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1 Hyperparameter Selection
The hyperparameters used in this work are based on previous work in the field as summarised below:

Parameter Value Reason Reference
Number of atoms 24 The number used in the references is 48, because increasing

the number of atoms increases the difficulty to find the ground
state. However to balance the trade-off between difficulty and
time required for an experiment a smaller size of 24 atoms was
selected for this investigation.

1–3

Unit cell parameter
limits

unit cell vectors: 2−
60 Å; angles: 0−π

These were set to be less restrictive than the already consid-
ered ’loose’ parameters 0− 40Å, and 20− 120, degrees used
by Lonie and Zurek.

3

Maximum angle be-
tween unit cell vector
and plane created by
other 2 vectors

[20, 160] , [60, 120], [
20, 160]

As above, this was set to be less restrictive than the example
provided in the reference implementation of a genetic algo-
rithm.

4,5

Unit cell volume 450 Å3. This was estimated based on the 483 Å3 used by Lonie and
Zurek in the reference.

3

Scaling factor be-
tween atomic radii

0.4 This parameter defines how closely atoms can be positioned in
the unit cell. Set to the values used in references.

. 1,2

Crossover operators
and their probabilities

Operators: Strain
and Permutation
mutations with proba-
bilities: 50%, 50%

The initial set up included crossover and soft mutation oper-
ators as set by Lykahov et al in the reference. These were
not included because they did not guarantee an individual to
be outputted and soft mutation also requires realistic individu-
als which could not be guaranteed in this work. Therefore for
computational efficiency these were not included.

2

Unit cell splitting fac-
tors

2, 4 This is a parameter used to determine transnational symmetry
when using the random structure generator. The values were
set using the reference

2

Starting Population
Size

20 The size used by the Lyakhov et al. is 10, but since our ob-
jective is also around diversity a larger starting point was used.
This and larger population sizes were also tested as reported in
table S2. as part of the MAP-Elites parameters search

2

Table S1: Hyperparameter selection for TiO2 mapped to past work.

Additionally a brief summary of the hyperparameters set from a computational perspective are summarised below:

Parameter Value Set Values
Tested

Reason

Number of niches 200 200, 500 200 niches was selected to increase the chances of competition between
structures. The dynamics of the experiment were consistent across the
three experiments so 200 was selected as a good trade off between speed
and diversity of possible solutions.

Proportion of niches to be
filled

0.1 0.1, 0.2 The higher proportion of niches didn’t improve the average fitness ob-
tained nor the number of reference matches found, so the lower thresh-
old was selected to move to structure mutations quicker.

Number of random struc-
tures to initialise

20 20, 40, 80 20 was set as it limited the time spent on generating new structures, and
if required would be called multiple times to filled the proportion of
niches desired so on its own this parameter had limited impact.

Batch size per generation 100 20, 50, 100 This parameter defines how many individuals will be mutated per gen-
eration. Setting this to 100 meant that some individuals were mutated
multiple times. This accelerated finding of reference matches.

Table S2: Default hyperparameter selection.
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2 Selection of force threshold value
The maximum force acting on each of the reference structures was computed. This includes the forces acting on each
atom as well as the stresses on the unit cell, as implemented and used for relaxation in CHGNEt. The results are presented
in the histogram in Figure S1.

Figure S1: Histogram of the maximum force acting on each of the reference structures of TiO2 computed using CHGNet.6

3 Identifying equivalent structures
Within the tolerances set in this work we observed that some structures would be equivalent to each other. This is
demonstrated within Figure S2 below. There the confusion matrix was constructed by comparing all reference structures
to each other. Structures considered equivalent to each other are marked with green. In Figure S2b we can observe that
equivalent pairs are: mp-390 and mp-34688, mp-2657 and 1041565.

(a) Matches between experimentally observed
reference structures. (b) Matches between all reference structures.

Figure S2: Correlation plot of matches between reference structures as generated using StructureMatcher from
pymatgen.7

4 Sample results for C, SiC, SiO2

Below in Figure S3 we demonstrate sample archives for C, SiC and SiO2. We can observe similar trend as with TiO2; the
archives largely developed in the expected areas of the features space. With the exception of SiC the archives demonstrate
that a wide set of solutions is demonstrated.
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Carbon Silicon Carbide Silicon Dioxide

a)

b)

c)

d)

e)

Figure S3: Sample results for C, SiC and SiO2 experiments.
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