
Supplementary Information to ”Active learning for regression of

structure-property mapping: the importance of sampling and

representation ”

Hao Liu1 Berkay Yucel2 Baskar Ganapathysubramanian3

Surya R. Kalidindi2 Daniel Wheeler4 Olga Wodo1

1Materials Design and Innovation Department, University at Buffalo, Buffalo, NY, USA
{olgawodo}@buffalo.edu

2The School of Materials Science and Engineering, the School of Computational Science
and Engineering, Georgia Institute of Technology, GA, USA. 3Mechanical Engineering

Department, Iowa State University, IA, USA.
4Materials Science and Engineering Division, Material Measurement Laboratory,

National Institute of Standards and Technology, Gaithersburg, MD, USA.

1 List of descriptors

Table 1 lists the descriptors used in this work.

2 Feature importance score

In this work, we calculate the feature importance score based on random forest (RF) algorithm [1, 2].
RF is constructed using a set of decision trees. Each decision tree has a set of internal nodes and leaves
and uses these to calculate the feature importances based on how much the feature reduces the impurity
(e.g. MSE) when it split a node. These importance scores are accumulated over all nodes. Finally, the
feature importance scores are averaged across all tree models.

3 Quantitative analysis of sampling strategy–three metrics

In this work, we use three metrics to compare and contrast different sampling strategies:

(i) Wasserstein distance, also known as earth mover distance, which is derived from optimal transport
theory [3]. In this work, for each iteration, the Wasserstein distance metric is used to calculate
the distance between the microstructure distribution, µ, at each iteration and the complete mi-
crostructure distribution, ν. Following work [4], the Wasserstein distance is defined as:

W2(µ, ν) =

 min
Γ∈Rm×n

+

∑
i,j

Γi,j∥γxi
− γyj

∥2

1/2

s.t. Γ1 = µ,ΓT1 = ν,Γ ≥ 0

(1)

where, µ and ν are two probability distributions, Γ is the optimal transport matrix and the L2
norm is the distance between samples (microstructures) γxi

and γyj
from two distributions.

(ii) Entropy is used to measure the diversity of the data pool at each iteration. Formally, the Shannon
entropy of a probability distribution, H, is defined as:

H = −
∫

p(γ) log(p(γ)) dγ (2)

where p(γ) is the probability density function of variable γ. Here, the kernel density estimator
determines p of microstructure feature space, γ.
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Table 1: The list of descriptors used in this work, the names of descriptors, and the corresponding GraSPI
names. The abbreviations D, A, Ca, An, CC correspond to donor phase, acceptor phase, cathode, anode,
and connected components, respectively. Note that the abbreviation D in this table is used for consistency
with the software and should not mixed with the vector of descriptors from the main manuscript.
di Descriptor GraSPI name
d1 Fraction of D voxels ABS f D
d2 Weighted fraction of D voxels in 10 distance to interface DISS wf10 D
d3 Interfacial area STAT e
d4 Number of D voxels STAT n D
d5 Number of A voxels STAT n A
d6 Number of D CCs STAT CC D
d7 Number of A CCs STAT CC A
d8 Number of D CCs connected to An STAT CC D An
d9 Number of A CCs connected to Ca STAT CC A Ca
d10 Weighted fraction of D ABS wf D
d11 Fraction of D voxels in 10 distance to interface DISS f10 D
d12 Fraction of interface with complementary paths to An and Ca CT f e conn
d13 Fraction of D voxels connected to An CT f conn D An
d14 Fraction of A voxels connected to Ca CT f conn A Ca
d15 Interfacial area with complementary paths CT e conn
d16 Number of D interfacial voxels with path to An CT e D An
d17 Number of A interfacial voxels with path to Ca CT e A Ca
d18 Fraction of D voxels with straight rising paths (t=1) CT f D tort1
d19 Fraction of A voxels with straight rising paths (t=1) CT f A tort1
d20 Number of D voxels in direct contact with An CT n D adj An
d21 Number of A voxels in direct contact with Ca CT n A adj Ca

(iii) Informativeness is measured by calculating the average variance of the unselected data pool at each
iteration. The definition is shown in equation 4 of the main text.

4 Comparison of sampling for setting 2

Figure S1 depicts the distribution of query points for five sampling strategies. The features of query
points for each sampling mimics the results presented in the main document. GSx and uncertainty
sampling tend to choose query points from the boundary of the distribution in the latent space. GSy
chooses query points to span the range of properties. Finally, iGS balances the sampling uniformity in
input and output spaces.

5 Active learning combined with feature selection

The salient features selected based on currently labeled data will be changing along with the active
learning process. However, salient features will be stable as sufficient data samples have been learned.

Table S2 and Figure S3 list salient features for the selected iterations of the AL workflow. Initially,
16 features are required to meet the 0.98 accumulated importance score criterion. With subsequent
iterations, the number and the list of salient features converge. Table S2 provides the summary of
the selected feature. Interestingly, the features used in setting 1 (d3, d11, d20, d21, d2) are consistently
being selected beyond 10 iterations. The value of feature importance for these descriptors increases with
iterations, as shown in Figure S3. For example, d3 scores high even in the early iterations. While the
score of d20 gradually increases to become the third most important feature at iteration 490.
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Figure S1: Visualization of query point selection using different sampling strategies: GSx, GSy, iGS, un-
certainty sampling, and random sampling with unknown salient features. Each panel highlights 20 points
selected using a given strategy (marked red), and also includes remaining points that are color-coded
using the property of interest-Jsc. Note that each point corresponds to one microstructure projected into
the first two principal components of descriptor-based representation.

Figure S2: The selected features in the active learning process
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Figure S3: The feature selection results in the active learning process
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