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1 Detailed Methods1

1.1 Reaction rate parameters2

The rate constants for the barrierless radical recombination reactions were obtained through3

the collision theory based group additivity rules implemented in Reaction Mechanism Genera-4

tor (RMG).1,2 For the other four reaction types, the rate constants (k) were calculated based5

on the transition state theory (TST). Specifically, the Eyring equation with the shallow Wigner6

tunneling correction was utilized (Eq. 1).37

k = κ
kBT

h

(
RT

P

)m−1

e
−∆G‡
RT (1)

The tunneling correction term, κ, was calculated using Eq. 24 for proton-transfer reactions such as8

hydrogen abstraction and isomerization, whereas for initiation and radical decomposition reactions,9
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Figure S1: List of all 59 model reactions in the alkane pyrolysis system.
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Figure S2: Model reaction benchmarking and correction for isomerization reactions. (a) Signed
deviations in free energy of activation (left y-axis), and exponential term variation (right y-axis) of
model reactions with respect to the benchmarking reactions. The solid boxes span from the first
(q1) to the third (q3) quartile with the second quartile (q2/median) represented by the solid line
and notch in the box. The whiskers range from q1 − 1.5iqr to q3 + 1.5iqr where iqr refers to the
interquartile range (q3-q1). The dashed lines represent the mean and the standard deviation. (b)
Generating correction factors for isomerization reactions from the corresponding model reaction.
(c) Signed deviations in corrected free energy of activation of isomerization reactions with respect
to the benchmarking reactions. The violin plots span from the minimum to the maximum value,
bold vertical lines span from the first to the third quartile, and the bold horizontal tick is the
median.
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it was set to 1.10

κ = 1 +
1

24

(
hω‡

kBT

)2

(2)

In Eqs. 1- 2, kB is the Boltzmann constant, h is Planck’s constant, T is the operating tem-11

perature (i.e. 700 K), R is the ideal gas constant, P is the operating pressure (i.e., 1.01325 bar),12

m is the molecularity (i.e. the number of reactants) of the reaction, ∆G‡ is the Gibbs energy of13

activation, and ω‡ is the imaginary frequency of the transition state.14

Since initiation reactions are inverse radical recombination reactions, their Gibbs energies of15

activation were estimated by the corresponding bond dissociation free energies (BDFE),predicting16

by ALFABET.5 For the remaining three reaction types, i.e., hydrogen abstraction, isomerization,17

and radical decomposition, ∆G‡ was estimated by a model reaction based approach (Fig. 1a.ii),18

to manage the exponential growth in the number of reactions as the alkane length increases.19

Model reactions were defined based on the uniqueness of the reaction centers (i.e., the atoms20

involved in a bond break or formation during the reaction) and their bonded neighbors. The21

smallest representative of each reaction was used to calculate ∆G‡ from a transition state search22

(described next) and this value was used as an estimate for all reactions in that class as defined23

by the reaction centers and bonded neighbors. The smallest representative reactions for each class24

were generated by hydrogenating the under-coordinated bonded neighbors of the reaction centers25

to a degree that maintained the reaction center hybridization. An illustration of the approach is26

shown in Fig. 1a.ii in the main text.27

Generating model reactions for all possible hydrogen abstraction, isomerization, and radical28

decomposition reactions associated with arbitrary alkane pyrolysis resulted in a fixed set of 5929

model reactions (Fig. S1) that were characterized with the YARP v2.0 package.6 Using YARP30

v2.0 on the model reaction geometries, double-ended transition state searches were performed to31

generate initial transition state geometry guesses that were then refined at the DFT level.7 Up32
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to four independent double-ended searches were performed using distinct reactant and product33

conformers generated by YARP to promote the discovery of the lowest barrier transition states.834

The reactant, product, and transition state geometries were optimized at the ωB97X-D/def2-35

TZVP9,10 level of theory and the lowest ∆G‡ amongst the discovered transition states for each36

reaction was used for the kinetic simulations. The Rigid Rotor-Harmonic Oscillator (RRHO)37

approximation was used to estimate the free energies associated with all DFT calculations.38

A detailed benchmarking of the model reaction approach for the alkane pyrolysis network is in39

Fig. S2a. For each model reaction, activation barriers of at least 40 corresponding actual reactions40

were calculated at the same level of theory. Note that MR48, MR52, MR54 and MR59 have no41

other mapped actual reactions but themselves, and hence were not benchmarked. Additionally, a42

comparison of the errors in exponential terms was made in Fig. S2a. The huge exponential factor43

variation for MR 40 is explained by the fact that the activation barrier of MR 40 is very small ( 344

kcal/mol), which causes the rate constant variation to be relatively high even with a 1 kcal/mol45

change in activation barrier.46

Because isomerization reactions are internal hydrogen abstraction reactions and the model re-47

action approach only conserves the first adjacent neighbors to reacting centers, the model reactions48

∆G‡ corresponding to isomerization do not contain the contribution of the ring-based transition49

state. To account for this, the differences between the simplest observed n-alkyl isomerizations50

and the corresponding H abstraction model reaction were used as correction factors for each iso-51

merization type (1-4, 1-5, 1-6, or 1-7). These correction factors were then subtracted from the52

corresponding H abstraction model reactions to obtain the ∆G‡ values of isomerization reactions53

in the network (Fig. Fig. S2b). Benchmarking of the isomerization correction factors is presented54

in Fig. S2c.55
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1.2 Kinetic modeling for half lives56

With the ability to generate the pyrolysis reaction network and obtain the corresponding kinetic57

parameters of these reactions, Cantera11 was used to solve the rate equations to obtain the half-life58

of each alkane starting with the pure alkane in an isothermal-isobaric (700 K, 1.01325 bar) ideal59

gas batch reactor.60

The huge reaction networks pose a challenge due to the memory and processing power re-61

quired to solve these networks in Cantera. From the estimates of possible unique reactants or62

reactant pairs (for unimolecular and bimolecular reactions, respectively) for n-alkanes, the reac-63

tions networks grow at an exponential rate with increasing alkane length. These estimates are64

very conservative since the actual number of reactions will be much higher than the unique re-65

actants/reactant pairs since each reactant/reactant pair can lead to multiple reactions depending66

on the number of unique reaction sites in the reactants, and furthermore, the branched isomeric67

alkanes will have an even higher number of reaction channels compared to n-alkanes. The pruning68

(or reduction or condensation) of reaction mechanisms is a problem of great interest, and over69

the years a large number of numerical and analytical methods have been developed to tackle this70

challenge based on the complexity of the problem.12
71

A simple and robust method to prune reaction networks, especially when reaction rates are72

known, is to model the reaction kinetics and remove redundant reactions with extremely low rela-73

tive fluxes (or net rate of production) which are essentially not contributing to the overall kinetics74

but still consuming computational power. We used this method since it naturally integrated with75

our efforts to characterize reaction rate constants for all alkane pyrolysis reactions, and to obtain76

alkane pyrolysis half-lives from these rate constants and the reaction networks. However, as al-77

ready mentioned, given the super-exponential growth of reaction networks with increasing alkane78

length, pruning post network generation was not viable. So, we implemented a depth-wise kinetic79
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pruning strategy wherein at each reaction network generation depth calculated with respect to the80

starting alkane, the half-life of starting alkane was kinetically modeled (using the network gener-81

ated up to that depth) and reactions with low relative fluxes across all time steps were discarded82

before moving on to generating reactions for the next depth (Fig. 1a.iii). The threshold maximum83

relative flux to be used to prune reactions was obtained to be 10−9 via trial-and-error comparison84

of alkane half-lives from the pruned networks to the half-lives obtained from full reaction networks85

for all isomers between C2H6 and C10H22. That is, for the pruning step at each depth, all reactions86

with maximum relative fluxes over the simulation window of less than 10−9 that of the highest flux87

reactions were discarded. The benchmarking of this kinetic pruning approach has been illustrated88

in the main text (Fig. 2b).89

1.3 Predicting Stability90

The kinetic simulations described in the previous sections resulted in a dataset of 32,421 alkanes91

and their corresponding half lives under pyrolysis conditions. A 90:10 train:test split was randomly92

generated for models training. To provide a more rigorous test of transferability, four other case-93

studies were performed using distinct training and testing splits, as already mentioned in section94

2.2 of the main text.95

The stability score was developed as a relative metric to compare the thermal stability, based on96

the pyrolysis half-life data, of two or more alkanes. Rather than training the models to predict the97

half-lives directly, we hypothesized that a relative measure of stability might be more transferable98

and easier to learn. The Stability Score can be understood to be a log-scaled relative half-life of99

an alkane with the half-lives scaling exponentially with the Stability Score. Here, the stability100

score was learned by training the models to minimize a hinge loss function that penalizes incorrect101

predictions of the pair-wise relative stability of samples. Given a set of n alkanes: {m1,m2, ...,mn},102

and the corresponding log10 and z-normalized actual and model predicted half lives: {t1, t2, ..., tn}103
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and {t̂1, t̂2, ..., t̂n}, the hinge loss function is defined as104

L =
n−1∑
i=1

n∑
j=i+1

max

(
0,
[
(ti − tj)− (t̂i − t̂j)

]
· ti − tj
|ti − tj|

)
(3)

where the summations are over all unique pairs of samples in the training data. This loss function105

penalizes relative stability differences between species that are smaller than the log10 half-life106

difference in training data. This prevents overfitting by ensuring that if the predicted difference107

in stabilities is at least as much as the training data, the value inside the summation will be zero108

and will not affect the model parameter optimization.109

A feed-forward MLP (Multi-Layer Perceptron) with 2048 length 8-bit integer folded Morgan110

fingerprints from RDKit as inputs, five hidden layers with 300 nodes each, with ReLU activation111

with bias, and a single linear output was implemented in python 3.10 with Tensorflow13 2.10.0 and112

Keras14 (Fig. 1b). Due to the large variation in the alkane half-life values, the model was trained113

on the natural log and z-score normalized half-life values. Once trained, the model predictions were114

then wrapped in a sigmoid function and scaled from 0 to 100 for a more human readable format,115

and these scaled values were called the Stability Scores. The Adam optimizer with a constant116

learning rate of 0.001 was used for training. Training was stopped based on minimizing validation117

set performance. A batch size of 128 was used while training.118

A Chemprop15 model with alkane SMILES16 and hinge loss was also trained for comparison.119

Both the MLP and Chemprop models were trained on all the split types.120
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Figure S3: Comparing n-alkane reaction network ERS percentage composition (a) before and (b)
after pruning.

2 Reaction networks ERS (Elementary Reaction Step) com-121

position122

Fig. S3 describes the percentage composition of the ERS (Elementary Reaction Steps) in some123

complete and pruned n-alkane reaction networks illustrating the domination of H-abstraction re-124

actions.125

3 Experimental Kinetic Data126

Table S1 lists all the experimental reactions and rate parameters used.17 Table S2 shows the127

reactions which were used from Table S1 for the corresponding reaction schemes.128

9



Table S1: All Reactions and Kinetic Parameters

No. Reaction A Ea

(s−1 or L mol−1 s−1) (kcal/mol)

1. C2H6 2CH3 · 4.0× 1016 87.5

2. C2H6 + H· C2H5 · + H2 1.0× 1011 9.7

3. C2H6 + CH3 · C2H5 · + CH4 3.8× 1011 16.5

4. C2H5 · C2H4 + H· 3.2× 1013 40.0

5. C2H5 + H· C2H6 4.0× 1010 0

6. 2CH3 · C2H6 1.3× 1010 0

7. C3H8 C2H5 · + CH3 · 2.0× 1016 84.5

8. C3H8 + H· 1 C3H7 · + H2 1.0× 1011 9.7

9. C3H8 + H· 2 C3H7 · + H2 9.0× 1010 8.3

10. C3H8 + CH3 · 1 C3H7 · + CH4 3.4× 1010 11.5

11. C3H8 + CH3 · 2 C3H7 · + CH4 4.0× 109 10.1

12. C3H8 + C2H5 · 1 C3H7 · + C2H6 1.2× 109 12.6

13. C3H8 + C2H5 · 2 C3H7 · + C2H6 8.0× 108 10.4

14. 1 C3H7 · C2H4 + CH3 · 4.0× 1013 32.6

15. 1 C3H7 · C3H6 + H· 2.0× 1013 38.4

16. 2 C3H7 · C3H6 + H· 2.0× 1013 38.7

17. 1 C3H7 · + H· C3H8 1.0× 1010 0

18. 2 C3H7 · + H· C3H8 1.0× 1010 0

19. C2H5 · + CH3 · C3H8 3.2× 109 0

Continued on next page
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Table S1 – continued from previous page

No. Reaction A Ea

(s−1 or L mol−1 s−1) (kcal/mol)

20. n C4H10 2C2H5 · 1.5× 1016 82.1

21. n C4H10 1 C3H7 · + CH3 · 9.0× 1016 85.4

22. i C4H10 2 C3H7 · + CH3 · 2.0× 1016 82.0

23. n C4H10 + H· 1 C4H9 · + H2 1.5× 1011 9.7

24. n C4H10 + H· 2 C4H9 · + H2 9.0× 1010 8.4

25. i C4H10 + H· i C4H9 · + H2 1.0× 1011 8.4

26. n C4H10 + CH3 · 1 C4H9 · + CH4 3.5× 1010 11.6

27. n C4H10 + CH3 · 2 C4H9 · + CH4 3.5× 109 9.5

28. i C4H10 + CH3 · i C4H9 · + CH4 9.5× 109 9.0

29. n C4H10 + C2H5 · 1 C4H9 · + C2H6 2.0× 109 12.6

30. n C4H10 + C2H5 · 2 C4H9 · + C2H6 4.5× 108 10.4

31. i C4H10 + C2H5 · i C4H9 · + C2H6 1.5× 109 10.4

32. n C4H10 + 1 C3H7 · 2 C4H9 · + C3H8 2.0× 108 10.4

33. n C4H10 + 2 C3H7 · 2 C4H9 · + C3H8 2.0× 108 12.6

34. i C4H10 + 2 C3H7 · i C4H9 · + C3H8 1.0× 108 13.4

35. 1 C4H9 · C2H4 + C2H5 · 1.6× 1012 28.0

36. 1 C4H9 · 1 C4H8 + H· 1.0× 1013 36.6

37. 2 C4H9 · 1 C4H8 + H· 2.0× 1013 39.8

38. i C4H9 · i C4H8 + H· 3.3× 1014 36.0

39. 2 C4H9 · C3H6 + CH3 · 2.5× 1013 31.9

40. i C4H9 · C3H6 + CH3 · 8.0× 1013 33.0

Continued on next page
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Table S1 – continued from previous page

No. Reaction A Ea

(s−1 or L mol−1 s−1) (kcal/mol)

41. i C4H9 · 2 C4H8 + H· 4.0× 1013 36.6

42. 1 C4H9 · + H· n C4H10 1.0× 1010 0

43. 2 C4H9 · + H· n C4H10 1.0× 1010 0

44. i C4H9 · + H· i C4H10 1.0× 1010 0

45. 1 C3H7 · + CH3 · n C4H10 3.2× 109 0

46. C2H5 · + C2H5 · n C4H10 3.2× 109 0

Table S2: Alkane Pyrolysis Schemes

Alkane Reactions Considered
Ethane 1-6
Propane 1-19
n-Butane 1-46
iso-Butane 1-46

4 Models Training Details129

The learning curves for all split types for the MLP model are shown in Fig. S4 and for the130

Chemprop model are shown in Fig. S5. 10% of each training split was withheld as validation131

data for determining stopping for training. The Best Validation model was used for testing. It132

can be observed that across all splits and models, the training and validation losses drop quickly133

within the first 20 epochs and the majority of the training happens within the first 100 epochs134

with another 200 epochs being required for fine tuning. Also, it is important to note that the135

loss values for MLP and Chemprop cannot be directly compared because of the different default136
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Figure S4: MLP learning curves (a) Random Split. (b) Total Branches ≤ 6. (c) Core Branches
≤ 4. (d) Backbone ≤ 10. (e) Length ≤ 16.
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Figure S5: Chemprop learning curves (a) Random Split. (b) Total Branches ≤ 6. (c) Core
Branches ≤ 4. (d) Backbone ≤ 10. (e) Length ≤ 16.
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initialization.137
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