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Figure S1: Pharmacokinetic distribution of an ingested chemical substance.

Figure S2: Number of data points in the fu and Clint datasets.

Figure S3: 1000 times shuffle split Cross-validation statistics (mean ± 100 SEM) (fraction 
unbound data).
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Figure S4. Learning curves for the SVM model by considering Mean Absolute Error (MAE) 
and R2 as the objective functions (fraction unbound data)

Figure S5. Validation curve for SVM model by considering Mean Absolute Error (MAE) and 
R2 as the objective functions, for parameters C and degree (fraction unbound data).
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Figure S6. Violin plot for the SVM model (fraction unbound data)

Figure S7. 20 times repetitive and 1000 times shuffle split cross-validation analysis by 
considering accuracy and F1 score as the objective functions (hepatocyte intrinsic clearance 
data).
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Figure S8. Learning curves for the SVM method by considering accuracy and f1 score as 
objective functions (hepatocyte intrinsic clearance data).

Figure S9. Validation curves for the SVM model at different values of parameter C 
(Hepatocyte intrinsic clearance data).
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Figure S10. 20 times repetitive and 1000 times shuffle split cross-validation analysis by 
considering accuracy and F1 score as an objective function (for modeling Clint by taking fu as 
a descriptor).

Figure S11. Learning curves for the SVM model (for modeling Clint by taking fu as a 
descriptor).



7

Figure S12. Validation curve for the SVM model (for modeling Clint by taking fu as a 
descriptor).

Brief Introduction about Clearance

Clearance can be divided into three groups: renal clearance (ClR), hepatic clearance (ClH), and 

extrahepatic clearance (ClEH), depending on the organ involved in the elimination process. 

Hepatic clearance can be further divided into two groups - hepatic metabolic clearance (ClHM) 

and biliary clearance (ClB). The total body clearance (TBC) or systemic clearance (Cls) is the 

sum of all individual clearances involved in the overall elimination of a chemical compound.1 

It can be calculated using the following equation:

    (S1)𝐶𝑙𝑠 = 𝐶𝑙𝑅 + 𝐶𝑙𝐻𝑀 + 𝐶𝑙𝐵 + 𝐶𝑙𝐸𝐻

The clearance of an organ can be defined as the ratio of the elimination rate of a substance to 

its concentration before passing through that organ,2 represented by the equation:

     (S2)
𝐶𝑙𝑜𝑟𝑔𝑎𝑛 =

𝑄(𝐶𝐴 ‒ 𝐶𝑉)

𝐶𝐴
= 𝑄 × 𝐸

where Q is the amount of blood flow, CA and CB concentration of the compound before and 

after entering the organ respectively, and E is the extraction ratio of the organ. An essential 

parameter to consider is intrinsic clearance (Clint), which can be defined as the hepatic clearance 

of a chemical substance without any restriction posed by the blood flow. The intrinsic clearance 

provides an accurate interpretation of the liver's metabolizing capability.3,4 The mathematical 

relationship between ClHM and Clint is represented below:
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    (S3)
𝐶𝑙𝐻𝑀 = (𝑄𝐻)

𝐶𝑙𝑖𝑛𝑡

𝐶𝑙𝑖𝑛𝑡 + 𝑄𝐻
= (𝑄𝐻)

𝑓𝑢𝐶𝑙'
𝑖𝑛𝑡

𝑓𝑢𝐶𝑙'
𝑖𝑛𝑡 +  𝑄𝐻

=  𝑄𝐻 × 𝐸𝑖𝑛𝑡

here, QH is the hepatic blood flow and  (= ) is the intrinsic unbound clearance. From 𝐶𝑙'
𝑖𝑛𝑡 𝐶𝑙𝑖𝑛𝑡/𝑓𝑢

the above equations, we can find out that the clearance parameter is also influenced by the 

protein binding. These two parameters also can directly affect the elimination half-life of a 

chemical within the body,5 which can be mathematically represented as follows: 

   (S4)

𝑡1/2 =  
𝑜.693(𝑉)

𝐶𝑙𝑅 + (𝑄𝐻)
𝑓𝑢𝐶𝑙'

𝑖𝑛𝑡

𝑄𝐻 + 𝑓𝑢𝐶𝑙'
𝑖𝑛𝑡 

where V (=  , VT=tissue volume, =tissue fraction unbound) indicates the 
7 + 8𝑓𝑢 + 𝑉𝑇

𝑓𝑢

𝑓𝑢𝑡 𝑓𝑢𝑡

apparent volume of distribution.

Feature Selection through the GA method

The main principle behind the genetic algorithm (GA) is adopted from the biological 

evaluation6 that in a certain environmental condition species with the highest fitness score will 

be selected for the subsequent generation. The GA method of feature selection is first used by 

Roger and Hopfinger7 in the development of the QSAR modeling. The GA method consists of 

4 basic steps that are:

a) Initialization - The whole descriptor matrix represents the initial population of size ‘n’ 

descriptors (chromosome). The descriptors are assigned to the bit string 1 (descriptor is 

selected) or 0 (descriptor is not selected). 

b) Selection – In this stage descriptors are randomly selected for mating and given their 

first generation. The next descriptor combination for mating is selected based on the 

fitness score of the descriptors. In this process, a part of the population is transferred 

from the previous generation to the next generation. 

c) Genetic operation – This step helps in the modification of the descriptor combination 

by three processes – reproduction (making a copy of a chromosome and transferring to 

the next generation), crossover (two chromosomes selected for mating and share 

character with each other) and mutation (alteration of the part of the chromosome).
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d) Termination – This process is terminated until a certain level of fitness score is reached. 

 

Machine Learning Models

The RF method is a decision tree-based ensemble algorithm in which multiple decision trees 

are developed to make predictions. The RF algorithm works based on the bagging (bootstrap 

aggregation) mechanism where multiple bootstrap data sets are generated and with these data 

sets multiple decision trees are generated from which the final prediction is taken either by 

averaging or voting based on the target data type.8 The ADB and GB also work based on a 

decision tree-based ensemble algorithm but the main difference is that these algorithms work 

by boosting mechanism where decision trees are generated sequentially.9 The XGB algorithm 

works similarly to the GB algorithm but the only difference is that it takes into consideration 

the feature distribution across all the data points in a single leaf node. The XGB method 

generates multiple tree branches parallelly, so it requires less time compared with the GB 

method when a large number of features is present.10 The SVM and LSVM are classification 

ML algorithms but these are also applicable in the regression problems. The main principle 

behind this is to draw a decision boundary between the observations to make predictions. In 

the LSVM algorithm, the data domain is mapped into the response domain to make decisions 

but in SVM the data is first transformed in the feature space (using the kernel function) before 

mapping with the response.11 The RR algorithm is an important regularization technique that 

helps to reduce the multicollinearity problem of the multiple linear regression (MLR) models 

without removing the independent variable.9  The PLS is a generalized version of the MLR 

model which is mainly applied to the collinear, correlated, and noisy data sets. The main 

principle behind the PLS method is to derive latent variables (LVs) or X-scores and the Y-

score from the descriptor and response data respectively, and these are finally used to train the 

model and make predictions of the response.12 LDA is a dimensionality reduction algorithm 

that aims to find linear combinations of features that best separate two or more classes. It tries 

to maximize the distance between the means of the different classes while minimizing the 

variance within each class. It computes the eigenvalues and eigenvectors of the covariance 

matrix to find the linear discriminants.13 LR is a machine learning algorithm used for binary 

and multiclass classification. It models the probability of the instance belonging to the 

particular class by applying a sigmoid function to the linear combinations of the feature. It uses 

cross-entropy as a cost function and tries to minimize the difference between the predicted 

probabilities and the actual class.14
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Statistical quality and validation metrics

Regression-based metrics:

       (S5)
𝑅2 = 1 ‒

∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌𝑐𝑎𝑙(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔))
2

∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌̅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2

     (S6)
𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =  

∑|𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌𝑐𝑎𝑙(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)|
𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

    (S7)
𝑅𝑀𝑆𝐸𝐶 = ∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌𝑐𝑎𝑙(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔))2

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

                   (S8)
𝑄 2

𝐹1 = 1 ‒
∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) ‒ 𝑌𝑐𝑎𝑙(𝑡𝑒𝑠𝑡))

2

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) ‒ 𝑌̅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2

                   (S9)
𝑄 2

𝐹2 = 1 ‒
∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) ‒ 𝑌𝑐𝑎𝑙(𝑡𝑒𝑠𝑡))

2

∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) ‒ 𝑌̅𝑡𝑒𝑠𝑡)
2

   (S10)
𝑄 2

𝐹3 = 1 ‒
[∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) ‒ 𝑌𝑐𝑎𝑙(𝑡𝑒𝑠𝑡))

2]/𝑛𝑡𝑒𝑠𝑡

[∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌̅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2]/𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

                    (S11)
𝑀𝐴𝐸𝑡𝑒𝑠𝑡 =  

∑|𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) ‒ 𝑌𝑐𝑎𝑙(𝑡𝑒𝑠𝑡)|
𝑛𝑡𝑒𝑠𝑡

                 (S12)
𝑅𝑀𝑆𝐸𝑃 = ∑(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) ‒ 𝑌𝑐𝑎𝑙(𝑡𝑒𝑠𝑡))

2

𝑛𝑡𝑒𝑠𝑡

   (S13)
𝑄 2

𝐿𝑂𝑂 = 1 ‒
∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌𝑙𝑜𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔))

2

∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌̅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2

      (S14)
𝑀𝐴𝐸𝐿𝑂𝑂 =  

∑|𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌𝑙𝑜𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)|
𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

    (S15)
𝑀𝑆𝐸𝐿𝑂𝑂 =  

∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ‒ 𝑌𝑙𝑜𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔))
2

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
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Here,  = observed response value of the training set,  = calculated 𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑖𝑛𝑔) 𝑌𝑐𝑎𝑙(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

response value of the training set,  = mean observed response value of the training set, 𝑌̅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

 = leave-one-out predicted response value of the training set,  = the 𝑌𝑙𝑜𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) 𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

number of observation in the training set,  = observed response value of the test set, 𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡)

 = calculated response value of the test set,  = mean observed response value of the 𝑌𝑐𝑎𝑙(𝑡𝑒𝑠𝑡) 𝑌̅𝑡𝑒𝑠𝑡 

test set,  =  number of observation in the test set.𝑛𝑡𝑒𝑠𝑡

Classification-based metrics:

   (S16)
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

    (S17)
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

   (S18)
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

   (S19)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

   (S20)
𝐹1 𝑠𝑐𝑜𝑟𝑒 =  

2𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

    (S21)
𝑀𝐶𝐶 =  

𝑇𝑃 × 𝑇𝑁 ‒ 𝐹𝑃 × 𝐹𝑁
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

   (S22)
𝐶𝑜ℎ𝑒𝑛 𝜅 =  

𝑃𝑟(𝑎) ‒  𝑃𝑟(𝑒)

1 ‒ 𝑃𝑟(𝑒)

 
𝑃𝑟(𝑎) =  

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

 
𝑃𝑟(𝑒) =  

{(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁)} + {(𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)}

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)2

Here, TP = positive compounds that have been correctly classified as positives by the model

FP = negative compounds that have been incorrectly classified as positives by the model

TN = negative compounds that have been correctly classified as negatives by the model

FN = positive compounds that have been incorrectly classified as negatives by the model



12

Table S1. Read-across validation metrics for fraction unbound data.

Metrics Euclidean Distance Gaussian Kernel Laplacian Kernel

Q2
F1 0.66 0.67 0.70

Q2
F2 0.66 0.67 0.70

RMSEP 0.06 0.06 0.05

MAE 0.04 0.04 0.04

Table S2. Results of the prediction for the external set (fraction unbound data).

Models Accuracy Precision Recall Specificity
F1 

Score
MCC

Cohen 

kappa

RF 0.65 0.63 0.56 0.72 0.59 0.29 0.29

ADB 0.60 0.54 0.73 0.48 0.62 0.22 0.21

GB 0.64 0.62 0.56 0.72 0.59 0.28 0.28

XGB 0.65 0.62 0.59 0.70 0.61 0.29 0.29

SVM 0.64 0.61 0.59 0.68 0.60 0.27 0.27

LSVM 0.60 0.56 0.58 0.61 0.57 0.20 0.20

RR 0.62 0.57 0.62 0.61 0.60 0.23 0.23

PLS 0.60 0.56 0.61 0.60 0.58 0.21 0.21

Table S3. Read-across prediction of the Clint data set.
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ED 0.70 0.95 0.24 0.75 0.76 0.84 0.27 0.23

GK 0.70 0.91 0.3 0.75 0.77 0.84 0.30 0.27

LK 0.70 0.91 0.37 0.75 0.79 0.84 0.33 0.31

Table S4. Read-across prediction for the common compounds (for modeling Clint by taking fu 
as a descriptor).
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ED 0.76 0.96 0.20 0.68 0.70 0.79 0.26 0.19

GK 0.76 0.96 0.23 0.69 0.68 0.79 0.28 0.21

LK 0.75 0.94 0.28 0.69 0.69 0.79 0.30 0.25
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