (a) describes the behavior of the charging function with the square root of charging current ($\sqrt{i_c}$) for the W/C-14 composite. Here, for

simplicity value of α is to be taken as 0.5. The slope and intercept helps to find the values of i_o , k_1 and k_2 and the obtained values of $i_o = 1.17 \times 10^{-5}$ (A), $k_1 = 1.16 \times 10^{-6}$ cm s⁻¹ and $k_2 = 1.3 \times 10^{-7}$ mol cm⁻² s⁻¹. After calculating the values of k_1 and k_2 , the variation of hydrogen surface coverage (θ_H) with the potential for desorption and recombination step was shown in panel (b). It is also predicted that hydrogen coverage θ_H increase with the potential [3, 5]. As seen from the results, the value of $\theta_H \rightarrow$ 1 corresponds to intermediate state and hence, it is clear that reaction will proceeds through Volmer-Heyrovsky and Heyrovsky is the rate determining step.

Figure S1: Particle size distribution histogram for (a) WO₃ and (b) W/C-14 composite.

Figure S2: Scanning electron microscope images at different magnifications ((a)-(c)) for W/C-5, ((d)-(f)) for W/C-10 and ((g)-(i)) for W/C-18.

Figure S3: High-resolution XPS spectra for W/C-5 sample (a) W 4f, (b) O1s, (c) C 1s and W/C-18 sample (d) W 4f, (e) O1s and (f) C 1s, respectively.

Figure S4: EPR spectra for composites. (a) W/C-5, (b) W/C-10, (c) W/C-14 and (d) W/C-18.

Figure S5: Mott-Schottky plots for different samples. (a) WO₃, (b) f-MWCNT and (d) WO₃/MWCNT composite (W/C-14).

Figure S6: (a) The relationship between the charging function and the square root of the cathodic current and (b) Relation between the hydrogen surface coverage (θ_H) and the electrode potential.

Figure S7: Detailed HER mechanism for WO₃/MWCNT based composites.

Table S2: Comparison of electrochemical properties of various samples before and after performing the stability test.

Sample ID	η ₁₀ (V)	η ₁₀ (V)	η ₅₀ (V)	η ₅₀ (V)	Tafel slope (mV/dec)	Tafel slope (mV/dec)
	Before	After	Before	After	Before	After
WO ₃	-0.64	-0.66	-	-	347	391
W/C-5	-0.5	-0.58	-	-	241	221
W/C-10	-0.4	-0.46	-0.51	-0.55	179	200
W/C-14	-0.20	-0.29	-0.30	-0.33	70	85
W/C-18	-0.36	-0.43	-0.47	-0.53	125	138

Figure S8: High-resolution XPS spectra for W/C-14 sample after stability test. (a) XPS survey scan, (b) W 4f, (c) O 1s and (d) C 1s.

Figure S9: Scanning electron microscopic images of W/C-14 at different magnification after performing the stability test.

2 TOF and number of active site calculation

The TOF calculation is done by assuming the oxygen atom as an active site and the general formula is described below:

$$TOF = \frac{Number \ of \ total \ hydrogen \ turnovers/cm^2}{Number \ of \ active \ sites/cm^2}$$
(S9)

With the current density, total number of hydrogen turnovers was calculated as:

$$Numberof H_2 = \left(j\frac{mA}{cm^2}\right) \left(\frac{1 C s^{-1}}{1000 mA}\right) \left(\frac{1 mol H_2}{2 mol e^-}\right) \left(\frac{6.022 \times H_2 molecules}{1 mol H_2}\right)$$
$$= 3.12 \times 10^{15} \frac{H_2/s}{cm^2} per \frac{mA}{cm^2}$$
(S10)

The number of oxygen atom per unit ECSA was calculated as:

$$\frac{No. of O active sites in WO_3/MWCNT}{ECSA cm^2} = \frac{(wt \% of O in WO_3/MWCNT) mg}{per 1 mg of catalyst wt} \times \frac{(catalyst) mg}{ECSA cm^2} \times \frac{1mmol}{16 mg} \times \frac{6.022 \times 10^{22} sites}{1mmol}$$
(S11)

$$TOF(s^{-1}) = \frac{\left(\frac{3.12 \times 10^{15 H_2}}{cm^{2s}} per \frac{mA}{cm^{2}}\right) \times |current \, density| \frac{mA}{cm^{2}}}{\frac{Number \, of \, O \, active \, site \, in \, WO_3/MWCNT}{ECSA \, cm^{2}}}$$
(S12)

Figure S10: Cyclic Voltammetry (CV) plots for various electrocatalyst in the potential range of -0.1 V to 0.5 V at scan rate of 10-100 mV/s. (a) f-MWCNT, (b) WO₃, (c) W/C-5, (d) W/C-10, (e) W/C-14 and (f) W/C-18.

Figure S11: Comparison of CV at fixed scan rate of 20 mV/s for WO₃/MWCNT composites.

References

- [1] A. Kahyarian, B. Brown and S. Nevsic, Journal of The Electrochemical Society, 2017, 164, year.
- [2] N. Dogra, P. Agrawal, S. Pathak, R. Saini and S. Sharma, *International Journal of Hydrogen Energy*, 2023, 48, 26210–26220.
- [3] F. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F. Xi, R. Schlatmann, R. van de Krol and S. Calnan, *ChemElectroChem*, 2021, **8**, 195–208.
- [4] H. Prats and K. Chan, Phys. Chem. Chem. Phys., 2021, 23, 27150–27158.
- [5] M. H. A. Elhamid, B. G. Ateya, K. G. Weil and H. W. Pickering, *Journal of The Electrochemical Society*, 2000, 147, 2148.
- [6] R. N. Iyer and H. W. Pickering, Annual Review of Materials Research, 1990, 20, 299–338.