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1. Dataset and Scripts  
 
1.1 Data 
 

 
Figure S1. An overview of the reactants in each dataset. The bar charts summarize the nature of the 
non-hydrogen atoms in the molecules. 
 

 
Figure S2. The distribu=on of the size of the chemical systems in each dataset. 
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Source of errors: 

1. 3D structure error:  
 
Unable to be processed by RDkit to generate 3D structure at the force field level with the default 
seEng, ie return errors when encountering the following func=ons – 

  
AllChem.EmbedMolecule(mol,randomSeed=0xf00d) 
AllChem.MMFFOp=mizeMolecule(mol) 
mol.GetConformer() 

 
2. Re-indexing error:  

 
Atom-to-atom mapping needs to be carried out between the compe==ve pathways, reac=ons with the 
same reactants but different products. This ensures consistent atom indexing across the compe==ve 
pathways, which is important for genera=ng labels in prepara=on for model training.  
 
The atom-to-atom mapping across compe==ve pathways was done via mol1.GetSubstructMatch(mol2) 
func=on from RDkit. mol1 and mol2 are RDkit Chem.Mol objects generated from reactant SMILES 
strings that contain atom indexing. mol1.GetSubstructMatch(mol2) returns the indices of atoms in 
mol1 that match with mol2.  
 
Reac=ons with the same reactants were grouped together via conversion to InChI string. Inevitably, 
reac=ons with tautomer structures with difference connec=vity as reactants were grouped together, 
such as the example below: 

 
Figure S3. Tautomer structures with difference connec=vity share the same InChI string.  
 
The mol1.GetSubstructMatch(mol2) func=on was unable to match resonance structures with different 
connec=vity. This led to the re-indexing error. 

InChI=1S/C3H5N3O/c4-2-1-5-3(7)6-2/h1H,4H2,(H2,5,6,7)

Table S1. Numerical records on filtering reac=ons 
Dataset Number of filtered 

reac@ons 
Number of 
reac@ons before 
filtering 

Number of reac@ons 
aAer filtering 

First-year 0 147 147 
[3+2] cycloaddi=on 21 5974 5953 
Diels-Alder 263 11274 11011 
RGD1 (EA < 40 kcal mol-1) 125 11406 11281 
Green (EA < 40 kcal mol-1) 11 332 321 
RGD1 (EA < 60 kcal mol-1) 517 28038 27521 
Green (EA < 60 kcal mol-1) 37 1049 1012 
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3. Placeholder atom error: 

 
The reac=on SMILES string contains placeholder atoms, ‘*’. 

 
4. Hypervalent error:  

 
The reac=on involved hypervalent molecule.   
 
A breakdown on the filtered reac@ons:  
 
[3+2] cycloaddi@on: 21 reac=ons were filtered due to 3D structure errors. 
 
Diels-Alder: 7 reac=ons contain hypervalent molecules. 8 reac=ons involve re-indexing errors during 
the atom-to-atom mapping for compe==ve pathways. 22 reac=ons contain placeholder atoms. 226 
reac=ons were filtered due to 3D structure errors. 
 
RGD1 (EA < 40 kcal mol-1): 63 reac=ons were filtered due to 3D structure errors. 62 reac=ons encounter 
re-indexing errors during the atom-to-atom mapping for compe==ve pathways. 
RGD1 (EA < 60 kcal mol-1): 89 reac=ons were filtered due to 3D structure errors. 428 reac=ons 
encounter re-indexing errors during the atom-to-atom mapping for compe==ve pathways. 
 
Green (EA < 40 kcal mol-1): 11 reac=ons were filtered due to 3D structure errors. 
Green (EA < 60 kcal mol-1): 33 reac=ons were filtered due to 3D structure errors. 4 reac=ons encounter 
re-indexing errors during the atom-to-atom mapping for compe==ve pathways. 
 
 
Combined dataset  
 
The overlaps between the datasets with the ‘chk_dup_v2.py’ script via conver=ng the reactant and 
product into InChI strings. The test shows that there are overlaps between the RGD1 and Green dataset 
(EA cut-off < 40 kcal mol-1). Three reac=ons (idx in RGD1 dataset = 1308, 6573, 6574) in the RGD1 
dataset also appear in the Green dataset. One reac=on (idx in RGD1 dataset = 11190) from the RGD1 
dataset is a compe==ve pathway, the same reactants but different products, to reac=ons in the Green 
dataset. These reac=ons were removed from the RGD1 dataset prior to selec=ng reac=ons of the 
combined dataset. 
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1.2 Scripts  
 
GitHub repository TwoBondChem/ 
hYps://github.com/Goodman-lab/TwoBondChem 
 
A. Directory tree of the TwoBondChem/ 
 
TwoBondChem/ 
├─ bond_strength_descriptor/ 
│   ├─ bond_pre_classifier_v2.py 
│   └─ bondlength_fromsmi_v2.py 
├─ data_processing/ 
│   ├─ competitive_pathway_atom_mapping.py 
│   ├─ initial_treatment.py 
│   └─ remove_emb_error.py 
├─ dataset/ 
│   ├─ cyclo_data_v2_16072024.csv 
│   ├─ da_08012024_vCorr.csv 
│   ├─ diels_alder_data_v7_19052024.csv 
│   ├─ exam_test.csv 
│   ├─ exam_test_28122023.csv 
│   ├─ fav_RGD1_13012024_v2.csv 
│   ├─ first-year_data_all_27122023.csv 
│   ├─ green_04012024.csv 
│   ├─ green_ea60_c_23052024.csv 
│   └─ rgd_ea60_c_23052024.csv 
├─ model_evaluation/ 
│   ├─ chk_dup_v3.py 
│   ├─ evaluation.py 
│   ├─ random_sample_test.py 
│   ├─ random_sample_test_all.py 
│   ├─ random_sample_test_Bmix.py 
│   ├─ random_sample_test_Cmix.py 
│   ├─ save_model.py 
│   ├─ save_model2.py 
│   ├─ take_one_out_test.py 
│   └─ train_size_test.py 
├─ model_test_2.ipynb 
├─ React.py 
├─ README.md 
├─ RF_model_yr1_28122023.sav 
└─ scripts/ 
    ├─ atidx.py 
    ├─ bond_classification_01112022.csv 
    ├─ get_descriptors_v2.py 
    ├─ get_label_v4.py 
    ├─ model_training_v3.py 
    └─ training_prepare_v5.py 
├─ cyclo_2b+/ 
│   ├─ cyclo_0_13012024_label.csv 
│   ├─ cyclo_1_13012024_label.csv 
│   ├─ cyclo_2_13012024_label.csv 
│   ├─ cyclo_3_13012024_label.csv 
│   ├─ cyclo_4_13012024_label.csv 
│   ├─ cyclo_5_13012024_label.csv 
│   ├─ cyclo_6_13012024_label.csv 
│   ├─ cyclo_7_13012024_label.csv 
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│   ├─ cyclo_8_13012024_label.csv 
│   └─ cyclo_9_13012024_label.csv 
├─ random_sample_test_EXAMPLE.py 
└─ evaluate_EXAMPLE.ipynb 
 
 
*Archive files have not been included  
 
B. Environment  
 
The scripts in this project are wrijen in Python under the following environment: 
 
- The Python (3.8.12) Standard Library 
- Pandas (1.1.5) 
- Numpy (1.19.2)  
- Sklearn (0.24.2/1.0.1) 
- RDkit (2021.9.4) 
- Scipy (1.4.1) 
- Rxnmapper (0.1.4) 
 
C. Data 
 
dataset/ folder: 
 
All the datasets (Type A: the first-year reac=ons + three reac=ons from Part 1A exam at the University 
of Cambridge; Type B: [3+2] cycloaddi=on1 and Diels-Alder reac=on dataset;2 Type C: the Reac=on 
Graph Depth 1 (RGD1))3 and the Green dataset).4 are available in the dataset/ folder as csv files. The 
reac=on data is processed and formajed in the same style for the purpose of this inves=ga=on. The 
atom-to-atom mapping numbering in the reac=on SMILES is consistent for compe==ve pathways with 
the same reactants. There are three columns in each csv file:  
 

• idx: index of the reac=on  
• code: reac=ons with the same code are compe==ve pathways (ie having the same reactants) 
• reac=on: mapped reac=on SMILES 

 
The RGD1 dataset csv file also has an ‘Rind’ column, which corresponds to the index in the ‘reac=on’ 
column in the original datafile:  
hjps://figshare.com/ar=cles/dataset/model_reac=on_database/21066901?file=40272727 (accessed 
Feb 5th, 2024).  
 
‘da_08012024_vCorr.csv’ contains 100 Diels-Alder reac=ons, where the atom-to-atom mapping errors 
have been picked out and corrected manually.5 Before the correc=on, reac=ons with index = 2, 30, 31, 
49, 66, 70, 88 and 99 contain errors.  
 
Three out of 147 reac=ons in the first-year reac=on dataset (‘first-year_data_all_27122023.csv’) had 
mapping errors, which were subsequently corrected manually. Before the correc=on, reac=ons with 
index = 50, 74 and 124 contain errors. Reac=ons with a code greater than 77 belong to the tes=ng data 
set.  
 
We filtered and processed the RGD1 and the Green datasets to ensure that the reac=ons are 
thermodynamically favourable (ie ΔHr < 0 kcal mol-1) with a low kine=c barrier (ie ac=va=on energy, EA 
< 40 kcal mol-1). This gives the ‘fav_RGD1_13012024_v2.csv’ and ‘green_04012024.csv’. To study the 

https://figshare.com/articles/dataset/model_reaction_database/21066901?file=40272727
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effect of varying the EA cut-off, we also filtered and processed the RGD1 and the Green datasets with 
an EA cut-off of 60 kcal mol and ΔHr < 0 kcal mol-1 – ‘rgd_ea60_c_23052024.csv’ and 
‘green_ea60_c_23052024.csv’. 
 
data_processing/compe==ve_pathway_atom_mapping.py input and output example files: 
‘exam_test.csv’ and ‘exam_test_28122023.csv’ 
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D. Scripts 
 
React_v2.py: code for using the random forest model 
model_test_3.ipynb: Jupyter notebook on how to use the ‘React.py’ script  
 
Saved models:  
 

Table S2. Saved models in the GitHub 
File  Note 
RF_model_yr1_28122023.sav RF model trained from all reacTons in the first-year dataset 
RF_model_cyclo_11062024.sav RF model trained from the first 100 reacTons in the [3+2] cycloaddiTon 

dataset 
RF_model_da_11062024.sav RF model trained from the first 100 reacTons in the Diels-Alder dataset 
RF_model_green_11062024.sav RF model trained from the first 100 reacTons in the Green dataset 
RF_model_rgd_11062024.sav RF model trained from the first 300 reacTons in RGD1 dataset 

 
RF_model_Bmix_11062024.sav RF model trained from 100 sets of randomly selected [3+2] 

cycloaddiTon reacTons and 100 sets of randomly selected Diels-Alder 
reacTons. 

RF_model_Cmix_11062024.sav RF model trained from 100 sets of randomly selected Green reacTons 
and 100 sets of randomly selected RGD1 reacTons. 

RF_model_all_11062024.sav RF model trained from 78 sets of first-year reacTons, 100 sets of [3+2] 
cycloaddiTon reacTons, 100 sets of Diels-Alder reacTons, 100 sets of 
Green reacTons and 100 sets of RGD1 reacTons. All reacTons were 
randomly selected from the corresponding full dataset. 

 
 
scripts/ folder: 
 
a@dx.py: contains the func=ons for conduc=ng atom-to-atom mapping and formaEng the reac=on 
SMILES strings for compe==ve pathways  
 
get_descriptors_v2.py: contains func=ons for genera=ng the atomis=c descriptor components  

• Associated file: ‘bond_classifica@on_01112022.csv’ – the parameters for genera=ng the bond 
strength descriptors  

get_label_v4.py: contains func=ons for genera=ng the atomis=c label  
training_prepare_v5.py: compiles func=ons in ‘get_descriptors_v2.py’ and ‘get_label_v4.py’ to 
generate the descriptor arrays and labels for atoms in a set of reactants  
model_training_v3.py: func=ons for training and evalua=ng the model  
 
 
 
data_processing/ folder: 
 
ini#al_treatment.py: group reac=ons with the same reactants together vis InChI strings; for the Diels-
Alder dataset only, reac=ons with placeholder atoms are also removed. Reac=ons with hypervalent 
molecules lead to errors in the model training and tes=ng. They are removed manually from the Diels-
Alder dataset. 
 
remove_emb_error.py: filter reac=ons with 3D structure errors 
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compe@@ve_pathway_atom_mapping.py: This script executes the func=ons in a=dx.py to conduct 
atom-to-atom mapping of individual reac=ons and between the compe==ve pathways. This process 
was conducted only on the first-year and Diels-Alder datasets.  

• Associated files in the dataset/ folder: ‘exam_test.csv’ and ‘exam_test_28122023.csv’ – the 
input and output csv file from execu=ng the script are provided for illustra=ons  

 
bond_strength_descriptor/ folder:  
 
bondlength_fromsmi_v2.py: gather bond length data from SMILES strings  
bond_pre_classifier_v2.py: using the bond length data to generate bond strength descriptor 
classifica=on criteria, ie the ‘bond_classifica=on_01112022.csv’ file 
 
 
model_evalua#on/ folder: 
 
All the scripts under the model_evalua=on/ should be moved from TwoBondChem/model_evalua=on/ 
to TwoBondChem/ before execu=on. 
 
chk_dup_v3.py: check if there are overlaps between datasets 
 
random_sample_test.py, random_sample_test_all.py, random_sample_test_Bmix.py, 
random_sample_test_Cmix.py: scripts for carrying out random sampling test  
 
take_one_out_test.py: the script for carrying out the take-one-out cross-valida=on test  
 
test_size_test.py: The script for inves=ga=ng the effect of varying the tes=ng or training dataset size  
 
save_model.py: execu=ng this script to train models using reac=ons from a single dataset and return 
the trained models in .sav files 
save_model2.py: execu=ng this script to train models using reac=ons from mul=ple datasets and 
return the trained models in .sav files 
 
evalua@on.py: This script takes the .csv output from the above script to calculate performance metrics 
by comparing the predic=ons with the actual labels. 
 
hyperpara_test_v5.py and para_df.csv: the script and csv file for conduc=ng hyperparameter tuning  
 
The following files under TwoBondChem/ provide an example of the training and evalua=on procedure:  
 
random_sample_test_EXAMPLE.py: training and tes=ng for 2-bond+ models trained from the [3+2] 
cycloaddi=on dataset. The code is taken from ‘random_sample_test.py’ under model_evalua=on/ 
folder. This script can be executed as it is from the TwoBondChem/ folder 
cyclo_2b+/ contains output files from execu=ng the ‘random_sample_test_EXAMPLE.py’ script 
evaluate_EXAMPLE.ipynb: evalua=on of the predic=ons using the ‘evalua=on.py’ under 
model_evalua=on/ folder 
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1.3 Atom-to-Atom Mapping 
 

 
Figure S4. Atom-to-atom mapping procedures for the first-year and Diels-Alder reac=on dataset  
 
 
 
 
 
  



 12 

2. Bond strength descriptors 
 
The bond strength component involves categorising the bonds to which the atom is connected into 
one of the 86 bond classes across 12 bond types (ie CC, CN, CH, CCl, CO, CS, CF, NO, HN, HO and OP). 
The complete list of bond classes is in SI Table S3. The classifica=on of the 86 bond classes was 
established using the method employed in the MolE8 machine-learned poten=al energy surface 
model.6 The classifica=on of bonds is based on the bond length of the specific bond type. The 
parametrisa=on procedure was repeated and the bond length distribu=ons of each bond type on 
MMFF-op=mised structures were studied using a dataset of 100,000 molecules from ChEMBL-28.7 
Kernel density es=ma=ons (KDE) were applied to the histogram of the bond length distribu=on (SI 
Figure S5). The minima observed on the KDE curve were iden=fied as the boundaries dividing each 
bond class. 
 
The bond strength descriptors explicitly provide informa=on on the chemical environment of the atom 
beyond the two-bond range. The bond strength descriptors can dis=nguish between the same bond 
(ie the same bond type and bond order) but located in different chemical environments due to subtle 
bond length differences. For example, the single C-C bond within a conjugated system and in a 
saturated chain have slightly different bond lengths and are categorised into two bond strength classes 
(SI Figure S6). 
 
 

 
Figure S5. Deriva=on of the bond strength classes from bond length distribu=on histograms. The 
corresponding plot for CC, CN, CO and CF are given above as examples.6,7  
 
 

 
Figure S6. Bond strength class and bond length in Å for all the CC bonds in an example molecule. 
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Table S3. Classification of the bond strength class based on the bond length: bond classes and the associated 
parameters under each bond type.   
Bond Type Bond strength classes 

 {‘bond class name’:[minimum length in Å, maximum length in Å]} 
CC {'CC_0': [0, 1.1007], 'CC_1': [1.1007, 1.3593], 'CC_2': [1.3593, 1.4769], 'CC_3': [1.4769, 

1.3223], 'CC_4': [1.3223, 1.4429], 'CC_5': [1.4429, 1.4924], 'CC_6': [1.4924, 1.5144], 'CC_7': 
[1.5144, 1.6075], 'CC_8': [1.6075, 1.784], 'CC_9': [1.784, 3]} 

CN {'CN_0': [0, 1.0569], 'CN_1': [1.0569, 1.3056], 'CN_2': [1.3056, 1.3271], 'CN_3': [1.3271, 
1.3602], 'CN_4': [1.3602, 1.233], 'CN_5': [1.233, 1.4057], 'CN_6': [1.4057, 1.4342], 'CN_7': 
[1.4342, 1.5273], 'CN_8': [1.5273, 1.6554], 'CN_9': [1.6554, 3]} 

CH {'CH_0': [0, 0.9363], 'CH_1': [0.9363, 1.0756], 'CH_2': [1.0756, 1.1072], 'CH_3': [1.1072, 
1.2415], 'CH_4': [1.2415, 1.0912], 'CH_5': [1.0912, 3]} 

CCl {'CCl_0': [0, 1.5942], 'CCl_1': [1.5942, 1.7386], 'CCl_2': [1.7386, 1.7251], 'CCl_3': [1.7251, 
1.713], 'CCl_4': [1.713, 1.8929], 'CCl_5': [1.8929, 3]} 

CO {'CO_0': [0, 1.1058], 'CO_1': [1.1058, 1.5842], 'CO_2': [1.5842, 1.3065], 'CO_3': [1.3065, 
1.4016], 'CO_4': [1.4016, 3]} 

HN {'HN_0': [0, 0.8936], 'HN_1': [0.8936, 1.0002], 'HN_2': [1.0002, 1.0173], 'HN_3': [1.0173, 
1.0113], 'HN_4': [1.0113, 1.0108], 'HN_5': [1.0108, 1.0243], 'HN_6': [1.0243, 1.0248], 
'HN_7': [1.0248, 1.0293], 'HN_8': [1.0293, 1.1665], 'HN_9': [1.1665, 3]} 

CS {'CS_0': [0, 1.5101], 'CS_1': [1.5101, 1.7539], 'CS_2': [1.7539, 1.6793], 'CS_3': [1.6793, 
1.7428], 'CS_4': [1.7428, 1.6302], 'CS_5': [1.6302, 1.8009], 'CS_6': [1.8009, 1.875], 'CS_7': 
[1.875, 1.9866], 'CS_8': [1.9866, 3]} 

OS {'OS_0': [0, 1.3371], 'OS_1': [1.3371, 1.7609], 'OS_2': [1.7609, 1.4747], 'OS_3': [1.4747, 3]} 

CF {'CF_0': [0, 1.3558], 'CF_1': [1.3558, 1.2366], 'CF_2': [1.2366, 1.3477], 'CF_3': [1.3477, 
1.3713], 'CF_4': [1.3713, 1.2977], 'CF_5': [1.2977, 1.4784], 'CF_6': [1.4784, 3]} 

NO {'NO_0': [0, 1.1352], 'NO_1': [1.1352, 1.4542], 'NO_2': [1.4542, 1.5734], 'NO_3': [1.5734, 
1.3306], 'NO_4': [1.3306, 3]} 

HO {'HO_0': [0, 0.8564], 'HO_1': [0.8564, 0.9611], 'HO_2': [0.9611, 0.9747], 'HO_3': [0.9747, 
0.9752], 'HO_4': [0.9752, 0.9777], 'HO_5': [0.9777, 0.9792], 'HO_6': [0.9792, 0.9797], 
'HO_7': [0.9797, 0.9872], 'HO_8': [0.9872, 1.1189], 'HO_9': [1.1189, 3]} 

OP {'OP_0': [0, 1.3884], 'OP_1': [1.3884, 1.7245], 'OP_2': [1.7245, 1.5467], 'OP_3': [1.5467, 3]} 
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Figure S7. Addi=onal case studies on model trained with Diels-Alder reac=on data to understand bond 
strength descriptors.  
 
The bond strength descriptor classifica=on depends on the bond length measurements on the force 
field structure. In frequently appeared chemical mo=fs, the classifica=ons should match our chemical 
intui=on bejer. For example, single, aroma=c, double and triple C-C bonds typically have the bond 
strength descriptor of CC_6, CC_3, CC_2 and CC_1, respec=vely. For the less common chemical mo=f, 
the classifica=on tends to be harder to interpret and might be against our intui=on. For example, the 
three C-C bonds within a cyclopropene are classified as CC_3, CC_3 and CC_1, respec=vely. Inevitably, 
this would impact the performance of the model. In the above study, the model trained on Diels-Alder 
reac=ons could not iden=fy the cyclopropene mo=f as a poten=al dienophile. 
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3. Model Evalua;on 
 
Algorithm Benchmarking: 
 

Table S4. Performance on benchmarking with different machine learning algorithms: random forest (RF), K-
nearest neighbour (KNN), support vector (SVC), gaussian process (Gaussian) and mulT-layer perceptron 
classifier (NN). The number of sets of reacTons involved in training and tesTng are specified below in bracket. 
The ‘2-bond +’ descriptor composiTon was used. The sets of reacTons for training and tesTng are indicated in 
the brackets.  

Model Accuracy Precision Recall 

Train: year 1 A (78), Test: year 1 B (30) 

RF 92.0% 86.9% 70.5% 
KNeigh 89.5% 80.4% 62.1% 

SVC 86.5% 73.3% 50.0% 
Gaussian 91.1% 86.9% 65.2% 

NN 91.0% 84.6% 66.7% 
Train: [3+2] cycloaddition (100), Test: [3+2] cycloaddition (100) 

RF 100.0% 99.8% 100.0% 
KNeigh 99.1% 99.8% 94.4% 

SVC 97.7% 100.0% 85.2% 
Gaussian 99.4% 99.8% 96.5% 

NN 99.9% 99.8% 99.3% 
Train: RGD1 (300), Test: RGD1 (100) 

model accuracy precision recall 
RF 81.4% 76.4% 60.7% 

KNeigh 80.6% 74.9% 59.2% 
SVC 78.9% 74.3% 52.3% 

Gaussian 81.3% 78.0% 58.0% 
NN 81.1% 76.8% 58.8% 
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Take-one-out cross-valida=ons procedures:  
 

1. A set of reac=ons was taken out for tes=ng and evalua=on. The model training was carried out 
on the rest of the dataset. The ‘2-bond +’ descriptor composi=on was used. The training is 
performed with random forest classifier. 

2. Predic=ons were made and recorded on atoms in the set of reac=ons outside of the training 
set.  

3. The above steps were repeated for all sets of reac=ons in the dataset.  
 
The unit for training and tes=ng data is ‘set’, ie a set of compe==ve reac=ons with the same reactants. 
The specific datasets and number of sets of reac=ons involved are specified in the tables below. 
 
 

Table S5A: Results of the take-one-out cross-validaTon test. PredicTons from the models were treated 
collecTvely to calculate the metrices below. 

 % by atoms % sets of reactants with: 
Dataset  

(no. of sets of 
reacTons) 

Accuracy Precision Recall No fault 
predicTons 

No more than 
one fault 

predicTon 

All reacTve 
atoms predicted 

correctly 
First-year  

(107) 89.8% 80.6% 63.9% 24.3% 39.3% 41.1% 

[3+2]-cycloaddiTon 
(100) 99.9% 99.5% 99.5% 96.0% 100.0% 98.0% 

Diels-Alder  
(100) 97.3% 90.6% 82.4% 47.0% 76.0% 63.0% 

Diels-Alder  
(100)* 98.5% 92.2% 91.6% 58.0% 85.0% 72.0% 

RGD1 
(100) 82.1% 74.3% 67.8% 7.0% 29.0% 28.0% 

Green 
(100) 83.8% 83.9% 80.4% 27.0% 49.0% 50.0% 

*Aner correcTng the atom-to-atom mapping errors  
 
 

Table S5B: Results of the take-one-out cross-validaTon test. The predicTons for each set of reacTons were 
treated individually to compute performance metrices, followed by calculaTng the mean and standard 
deviaTon for the enTre dataset. As each set of results from tesTng only involve less than 50 atoms, the 
standard deviaTon is expected to be large.  

 % by atoms 
Dataset  

(no. of sets of reacTons) Accuracy Precision Recall 

First-year  
(107) 89.8±10.3% 72.4±27.2% 83.1±22.4% 

[3+2]-cycloaddiTon (100) 99.8±0.7% 99.5±3.5% 99.7±2.4% 
Diels-Alder  

(100) 97.1±4.9% 86.3±20.8% 92.7±13.9% 
Diels-Alder  

(100)* 98.5±2.3% 91.6±15.3% 94.3±12.3% 
RGD1 
(100) 81.8±12.1% 70.5±25.7% 72.7±24.4% 
Green 
(100) 83.6±15.1% 82.9±20.4% 86.3±17.8% 

*Aner correcTng the atom-to-atom mapping errors 
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Increasing the size of the training data:  
 

Table S6: Model performance when varying the size of the training data. The RGD1 dataset was used for 
conducTng this invesTgaTon. The ‘2-bond +’ descriptor composiTon was used. The unit for training and tesTng 
data is ‘set’, ie a set of compeTTve reacTons with the same reactants. The same set of data, 100 sets of RGD1 
reacTons (ie 100 reacTons in total), was used for tesTng. 

 % by atoms % sets of reactants with: 
No. of sets of 
reacTons in 

training 
Accuracy Precision Recall No fault 

predicTons 

No more than 
one fault 

predicTon 

All reacTve 
atoms predicted 

correctly 
100 76.3% 63.1% 63.0% 6.0% 14.0% 28.0% 
300 81.2% 76.4% 59.9% 8.0% 30.0% 24.0% 
600 81.7% 75.8% 62.8% 6.0% 27.0% 25.0% 
900 82.6% 78.8% 62.4% 12.0% 35.0% 27.0% 

3000 83.2% 79.6% 63.9% 16.0% 38.0% 25.0% 
6000 84.9% 84.5% 64.7% 14.0% 47.0% 26.0% 

10300 84.3% 83.5% 63.5% 15.0% 43.0% 28.0% 
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Combining the datasets: 
 

Table S7: Performance of ‘2-bond +’ models trained from the combined dataset. The specific datasets and 
number of sets of reacTons involved are specified below in a consistent format. Let us take the first model 
presented below, ‘Train: 50 (104) [3+2] cycloaddiTon + 50 (50) Diels-Alder’, as an example. 50 sets of [3+2] 
cycloaddiTon reacTons with the same reactants (ie equivalent to 104 reacTons) and 50 sets of Diels-Alder 
reacTons with the same reactants (ie equivalent to 50 reacTons) are involved in training. In total, there are 154 
reacTons in the training dataset. Other than the overall results, the performance breakdown by the reacTons 
from different datasets in the tesTng dataset is also given below. 

 % by atoms % sets of reactants with: 

TesTng dataset Accuracy Precision Recall No fault 
predicTons 

No more than 
one fault 

predicTon 

All reacTve 
atoms predicted 

correctly 
Type B 

Train: 50 (104) [3+2] cycloaddiTon + 50 (50) Diels-Alder,  
Test: 50 (101) [3+2] cycloaddiTon + 50 (50) Diels-Alder 

Overall  97.6% 91.1% 89.7% 58.0% 85.0% 75.0% 
[3+2] cycloaddiTon 99.2% 100.0% 95.3% 80.0% 100.0% 80.0% 

Diels-Alder 96.5% 83.5% 84.6% 36.0% 70.0% 70.0% 
Train: 100 (205) [3+2] cycloaddiTon + 100 (100) Diels-Alder, 
 Test: 100 (219) [3+2] cycloaddiTon + 100 (100) Diels-Alder 

Overall  98.2% 94.1% 91.3% 68.0% 88.0% 80.5% 
[3+2] cycloaddiTon 99.5% 99.8% 97.2% 88.0% 99.0% 89.0% 

Diels-Alder 97.4% 88.6% 85.7% 48.0% 77.0% 72.0% 
Type C 

Type C: Train: 50 (53) RGD1 + 50 (59) Green,  
Test: 50 (57) RGD1 + 50 (61) Green 

Overall  80.3% 76.6% 69.8% 11.0% 31.0% 36.0% 
RGD1 79.3% 73.0% 62.3% 4.0% 18.0% 22.0% 
Green 81.9% 80.1% 78.1% 18.0% 44.0% 50.0% 

Train: 100 (107) RGD1 + 100 (126) Green,  
Test: 100 (110) RGD1 + 100 (120) Green 

Overall  79.8% 76.5% 67.3% 20.0% 35.0% 39.0% 
RGD1 77.7% 66.0% 62.6% 7.0% 20.0% 31.0% 
Green 82.8% 88.7% 72.0% 33.0% 50.0% 47.0% 

Combining all datasets: the global model 
 Train: 

77(105) first-year + 100 (205) [3+2] cycloaddiTon + 100 (100) Diels-Alder + 100 (107) RGD1 + 100 (126) Green,  
Test:  

30 (41) first-year + 100 (219) [3+2] cycloaddiTon + 100 (100) Diels-Alder + 100 (110) RGD1 + 100 (120) Green 
Overall 92.5% 81.1% 75.7% 35.3% 50.7% 54.2% 

First-year 91.3% 83.0% 68.8% 33.3% 56.7% 53.3% 
[3+2] cycloaddiTon 99.1% 96.8% 96.6% 80.0% 94.0% 87.0% 

Diels-Alder 96.1% 78.8% 83.3% 38.0% 54.0% 65.0% 
RGD1 77.6% 68.2% 59.0% 6.0% 19.0% 27.0% 
Green 82.5% 81.1% 70.1% 18.0% 34.0% 38.0% 
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Hyperparameter tuning  
 

Table S8. Performance on benchmarking with different hyperparameter sesng for the RF model. The 
hyperparameter tuning test was conducted on three different datasets: first-year, [3+2] cycloaddiTon and 
RGD1. In the hyperparameter tuning using the first-year dataset, the split of the training and tesTng dataset 
is as presented in SI Figure S8. 78 sets of reacTons were chosen for training and the rest for tesTng. For the 
hyperparameter tuning using the [3+2] cycloaddiTon and RGD1 dataset, the first 100 sets of reacTons were 
used for training and the sequenTal 100 sets of reacTons were used for tesTng. The results with the default 
hyperparameter sesng from the scikit-learn package are highlighted in yellow. 

Parameter  
max_features, criterion, n_estimators 

Accuracy Precision Recall 

Train: first-year (78), Test: first-year (30) 

entropy, log2, 100 92.5% 71.9% 86.8% 

entropy, log2, 200 93.2% 73.4% 89.5% 

entropy, log2, 20 92.8% 75.0% 85.7% 

entropy, log2, 50 92.6% 71.9% 87.6% 

entropy, log2, 75 93.8% 76.6% 89.9% 

entropy, sqrt, 100 93.4% 75.0% 88.9% 

entropy, sqrt, 200 92.9% 73.4% 87.9% 

entropy, sqrt, 20 92.8% 70.3% 90.0% 

entropy, sqrt, 50 93.1% 73.4% 88.7% 

entropy, sqrt, 75 93.2% 75.0% 88.1% 

gini, log2, 100 93.7% 75.0% 90.6% 

gini, log2, 200 93.1% 72.7% 89.4% 

gini, log2, 20 92.0% 72.7% 83.8% 

gini, log2, 50 92.9% 75.0% 86.5% 

gini, log2, 75 93.2% 75.8% 87.4% 

gini, sqrt, 100 93.4% 75.0% 88.9% 

gini, sqrt, 200 93.7% 74.2% 91.4% 

gini, sqrt, 20 92.6% 71.9% 87.6% 

gini, sqrt, 50 93.2% 73.4% 89.5% 

gini, sqrt, 75 93.4% 75.8% 88.2% 

Train: [3+2] cycloaddition (100), Test: [3+2] cycloaddition (100) 
entropy, log2, 100 99.9% 99.3% 99.8% 

entropy, log2, 200 99.9% 99.8% 99.8% 

entropy, log2, 20 99.7% 98.2% 99.8% 

entropy, log2, 50 99.8% 99.1% 99.8% 

entropy, log2, 75 99.9% 100.0% 99.1% 

entropy, sqrt, 100 100.0% 100.0% 99.8% 

entropy, sqrt, 200 99.9% 100.0% 99.1% 

entropy, sqrt, 20 99.8% 99.3% 99.1% 

entropy, sqrt, 50 100.0% 100.0% 99.8% 

entropy, sqrt, 75 100.0% 100.0% 99.8% 

gini, log2, 100 100.0% 100.0% 99.8% 

gini, log2, 200 100.0% 100.0% 99.8% 
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gini, log2, 20 99.6% 97.7% 99.8% 

gini, log2, 50 99.9% 100.0% 99.1% 

gini, log2, 75 99.9% 99.5% 99.8% 

gini, sqrt, 100 100.0% 100.0% 99.8% 

gini, sqrt, 200 99.9% 99.8% 99.8% 

gini, sqrt, 20 99.9% 99.3% 99.8% 

gini, sqrt, 50 99.9% 99.8% 99.8% 

gini, sqrt, 75 100.0% 100.0% 99.8% 

Train: RGD1 (100), Test: RGD1 (100) 

entropy, log2, 100 76.8% 65.7% 63.4% 

entropy, log2, 200 77.0% 63.6% 64.3% 

entropy, log2, 20 77.6% 63.6% 65.4% 

entropy, log2, 50 76.3% 61.6% 63.3% 

entropy, log2, 75 77.6% 65.3% 64.9% 

entropy, sqrt, 100 76.9% 64.1% 64.0% 

entropy, sqrt, 200 76.6% 63.6% 63.6% 

entropy, sqrt, 20 77.2% 60.5% 65.6% 

entropy, sqrt, 50 76.7% 63.4% 63.7% 

entropy, sqrt, 75 77.0% 63.0% 64.5% 

gini, log2, 100 76.1% 62.0% 62.9% 

gini, log2, 200 76.2% 62.2% 63.1% 

gini, log2, 20 77.2% 63.9% 64.6% 

gini, log2, 50 76.5% 61.5% 63.9% 

gini, log2, 75 76.0% 60.7% 63.0% 

gini, sqrt, 100 76.1% 61.1% 63.1% 

gini, sqrt, 200 76.6% 63.2% 63.7% 

gini, sqrt, 20 76.3% 60.3% 63.7% 

gini, sqrt, 50 76.8% 63.9% 63.7% 

gini, sqrt, 75 77.6% 66.8% 64.5% 
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The random sampling test procedure for results in Table S9 and S10:  
 
The following procedures were conducted on each dataset individually: 
1. 100 sets of reac=ons with the same reactants were randomly selected for training and 

tes=ng, respec=vely.  
2. Model training was performed using the ‘two-bond +’ descriptor composi=on. The metrics 

from the evalua=on were recorded aver the tes=ng. 
3. The above steps were repeated five =mes. The mean and standard devia=on of the 

performance metrics were calculated. 
 
 
The effect of increasing the test data size:  
 

Table S9: InvesTgaTng the effect of increasing the test data size: The mean and standard deviaTon of the 
performance metrics were calculated based on the results of random sampling tests. 

 % by atoms % sets of reactants with: 

Test data 
size Accuracy Precision Recall No fault 

predicTons 

No more 
than one 

fault 
predicTon 

All reacTve 
atoms predicted 

correctly 

 [3+2] cycloaddidon  
100 99.7±0.2% 97.2±1.5% 99.2±1.0% 87.4±6.3% 98.0±1.8% 89.2±5.0% 
200 98.8±0.5% 92.1±4.3% 96.1±4.1% 64.9±11.7% 84.4±9.1% 74.0±11.2% 
500 98.7±0.4% 93.0±2.8% 94.9±2.0% 64.2±6.8% 85.1±9.0% 73.2±9.4% 

1000 98.1±0.2% 88.6±1.5% 93.2±2.1% 55.6±3.6% 72.5±3.2% 63.7±2.4% 
1500 97.9±0.4% 89.6±2.5% 91.7±5.1% 53.4±7.4% 69.1±8.2% 67.0±4.3% 
2000 97.7±0.4% 88.0±2.7% 90.6±3.3% 52.5±4.8% 64.6±6.8% 64.6±3.3% 

Diels-Alder 
100 96.1±0.7% 72.2±4.9% 90.0±1.8% 42.8±3.5% 64.0±2.4% 54.4±1.9% 
200 96.6±0.3% 75.9±2.8% 90.0±1.4% 41.4±4.6% 66.2±3.1% 56.5±8.6% 
500 96.3±0.2% 74.1±1.3% 89.7±0.6% 43.7±1.9% 65.5±1.6% 60.8±5.4% 

1000 96.3±0.3% 73.1±2.1% 90.8±1.1% 43.3±4.2% 65.1±3.6% 57.2±5.4% 
1500 96.3±0.2% 73.8±0.7% 89.9±1.4% 43.2±2.5% 65.8±2.0% 58.2±1.2% 
2000 96.4±0.1% 74.6±1.1% 89.4±0.2% 43.6±2.4% 65.6±0.3% 60.4±2.4% 

RGD1  
100 79.2±2.0% 58.1±5.7% 68.0±1.7% 6.6±1.2% 21.6±4.3% 28.8±5.9% 
200 78.0±0.5% 55.8±2.2% 66.8±2.3% 4.6±1.4% 18.6±1.4% 23.7±3.3% 
500 78.0±0.6% 57.6±2.4% 65.8±1.6% 5.5±0.4% 17.0±1.5% 23.4±1.3% 

1000 78.0±0.9% 60.3±3.8% 64.8±1.5% 4.7±0.3% 17.9±1.5% 27.1±2.4% 
1500 78.2±0.6% 60.3±2.5% 65.1±2.0% 4.7±1.0% 17.9±1.6% 28.3±1.7% 
2000 77.7±0.6% 58.4±1.7% 64.8±1.3% 4.5±0.7% 17.2±1.4% 27.0±3.6% 
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The effect of changing the ac@va@on energy (EA) cut-off: 
 

Table S10: InvesTgaTng the effect of changing the acTvaTon energy (EA) cut-off: The mean and standard 
deviaTon of the performance metrics were calculated based on the results of random sampling tests. 

 % by atoms % sets of reactants with: 

EA cut-off 
(kcal mol-1) Accuracy Precision Recall No fault 

predicTons 

No more 
than one 

fault 
predicTon 

All reacTve 
atoms predicted 

correctly 

Green 
37 85.1±0.2% 78.0±0.6% 87.9±0.6% 27.6±1.5% 49.6±1.0% 41.4±2.2% 
40 84.3±0.6% 76.8±1.4% 87.3±0.9% 27.4±3.5% 47.2±2.6% 43.4±3.3% 
45 84.0±0.6% 76.4±0.8% 86.6±0.8% 22.4±2.5% 46.4±0.5% 39.2±2.6% 
50 83.0±1.0% 77.5±2.2% 84.2±2.5% 19.6±2.5% 43.0±3.3% 44.0±4.2% 
55 81.9±0.5% 77.2±1.0% 82.4±1.6% 19.6±1.9% 38.4±1.7% 44.4±2.7% 
60 78.6±1.6% 70.7±3.3% 82.5±0.7% 15.4±3.2% 31.8±2.4% 33.6±7.4% 

RGD1 
30 79.5±1.8% 50.7±2.3% 70.8±5.0% 7.4±3.3% 24.8±6.8% 23.2±5.7% 
35 79.1±0.7% 57.8±3.2% 66.7±1.8% 6.8±2.6% 20.0±1.4% 25.8±4.9% 
40 78.5±1.7% 57.0±5.8% 66.3±2.7% 5.6±1.7% 18.6±2.6% 26.2±9.2% 
45 77.6±1.0% 55.4±1.9% 67.2±2.3% 4.0±1.4% 15.8±2.7% 22.2±2.3% 
50 76.6±2.4% 55.1±6.6% 65.3±4.2% 4.2±1.3% 16.0±6.8% 24.2±6.6% 
55 76.8±1.6% 56.2±5.5% 65.7±2.0% 2.4±1.2% 14.4±2.9% 18.2±3.4% 

 
Using the Eyring equa=on (eq S1), the rate constant (𝑘) and the half-life (𝑡!/#, eq S2) at the room 
temperature, 298 K, were calculated (Table S11). It is assumed that the reac=on is simple and 
monomolecular, AàB. 𝑘$, ℎ, 𝑅 and 𝑇 are Boltzmann’s constant, Planck’s constant, ideal gas constant 
and temperature respec=vely. 
 

Table S11. The rate constant (𝑘) and the half-life (𝑡!/#) based on the Eyring equaTon at 298 K 
ΔG‡ 

(kcal mol-1) 𝑘 (s-1) 𝑡!/# (s) 
20 1.33E-02 52.01 
30 6.17E-10 1.12E+09 
40 2.86E-17 2.42E+16 
50 1.32E-24 5.23E+23 

 
 

𝑘 =
𝑘$𝑇
ℎ
𝑒
%∆'‡
()  (S1) 

𝑡!/# = ln(2) /𝑘 (S2) 
 
 
The above calcula=on shows that the reac=on will take days when the barrier is above 30 kcal mol-1. 
Therefore, our chosen cut-off is sensible for leaving out the less kine=cally favourable reac=ons at room 
temperature.  
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Table S12. Performance of the models with first-year reactions. ‘Train: 78 (105)’ implies that 78 sets of 
reactions with the same reactants, equivalent to 105 reactions, were involved in training. ‘Test: 30 (42)’ means 
30 sets of reactions with the same reactants, equivalent to 42 reactions, were involved in testing. In total, 147 
reactions were involved in the training and testing of the model. This corresponds to 100% of the first-year 
reaction dataset. For each set of data, ‘one-bond’, ‘two-bond’ and ‘two-bond +’ descriptor compositions were 
considered.  

  % by atoms % sets of reactants with: 
Entry 

Descriptors Accuracy Precisio
n Recall No fault 

predicdons 

No more than 
one fault 

predicdon 

All reacdve 
atoms 

predicted 
correctly 

 Type A 
First-year reacdons: Train: 78 (105), Test: 30 (42) à total 147 reacTons, ie 100% of the dataset 

1 One-bond 88.59% 73.64% 63.28% 10.0% 56.7% 43.3% 
2 Two-bond 91.59% 83.96% 69.53% 26.7% 56.7% 56.7% 
3 Two-bonds + 93.09% 87.27% 75.00% 40.0% 70.0% 63.3% 

 
 

 
Figure S8. Composi=on of the training and tes=ng first-year dataset in model evalua=on for producing 
results in Table S12 
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4. Performance on non-elementary reac;on examples  
 

 
Figure S9. Addi=onal examples: Predic=ons from the ‘two-bond +’ model trained on all first-year 
reac=ons using reac=ons from first-year exams at the University of Cambridge. These reac=ons are 
non-elementary.  
 
It is assumed that reac=ons within the first-year reac=on data set are elementary. This categorisa=on 
is based on chemical intui=on rather than computa=ons. Thus, we expect a few non-elementary 
reac=ons within the dataset and a bejer performance of the models on the elementary reac=ons 
compared to non-elementary reac=ons. In the above cases, the model trained on the first-year 
reac=on dataset cannot pick out atoms that become more reac=ve in the intermediate than in the 
reactant. 
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