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S1 QM9

S1.1 L2 hyperparameter optimization

Following preliminary experiments, we searched over the below ranges for the linear regres-

sion regularization α. For the nonhierarchical linear models, we searched for α in a range

of 10−2 to 10−1 for models base don Morgan fingerprints and over a range from 10−1 to 102

for models built on graphlet and RDKit fingerprints. The ranges were motivated by slower

runtimes for small values of α for the latter two types of fingerprint. For similar reasons, for

hierarchical linear models we searched the range 10−2 to 102 for fragment sizes s ≤ 4, 100 to

103 for fragment sizes s ≤ 8 and from 101 to 104 for fragment size s = 9.

S1.2 Fragment Counts by fingerprint type

Table S1: Number of fragments identified during training for each fingerprint type, for each
maximum fragment size. For Graphlet fingerprints, size is the maximum number of atoms
included in a fragment corresponding to a fingerprint element. For RDKit fingerprints, it is
the maximum number of bonds. For Morgan, it is the Morgan radius.

Morgan RDKit Graphlet
Fragment Size s # Fragments (Cumulative) # Fragments (Cumulative) # Fragments (Cumulative)

0 25 (25) - - - -
1 1,068 (1,093) 29 (29) 9 (9)
2 68,669 (69,762) 106 (135) 40 (49)
3 329,419 (399,181) 518 (653) 198 (247)
4 99,133 (498,314) 2,530 (3,183) 992 (1,239)
5 2,162 (500,476) 11,998 (15,181) 4,536 (5,775)
6 0 - 50,041 (65,222) 19,524 (25,299)
7 - - 178,608 (243,830) 77,599 (102,898)
8 - - 514,229 (758,059) 270,792 (373,690)
9 - - 1,145,734 (1,903,793) 776,315 (1,150,005)
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S1.3 Learning curves

10 1

100

101

va
lu

e

hierarchical = 0 | split = train

101

hierarchical = 0 | split = test

0 2 4 6 8
substructure_size

100

101

va
lu

e

hierarchical = 1 | split = train

0 2 4 6 8
substructure_size

101

hierarchical = 1 | split = test

modeltype
lgbm
ridge

feature_type
morgan
rdkit
graphlet

Figure S1: Learning curves for all model and fingerprint types by maximum size (substruc-
ture size) for each fingerprint type. For Graphlet fingerprints (ours), size is the maximum
number of atoms included in a fragment corresponding to a fingerprint element. For RDKit
fingerprints, it is the maximum number of bonds. For Morgan, it is the Morgan radius.

S2 Bond Dissociation Energies
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Figure S2: Learning curves for all model and fingerprint types by number of fragments
identified during training. Each point corresponds to a choice of maximum size in figure S1,
but here the horizontal axis has the same meaning for each curve.
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Figure S3: Relationships between bond-projected coefficients χ⃗2 and bond dissociation en-
ergies by bond type and dataset split.
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Figure S4: Correlation coefficients between bond-projected coefficients χ⃗2 and bond dissoci-
ation energies by bond type and dataset split.
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S3 Graphlet Fingerprint Fragment Counts for Solubil-

ity Tasks

Table S2: Graphlet fingerprint feature counts for solubility tasks

Dataset
Fragment Size Acetone Benzene Ethanol Water Water-wide Water-WN Average

1 25 22 26 24 24 24 24
2 116 101 127 118 125 125 118
3 451 354 514 515 570 570 495
4 0 1222 1932 0 0 0 525

Total 592 1699 2599 657 719 719 1164

S4 Solubility interpretation

Figure S5 shows atom-level coefficient projections constructed following Section 3.3.1 for five

example molecules selected for structural diversity in acetone and water. These projected

coefficients sum to the model prediction on each molecule, and can be thought of as the

contributions of individual atoms to the model prediction after taking account its context

in the molecular graph. By comparing the same molecule under different solvents, one can

examine how structural motifs contribute to solubility in the different solvents. In this

regard, the projections presented in Figure S5 largely agree with chemical intuition, e.g.,

carbon rings (molecules a and b) and chains (molecule d) explicitly lead to lower predictions

of solubility in water than they do in acetone.
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Figure S5: Linear model contributions projected to the atom level for molecules from the
acetone and water sets presented in Ref 1. Colors show the contribution to the predicted
log solubility (measured in molarity). Each column is based on predictions from the model
fit on the corresponding solvent. Atoms in each row are colored using the same color map.
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S5 TDC ADMET Leaderboard

S5.1 TDC ADMET Tasks

Our graphlet models were tested on Regression tasks in the Therapeutic Data Commons

ADMET benchmark group. We give a brief description of the tasks, as well as the size of

the dataset n and whether TDC scoring is performed using Mean Absolute Error (MAE),

where lower is better, or Spearman’s rank-rank coefficient ρ, where higher is better. The

tasks are as follows:

1. AqSol (n = 9, 982; MAE): Aqueous Solubility. A quantification of the ability for a

molecule to dissolve in water.

2. Caco2 (n = 906; MAE): Cell Effective Permeability. A cell-line-based experimental

proxy for the rate at which a molecule may permeate the intestinal wall tissue.

3. LD50 (n = 7, 385; MAE): Acute Toxicity LD50. A measurement of the dosage at

which a molecule is expected to be lethal.

4. Lipo (n = 4, 200; MAE): Lipophilicity. A quantification of the ability for a molecule

to dissolve in a lipid environment.

5. PPBR (n = 1, 614; MAE): Plasma Protein Binding Rate. The fraction of a molecule

which will be found bound to blood plasma proteins, as opposed to unbound molecules,

which are far more pharmacologically active.

6. CL-Hepa (n = 1, 020; ρ): Hepatocyte Clearance. A measurement of the volumetric

rate of plasma which can be cleared of the molecule via hepatocytes.

7. Cl-Micro (n = 1, 102; ρ): Microsome Clearance. A measurement of the volumetric

rate of plasma which can be cleared of the molecule via microsomes.
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8. Half Life (n = 667; ρ): Half Life. A measurement of the overall rate at which a

molecule is eliminated from the body.

9. VDss (n = 1, 130; ρ): Volume of Distribution at steady state. A measurement of

the relative concentration of the molecule in the body overall in comparison to the

concentration of the molecule in the plasma, given in units of volume.

S5.2 ADMET Results

Here we show performance results for our models compared to those on the existing TDC

leaderboards2 as bar plots.
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Figure S6: ADMET Performance bar plots for leaderboards where task performance is mea-
sured in mean absolute error (MAE) (lower is better)
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Figure S7: ADMET Performance bar plots for leaderboards where task performance is mea-
sured using Spearman’s rank-rank correlation coefficient ρ (higher is better)
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S6 Holdout fragments for adjustment experiments

Figure S8: Molecular graphlets and their corresponding counts in QM9 that were used to
construct fragment holdout sets for experiments in section 3.5
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S7 Uncertainty Quantification

S7.1 UQ regression coefficients

Table S3: Error model coefficients for the calibrated uncertainty model.

Fragment Size Error Model Coefficient (eV)
1 0
2 0
3 18.7
4 0
5 0.441
6 1.52
7 0
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