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Computational Methods: Molecular Trajectory Data

S1 ReSolv Method

The entropy gained by cellulose chains stabilize high-temperature structures and alter de-

composition kinetics. This influence of condensed phase effects on the reaction chemistry

can only be probed by accounting for explicit molecules and their corresponding entropic

contributions. Accounting for these entropic contributions is crucial for developing a mech-

anistic understanding explaining cellulose chemistry. Therefore, a combination of quantum

mechanics (QM) and molecular mechanics (MM) approaches are used. First the reaction

chemistry in the gas phase is calculated using DFT methods. Further, thermodynamic in-

tegration (TI) method implementation on GROMACS 2018.7 is used to capture the correct

finite temperature interaction energies. The gas phase DFT computed free energy barriers

are corrected to correspond to condensed phase free energy barrier at four temperatures (100

K, 500 K, 900 K, 1200 K) for 60 residue cellobiose system.

S1.1 Gas Phase Transition State (TS) Calculations

Gas phase barriers are calculated using an isolated cellobiose molecule. All-electron Density

Functional Theory (DFT) calculations were conducted using the Gaussian 09 code. The

calculations were carried out employing the hybrid functional M06-2X76 in conjunction

with the 6-31+G(2d,p) basis set, a recommended choice for carbohydrate chemistry. Both

geometry optimization and Transition State (TS) search calculations were performed without

any constraints. The Berny algorithm was employed to determine the TS. Subsequently,

frequency calculations were executed to differentiate between saddle points and local minima.

To verify the correct positioning of reactants and products on the potential energy surface,

Intrinsic Reaction Coordinates (IRCs) were followed in both directions.
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Figure S1: Schematic showing the calculation of condensed phase corrections to gas phase free
energy barriers.

S1.2 Thermodynamic Integration Method

Gas phase reactant and transition state (TS) coordinates serve as the initial configurations.

Langevin dynamics and OPLS/AA force-field parameters which have been benchmarked in

published literature for carbohydrate molecules are utilized. The system configurations are

optimized and equilibrated. Pressure equilibration is performed under NPT conditions at 1

atm for 2 ns, establishing the appropriate system volume/phase. Subsequently, TI calcula-

tions are conducted under NVT conditions for 8 ns at the relevant temperatures, with 30

λ-windows optimized for intermediate states. In all the simulation temperature control was

maintained by using the Nosé-Hoover thermostat. Periodic boundary conditions were applied

in all directions. Potential derivatives obtained from MD simulations for each λ-window are

integrated to determine ∆Gint. Combining gas phase calculations and thermodynamic inte-

gration results, the free energy barrier for cellulose decomposition in the melt-phase (∆G‡m)

is estimated as illustrated in Figure S1.

S2 Relative Stability of Hydronium Ion in Solvent

To investigate the effects of DMSO on the interaction of fructose and HMF with the hydro-

nium ion, forcefield based MD and WT-MTD methods were used. These simulations were

carried out in a canonical NVT ensemble at 298 K, employing GROMACS Version 4.6.7.

Systems with 1% and 10% wt. of fructose and HMF, as previous experimental studies have
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demonstrated that fructose conversion and HMF selectivity vary with fructose concentra-

tion, with DMSO concentrations ranging from 0 to 80% wt. For all systems, 3 molecules

of fructose, 4 hydronium ions and 4 Cl− are present. To assess the relative stability of hy-

dronium ions in the immediate vicinity of fructose and HMF compared to the bulk solvent,

WT-MTD simulations were conducted.

S2.1 Molecular Dynamics Simulations

Specifically, TIP3P model for water and the OPLS-AA force field for modeling DMSO, fruc-

tose, and HMF molecules is used. The OPLS-AA force field has been extensively validated

for liquid phase simulations and has successfully captured the strong hydrogen bonding in-

teractions between the hydroxyl groups of carbohydrates and DMSO’s sulfonyl group. To

maintain a constant temperature during the simulations, the Nosé-Hoover thermostat with

coupling time constants of 1 ps. Each simulation consisted of 0.1 ns of steepest descent

energy minimization to reduce the energy gradient below 10 kJ/mol nm, followed by 0.4

ns of equilibration runs, 0.4 ns of isothermal-isobaric runs, and finally, 12 ns of production

runs with a single MD time step of 1 fs. All simulations were conducted under periodic

boundary conditions in all directions, with a cutoff of 0.7 nm using Particle-Mesh Ewald

(PME) electrostatics. The MD trajectories were analyzed using Visual Molecular Dynamics

(VMD), version 1.9.3.

S2.2 Well-tempered Metadynamics (WT-MTD)

WT-MTD simulations were coupled with the 12 ns MD simulations and performed in the

NVT ensemble at 298 K using GROMACS-PLUMED/2016.3. Before initiating the WT-

MTD runs, the system was equilibrated using MD. The WT-MTD production runs were

carried out in the NVT ensemble for 300 ns, using a time step of 1 fs. Bias potentials were

deposited after every 500 steps with an initial height of 1.2 kJ/mol and a bias factor used

to reduce the hill height of 25. The sigma values, representing the width of the deposited
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potentials, were set to 0.05 for both collective variables. Importantly, as the simulation

time increased, the hill height decreased, providing adaptive adjustments to the Gaussian

size. WT-MTD involves the introduction of bias potentials as a sum of Gaussians deposited

along the system trajectory as a function of chosen collective variables (CVs). In this study,

the coordination number between fructose/HMF molecules and hydronium ions serves as

the first collective variable (CV1), and the number of water and DMSO molecules in this

solvation shell, making it the second collective variable (CV2). The potential deposited

during the WT-MTD simulation can be retraced, allowing for the reconstruction of the free

energy surface (FES) as a function of collective variables. The first minimum in the FES

corresponds to the hydronium ion in the bulk solvent, while the second minimum corresponds

to the hydronium ion present in the first solvation shell of fructose. To quantify the relative

stability of the hydronium ion in the first solvation shell of fructose/HMF, the difference in

free energies between these two minima are calculated. A lower value of this ∆G (the free

energy of the hydronium ion in the vicinity of fructose subtracted by the free energy of the

hydronium ion in the bulk solvent) indicates a higher relative stability of the hydronium ion

near fructose/HMF. In other words, a more negative ∆G suggests that the hydronium ion

is more stable and favorable to be found in the vicinity of fructose/HMF compared to the

bulk solvent.

Architecture and Parameters: 3d CNN Autoencoder

The hyperparameters of the 3d CNN autoencoder neural network primarily include spec-

ifications of its architecture by way of types/number of layers, their corresponding kernel,

stride and padding dimensions, choice of weight initialization, optimizer, learning rate, train-

ing strategies, data splitting etc. The hyperparameter specifications used in this work are

provided below.

• Activation function: Rectified Linear Unit (ReLU).
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• Initialization method for weights: Uniform Xavier distribution.

• Optimizer: ADAM with a learning rate of 1e-3.

• Training validation split: 80:20.

• Epochwise training: 500 epochs

• Early-stopping mindelta is 1e-5 with a patience/tolerance of 10 epochs.

Further, the hyperparameters with respect to the architecture as an output to the

model.summary() of the PyTorch neural network has been printed herein. The dimen-

sions of a data sample corresponding to this architecture has been uploaded as an image on

the GitHub repository (‘network architecture.jpg’).

Net(

(conv1): Conv3d(100, 64, kernelsize=(3, 3, 3), stride=(1, 1, 1))

(bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, trackrunningstats=True)

(conv2): Conv3d(64, 32, kernelsize=(3, 3, 3), stride=(1, 1, 1))

(bn2): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, trackrunningstats=True)

(pool1): MaxPool3d(kernelsize=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0, 0),

dilation=(1, 1, 1), ceilmode=False)

(conv3): Conv3d(32, 16, kernelsize=(3, 3, 3), stride=(1, 1, 1))

(bn3): BatchNorm3d(16, eps=1e-05, momentum=0.1, affine=True, trackrunningstats=True)

(conv4): Conv3d(16, 8, kernelsize=(3, 3, 3), stride=(1, 1, 1))

(bn4): BatchNorm3d(8, eps=1e-05, momentum=0.1, affine=True, trackrunningstats=True)

(pool2): MaxPool3d(kernelsize=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0, 0),

dilation=(1, 1, 1), ceilmode=False)

(fc1): Linear(infeatures=64, outfeatures=32, bias=True)

(fc2): Linear(infeatures=32, outfeatures=16, bias=True)

(fc3): Linear(infeatures=16, outfeatures=32, bias=True)
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(fc4): Linear(infeatures=32, outfeatures=64, bias=True)

(unpool1): MaxUnpool3d(kernelsize=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0,

0))

(convT1): ConvTranspose3d(8, 16, kernelsize=(3, 3, 3), stride=(1, 1, 1))

(bn5): BatchNorm3d(16, eps=1e-05, momentum=0.1, affine=True, trackrunningstats=True)

(convT2): ConvTranspose3d(16, 32, kernelsize=(3, 3, 3), stride=(1, 1, 1))

(bn6): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, trackrunningstats=True)

(unpool2): MaxUnpool3d(kernelsize=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0,

0))

(convT3): ConvTranspose3d(32, 64, kernelsize=(3, 3, 3), stride=(1, 1, 1))

(bn7): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, trackrunningstats=True)

(convT4): ConvTranspose3d(64, 100, kernelsize=(3, 3, 3), stride=(1, 1, 1))

(bn8): BatchNorm3d(100, eps=1e-05, momentum=0.1, affine=True,

trackrunningstats=True)

)
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