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Statistics for the dataset

To understand the distribution of the molecules in the dataset, Figures 1 and 2 show the

distribution of the molecular weights and the counts of molecules that have the heavy atoms

C, N, O, and F.

Supplementary Figure 1: Distribution of the molecular weights in the dataset

1

Electronic Supplementary Material (ESI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024



Supplementary Figure 2: Number of molecules that contain each element

Congruence of simulated and experimental Infrared spec-

tra

Of the 40 molecules whose infrared spectra we were able to download from the NIST Quan-

titative Infrared Database, we had the simulated spectra of 15 molecules. The average SIS of

the experimental and simulate infrared spectra is 0.2241. Although predictions are expected

to have SIS in the range 0.40–0.70 to even be considered as loosely predictive, the simulated

spectra should not be considered as replacements for experimental spectra.

Threshold reward for MCTS

MCTS will continue finding child nodes to the search tree until it reaches a terminal state.

For a state to be considered a terminal, at least one of these following termination criteria

have to be met:
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Supplementary Figure 3: Experimental and Simulated IR spectra

1. There are no more valid actions

2. The reward of this state is greater than a particular threshold

3. The NMR split values of the current state are such that the target NMR split values

can never be reached

If there are no valid actions that can be taken from a state, it has to be terminal since

there are no possible child nodes. If a state has a molecular graph where there are no

individual nodes, further actions will just continue adding bonds within the molecule. In

such a case, the environment checks if the NMR split values of a state can still allow further

addition of bonds. If a state’s NMR split values are such that the target NMR split values

cannot be reached via the addition of more bonds, then the state is considered to be terminal.

In addition to these termination criteria, we want the framework to stop the tree search

when it is confident that the target molecule has been reached. We use the reward function
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to get the reward for each state, and if the reward is greater than a particular threshold,

the state is terminal. To choose this threshold value, we sampled 10,000 molecules from

the test set and found the SIS between their IR spectrum and the predicted IR spectrum

from Chemprop-IR. These rewards are plotted in Fig. 4. 88.63% of molecules have their

self-rewards above 0.95. We sampled another 100 molecules and for each molecule, we found

the SIS between the molecule’s IR spectrum and the Chemprop-IR predicted spectrum of

the other 99 molecules. These rewards are plotted in Fig. 5. All these rewards are below

0.95. Choosing 0.95 as a reward threshold means that states with a reward greater than this

threshold are very likely to be the target molecules themselves. This allows the framework

to stop the tree search at this point.

Supplementary Figure 4: Distribution of rewards of the same molecules

SIS Loss

The original SIS description performs a Gaussian convolution to allow for any minor devi-

ations in the spectral peak locations. This Gaussian convolution allows spectra with minor
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Supplementary Figure 5: Distribution of rewards between different molecules

differences in the peak locations and intensities to have a relatively high SIS score. We do not

perform this Gaussian convolution while calculating SIS since the dataset used in this work

already has broadened stick spectra and Chemprop-IR also predicts broadened IR spectra.

Training on molecules with ≤ 7 heavy atoms and testing

on molecules with 8 or 9 heavy atoms

For the generalization study where the framework was trained on molecules with up to 7

heavy atoms, and tested on molecules with 8 or 9 heavy atoms, the test-train split of the

dataset was heavily unbalanced. There are a total of 2,099 molecules with ≤ 7 heavy atoms,

with all these molecules making the training set. The remaining 47,650 molecules have

either 8 or 9 heavy atoms and these molecules make up the testing set. Due to computational

constraints of testing the framework on the entire set, the framework was tested on a random

subset of 5000 molecules that contain either 8 or 9 heavy atoms. Out of these 5000 molecules,

771 molecules have 8 heavy atoms and 4,229 have 9 heavy atoms.
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Supplementary Figure 6: Cumulative plot of the fraction of correctly predicted molecules
and the number of episodes that were taken to find the right molecule

Choosing the number of episodes hyperparameter

Due to the way we parallelized DeepSPInN and with the resources that we used, it takes the

same amount of time to run the number of episodes that is the next closest multiple of 8.

For example, it takes the same amount of time to run 22 episodes and 24 episodes. This is

why we chose 32 episodes even though running for 28 episodes has a negligible decrease in

the fraction of correctly predicted molecules when compared to 32.

Top N metrics for various functional groups/structural

motifs

To identify if DeepSPInN has any affinity to predict the molecular structures that contain

specific functional groups better than others, we analyzed the Top N metrics of the molecules

that contain different functional groups. DeepSPInN performs well for molecules with ke-

tones, with a Top 1 (%) accuracy of 96.24%, and performs the worst for molecules with

amines with a Top 1 (%) accuracy of 86.99%. Table 1 shows the Top N (%) metrics of other
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functional groups as well as the number of molecules in the test set that contained these

functional groups.

Table 1: Top N metrics for molecules that have specific functional groups

Functional Group
(Number of molecules)

Alcohols
(2987)

Aldehydes
(1214)

Amines
(1983)

Ester
(437)

Ketone
(1064)

Phenol
(556)

Top 1 (%) 92.37 93.49 86.99 93.82 96.24 90.83
Top 3 (%) 93.34 94.48 87.59 94.51 97.27 91.01
Top 5 (%) 93.40 94.65 87.64 94.51 97.37 91.01
Top 10 (%) 93.44 94.65 87.70 94.51 97.37 91.01

Using proton-coupled 13C NMR spectra

In an experiment where we assume that we also have the 13C NMR split values, we use these

values to help prune the search tree by identifying molecules that are invalid according to

the input NMR spectrum and nullify the rewards for these molecules. This discourages the

tree search from exploring these molecules. The NMR split values for the NMR shift of each

carbon atom are equivalent to the number of hydrogen atoms attached to it. Each carbon

atom can be either a singlet (S, quarternary), doublet (D, tertiary), triplet (T, secondary),

or a quartet (Q, primary) atom with each of these denoted by S, D, T, and Q respectively.

Since each valid action is defined as the addition of a bond between two atoms in the MDP

reformulation, each valid action can only convert the carbon atoms from Q → T → D → S.

If the target Q-splits are more than the Q-splits at one such state, this state is not valuable

since no valid action from this state would be able to increase the count of Q-splits. If the

Q-splits match, checking the T and D-splits subsequently in the same way further identify

more states that get zero-rewards.

Tables 2, 3, and 4 present the same results from the main paper, but with the 13C NMR

split values being used. The dataset split is different from the main paper, with a 80-20 split

being used for the train and test sets.
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Table 2: Top N metrics for varying nmcts values

IR+NMR

nmcts 100 200 400 800

Top 1 (%) 82.311 90.773 94.934 95.980
Top 3 (%) 82.874 91.597 95.839 96.925
Top 5 (%) 82.994 91.778 96.060 97.106
Top 10 (%) 83.015 91.798 96.120 97.166
Top 40 (%) 83.015 91.798 96.120 97.206

Table 3: Performance of IR-and-NMR-trained, IR-trained, and NMR-trained models for
nmcts = 400

IR and NMR Only IR Only NMR

Top 1 (%) 94.934 74.075 40.462
Top 3 (%) 95.839 74.396 61.849
Top 5 (%) 96.060 74.396 68.201
Top 10 (%) 96.120 74.396 73.105
Top 40 (%) 96.120 74.423 74.472

Testing DeepSPInN checkpoints trained on simulated

spectra to elucidate experimental spectra

The simulated Infrared and 13C NMR spectra used to train and test DeepSPInN reflect the

complexity of experimental spectra but can not serve as replacement for the experimental

spectra. Since DeepSPInN is able to work with simulated spectra, it can analogously learn

to work with experimental spectra.

With this manuscript focusing on the development of DeepSPInN as a proof of concept,

the current DeepSPInN model checkpoints can not (should not) be used for testing on

experimental data since it was only trained on simulated data. DeepSPInN is able to learn the

complexity of spectra, as seen by its performance on simulated spectra, and would perform

well on unseen experimental spectra when it is also trained on experimental spectra. Future

works would be able to construct databases of experimental Infrared and 13C NMR spectra
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Table 4: Training on molecules with ≤ 7 atoms and testing on molecules with ≥ 8 atoms
for nmcts = 400

≥ 8 atom molecules 8-atom molecules 9-atom molecules

Top 1 (%) 80.971 96.024 77.948
Top 3 (%) 82.046 97.247 78.992
Top 5 (%) 82.148 97.247 79.115
Top 10 (%) 82.199 97.247 79.176
Top 40 (%) 82.250 97.247 79.238

to train checkpoints of DeepSPInN that would work well on new experimental data.

We demonstrate that the current DeepSPInN checkpoints do not perform well on eluci-

dating the structures of experimental spectra by gathering the experimental Infrared and 13C

NMR spectra of 14 molecules from the databases NIST Quantitative Infrared Database and

nmrshiftdb2. In Table 5, we show the top candidate molecules of some of these molecules as

predicted by DeepSPInN. As expected, DeepSPInN did not perform well and was only able

to resolve 3/14 of the molecules.
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Table 5: Top candidate molecules and the rewards when given experimental IR and 13C
NMR spectra as input to a DeepSPInN model trained on simulated spectra

Target Molecule Top 5 Candidate Molecules
(and their final rewards)
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