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1 Visualizations of the “random”, “accurate” and “scaffold” validation/test set error

Fig. S 1 Bar chart comparing the predictive errors of different model variants for the “random” test set (top), “accurate” test set (middle) and “scaffold”
test set (bottom). The mean absolute error (MAE) of the accurate test set is reported, showing the average cross validation (left bars) and test set
error (right bars) from five random splits. All cross-validation errors for each model are plotted as individual dots on the left bar (validation set).
We compare the MMB variant with the readout token (<R>) approach (first four models) with average-pooling (avg) (middle four models). We
differentiate between keeping the MMB encoder frozen or finetuning it (-ft), and compare the hierarchical regression head (hier) with a simplified,
linear regression head (lin) for all model variants. The last two models are ECFP with a hierarchical and a linear regression head.
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2 Cross-validation errors for validation set of “random”, “accurate” and “scaffold” split strategy

Table S 1 Comparison of models trained on the AqueousSolu dataset. All validation sets are split randomly after the test set has been excluded.
The average (mean) and standard deviation (std) of the validation set mean absolute error (MAE) from three (random) or five (accurate, scaffold)
cross-validation splits are reported. Abbreviations: MMB: MegaMolBART, lin: linear regression head, hier: hierarchical regression head, ft: finetuned,
avg: average-pooling, ecfp: 512-bit ECFP fingerprints, ecfp2k: 2048-bit ECFP fingerprints, svr: support vector regressor, rf: random forest regressor.

Model Variant Random Random Accurate Accurate Scaffold Scaffold
CV mean CV std CV mean CV std CV mean CV std

MAE MAE MAE MAE MAE MAE

mmb-ft-lin 0.631 0.018 0.621 0.011 0.577 0.018
mmb-ft-hier 0.628 0.014 0.612 0.024 0.583 0.018
mmb-lin 1.302 0.037 1.293 0.028 1.294 0.046
mmb-hier 1.067 0.026 1.048 0.030 1.043 0.021

mmb-ft-avg-lin 0.600 0.006 0.596 0.014 0.566 0.011
mmb-ft-avg-hier 0.602 0.003 0.609 0.018 0.575 0.013
mmb-avg-lin 1.043 0.032 1.028 0.026 1.014 0.029
mmb-avg-hier 0.841 0.021 0.851 0.021 0.825 0.025

ecfp-lin 1.585 0.055 1.541 0.053 1.505 0.052
ecfp2k-lin 1.207 0.046 1.185 0.030 1.160 0.033
ecfp-lin-scaled 1.711 0.050 1.339 0.033 1.432 0.030
ecfp2k-lin-scaled 1.359 0.030 1.109 0.014 1.177 0.025
ecfp-hier 1.168 0.053 1.164 0.024 1.126 0.022
ecfp2k-hier 0.889 0.006 0.901 0.029 0.874 0.020

ecfp-svr 0.804 0.031 0.813 0.003 0.786 0.024
ecfp2k-svr 0.745 0.027 0.747 0.005 0.722 0.021
ecfp-rf 0.853 0.018 0.852 0.011 0.814 0.020
ecfp2k-rf 0.803 0.014 0.799 0.012 0.755 0.019

3 Ablation results for linear regression head without LayerNorm

Table S 2 Comparison of models based on the linear regression head trained with and without a “LayerNorm” normalization layer applied before the
linear regression head. All models are trained on the AqueousSolu dataset for the low-uncertainty test set (“Accurate”, 578 molecules). The test set
mean absolute error (MAE) and root mean squared error (RMSE) from the best-performing model during cross-validation with 5 different random
splits are reported.

Model Variant Accurate Accurate
MAE RMSE

MMB-ft, <R>, lin 0.516 0.669
MMB-ft, <R>, lin, LN 0.504 0.655

MMB, <R>, lin 1.399 1.838
MMB, <R>, lin, LN 1.270 1.646

MMB-ft, avg, lin 1.363 1.820
MMB-ft, avg, lin, LN 0.439 0.588

MMB, avg, lin 1.737 2.245
MMB, avg, lin, LN 0.843 1.124

ECFP, lin 2.122 2.730
ECFP, lin, LN 1.413 1.821

ECFP, lin, scaled 1.296 1.639
ECFP, lin, scaled, LN 1.515 1.907
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4 Visualizations for the “random” test set

Fig. S 2 Parity plots showing the predictive accuracy of the MegaMolBART model with a linear regression head and the <R> token (mmb-ft-lin)
finetuned on the AqueousSolu dataset and evaluated on the “random” test set. The experimental solubility measurements log(S) (X axes) are plotted
against the models’ predictions (Y axes), deviations from the diagonal represent the models’ errors. The predictions are grouped into hexagonal bins
to highlight the density of predictions, the raw densities are shown as histograms on the sides of both plots. The final model is selected based on the
lowest validation MAE obtained from cross validation from 3 random validation splits.

Fig. S 3 PCA visualization of the latent space of finetuned MegaMolBART model with a linear regression head and the <R> token (mmb-ft-lin). The
model is finetuned to linearly map the latent features to solubility. A continuous decrease in log(S) can be seen along the first principal component.

5 K-means cluster visualizations of PCA latent space
To showcase a wider range of molecules for comparison of the similarity of attributions for different regions in the latent space, we
plot the neighborhood of representative clusters obtained from KMeans clustering. Specifically, we parametrize the PCA projection on
the validation set latent vectors, and use k-means (k=4) to select clusters in the “accurate” test set. We then select the 12 nearest
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neighbours in the test set based on distance from the cluster centroid in 2d PCA space.

We visualize the cluster centroids on the PCA latent space visualization below and show the neighborhoods for representative clusters
in Figures S10 to S13. In the following figures, we showcase molecules from the same clusters for comparison of the attributions of
different explainability techniques (Figures S6 to S9).

Fig. S 4 PCA visualization of the latent space of finetuned MegaMolBART model with a linear regression head and the <R> token (mmb-ft-lin). We
parametrize the PCA projection using the validation set and apply k-means clustering on the test set to obtain cluster centroids. We use k=16 for
both PCA and k-means clustering, showing the cluster centroids with black X markers and highlighting those clusters visualized with blue X markers.
We then evaluate the neighborhood from these clusters for visual comparison of the attributions among the neighborhood of molecules in latent space.

Fig. S 5 Two colorbars, respectively the green colorbar for visualizations based on the <R> token which only have positive relevance, and the diverging
colormap (cool/warm) for attributions obtained from SHAP and ECFP.
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6 Comparison of attributions from all explainability techniques
To enable comparison between the explanations of all three explainability techniques, we show molecules from the same clusters with
attributions obtained from the MMB <R> variant (mmb-ft-lin, left), SHAP (mmb-ft-avg-hier, center) and ECFP (ecfp-lin-scaled, right).

Fig. S 6 Five neighboring molecules from PCA cluster one (Fig. S4) are explained, comparing all three explainability techniques. Left: MMB <R>
variant (mmb-ft-lin), Middle: SHAP (mmb-ft-avg-hier), Right: ECFP (ecfp-lin-scaled). The green colorbar is used for the <R> MMB model (Fig.
S5, top), a diverging colormap (Fig. S5, bottom) is used to visualize SHAP and ECFP.
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Fig. S 7 Five neighboring molecules from PCA cluster one (Fig. S4) are explained, comparing all three explainability techniques. Left: MMB <R>
variant (mmb-ft-lin), Middle: SHAP (mmb-ft-avg-hier), Right: ECFP (ecfp-lin-scaled). The green colorbar is used for the <R> MMB model (Fig.
S5, top), a diverging colormap (Fig. S5, bottom) is used to visualize SHAP and ECFP.
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Fig. S 8 Five neighboring molecules from PCA cluster one (Fig. S4) are explained, comparing all three explainability techniques. Left: MMB <R>
variant (mmb-ft-lin), Middle: SHAP (mmb-ft-avg-hier), Right: ECFP (ecfp-lin-scaled). The green colorbar is used for the <R> MMB model (Fig.
S5, top), a diverging colormap (Fig. S5, bottom) is used to visualize SHAP and ECFP.
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Fig. S 9 Five neighboring molecules from PCA cluster one (Fig. S4) are explained, comparing all three explainability techniques. Left: MMB <R>
variant (mmb-ft-lin), Middle: SHAP (mmb-ft-avg-hier), Right: ECFP (ecfp-lin-scaled). The green colorbar is used for the <R> MMB model (Fig.
S5, top), a diverging colormap (Fig. S5, bottom) is used to visualize SHAP and ECFP.
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7 MegaMolBART explanations from PCA cluster neighborhoods

Fig. S 10 Visualizations of the molecular neighborhood of cluster one, obtained through k-means (k=4) clustering on the 2d PCA-reduced embeddings
(Fig. S4) and selecting the nearest neighbors based on 2d PCA distance. The corresponding colorbar can be seen in Fig. S5, top.

10 | 1–19Journal Name, [year], [vol.],



Fig. S 11 Visualizations of the molecular neighborhood of cluster two, obtained through k-means (k=4) clustering on the 2d PCA-reduced embeddings
(Fig. S4) and selecting the nearest neighbors based on 2d PCA distance. The corresponding colorbar can be seen in Fig. S5, top.
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Fig. S 12 Visualizations of the molecular neighborhood of cluster three, obtained through k-means (k=4) clustering on the 2d PCA-reduced embeddings
(Fig. S4) and selecting the nearest neighbors based on 2d PCA distance. The corresponding colorbar can be seen in Fig. S5, top.
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Fig. S 13 Visualizations of the molecular neighborhood of cluster four, obtained through k-means (k=4) clustering on the 2d PCA-reduced embeddings
(Fig. S4) and selecting the nearest neighbors based on 2d PCA distance. The corresponding colorbar can be seen in Fig. S5, top.
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8 Comparison of ECFP attributions from 512-bit and 2048-bit fingerprints

Fig. S 14 Visualizations of ECFP attributions comparing the impact of ECFP fingerprint bit size, specifically comparing ecfp-lin-scaled (512 bits, left)
and ecfp2k-lin-scaled (2048 bits, right). The molecules from the same cluster neighborhoods as Fig S4 is shown. The corresponding colorbar can be
seen in Fig. S5, bottom.
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Fig. S 15 Visualizations of ECFP attributions comparing the impact of ECFP fingerprint bit size, specifically comparing ecfp-lin-scaled (512 bits, left)
and ecfp2k-lin-scaled (2048 bits, right). The molecules from the same cluster neighborhoods as Fig S4 is shown. The corresponding colorbar can be
seen in Fig. S5, bottom.
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Fig. S 16 Visualizations of ECFP attributions comparing the impact of ECFP fingerprint bit size, specifically comparing ecfp-lin-scaled (512 bits, left)
and ecfp2k-lin-scaled (2048 bits, right). The molecules from the same cluster neighborhoods as Fig. S4 is shown. The corresponding colorbar can be
seen in Fig. S5, bottom.
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Fig. S 17 Visualizations of ECFP attributions comparing the impact of ECFP fingerprint bit size, specifically comparing ecfp-lin-scaled (512 bits, left)
and ecfp2k-lin-scaled (2048 bits, right). The molecules from the same cluster neighborhoods as Fig S4 is shown. The corresponding colorbar can be
seen in Fig. S5, bottom.
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9 Attribution comparison for the “random” test set

Fig. S 18 Quantitative comparison of attributed atom relevance for a random test set. For each model pair, the cosine similarity of attributed
relevance is calculated as the average over all molecules in the test set. The first four MMB models use the <R> token and attribution method
developed in this work, while the middle 4 MMB models use the <avg> pooling approach in combination with SHAP to obtain attributions. For both
models, finetuning (-ft-) and regression head variants (lin or hier) are compared. ECFP attributions are extracted by attributing regression weights
to all constituent atoms and aggregating per-atom contributions. The last entry shows uniform relevance, a baseline where every atom has the same
normalized attributed importance towards the prediction.
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10 Attribution of negative features
As discussed in the main text, we find features with negative contributions cannot be attributed towards the input due to the all-zero
gradients of the attention heads. Specifically, we obtain all-zero ∇A−,l

h matrices in all 6 layers l ∈ L for all 8 attention heads h ∈ 0,1, ..,7
for the finetuned <R> MMB model with a linear regression head (mmb-ft-lin) when we mask all features of the latent vector that
have an overall positive sign (see Fig. S19 and Fig. S20). However, features with negative contributions constitute a significant
part of the prediction. We emphasize that the regression prediction itself is unaffected and accurate, with the positive and negative
contributions adding up to the overall prediction, which is independent of the explainability approach. Since most than half of the
features have a negative contribution on the log-scale solubility, we find the majority of features are ignored, and only those features
which contribute positively are attributed and visualized. We further highlight that this limitation is not directly due to the positive
importance assumption (·)+ in Eq. 2, since the gradient ∇Al

h is already all-zero for features with negative contributions before the
update rule enforces positive importance.

This implies that in this context, only the positive part of the prediction is attributed and visualized, misrepresenting the model’s
operation by disregarding all negative contributions. The same holds for interactions between multiple features, such as the presence of
one but not another functional group, which can be expected to involve opposing signs and are thus misrepresented by the explainability
technique in this context. Whether this finding has relevance beyond the attribution method and chemical language model analyzed in
this work goes beyond the scope of this study. However, our findings suggest an important direction for further research to investigate
whether this limitation affects other gradient-based attribution methods and modalities beyond molecular strings.

Fig. S 19 Schematic illustration of the features divided into four types of contributions, which either positively or negatively change the overall
prediction. The encoder of the chemical language model takes the tokenized SMILES string as input and produces a latent feature vector leveraging
the prepended <R> token. The sum of all feature contributions, obtained as the product between the activation vector (blue) and the weights
vector of the linear regression head (green), is the scalar log(S) prediction of the model. The contribution from each feature towards the prediction
is separated into an overall positive contribution (obtained from features with the same sign in the activation and regression vector) and an overall
negative contribution (from opposite signs). All four kinds of features significantly contribute to the prediction, but our attribution technique only
attributes relevance from positive features and thus ignores significant parts of the model.

Fig. S 20 Visualization of attributed relevance Ā of one molecule of the first layer (left), illustrating how individual attention heads are aggregated.
Āl (left) is calculated as the element-wise matrix product of each attention head and its gradient (Al

h ⊙∇Al
h), averaged over all 8 attention heads in a

layer. Activation heatmaps and their gradients of the first four attention heads of the first layer are visualized (blue).
The heatmaps on the right (orange) visualise the activation & gradient of an individual attention head (layer 0, head 3) when features with positive
(A+,0

3 , top) or negative (A−,0
3 , bottom) contributions are attributed separately by masking all features with opposite contributions. The gradient of

the negative features ∇A−,0
3 is all-zero, thus no relevance is attributed for all features with an overall negative contribution despite their contribution

towards the prediction.
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