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1. Dataset and Scripts

1.1 Data
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Figure S1. An overview of the reactants in each dataset. The bar charts summarize the nature of the
non-hydrogen atoms in the molecules.
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Figure S2. The distribution of the size of the chemical systems in each dataset.



Table S1. Numerical records on filtering reactions

Dataset Number of filtered Number of Number of reactions

reactions reactions before after filtering
filtering

First-year 0 147 147

[3+2] cycloaddition 21 5974 5953

Diels-Alder 263 11274 11011

RGD1 (EA < 40 kcal mol?) 125 11406 11281

Green (EA <40 kcal molt) 11 332 321

RGD1 (EA < 60 kcal mol) 517 28038 27521

Green (EA < 60 kcal mol) 37 1049 1012

Source of errors:
1. 3D structure error:

Unable to be processed by RDkit to generate 3D structure at the force field level with the default
setting, ie return errors when encountering the following functions —

AllChem.EmbedMolecule(mol,randomSeed=0xf00d)
AllChem.MMFFOptimizeMolecule(mol)
mol.GetConformer()

2. Re-indexing error:

Atom-to-atom mapping needs to be carried out between the competitive pathways, reactions with the
same reactants but different products. This ensures consistent atom indexing across the competitive
pathways, which is important for generating labels in preparation for model training.

The atom-to-atom mapping across competitive pathways was done via mol1.GetSubstructMatch(mol2)
function from RDkit. moll and mol2 are RDkit Chem.Mol objects generated from reactant SMILES
strings that contain atom indexing. moll.GetSubstructMatch(mol2) returns the indices of atoms in
moll that match with mol2.

Reactions with the same reactants were grouped together via conversion to InChl string. Inevitably,
reactions with tautomer structures with difference connectivity as reactants were grouped together,
such as the example below:
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Figure S3. Tautomer structures with difference connectivity share the same InChl string.

The moll.GetSubstructMatch(mol2) function was unable to match resonance structures with different
connectivity. This led to the re-indexing error.



3. Placeholder atom error:

The reaction SMILES string contains placeholder atoms, “*’.
4. Hypervalent error:

The reaction involved hypervalent molecule.

A breakdown on the filtered reactions:

[3+2] cycloaddition: 21 reactions were filtered due to 3D structure errors.

Diels-Alder: 7 reactions contain hypervalent molecules. 8 reactions involve re-indexing errors during
the atom-to-atom mapping for competitive pathways. 22 reactions contain placeholder atoms. 226
reactions were filtered due to 3D structure errors.

RGD1 (EA < 40 kcal mol?): 63 reactions were filtered due to 3D structure errors. 62 reactions encounter
re-indexing errors during the atom-to-atom mapping for competitive pathways.

RGD1 (EA < 60 kcal mol™): 89 reactions were filtered due to 3D structure errors. 428 reactions
encounter re-indexing errors during the atom-to-atom mapping for competitive pathways.

Green (EA < 40 kcal mol?): 11 reactions were filtered due to 3D structure errors.

Green (EA < 60 kcal mol™): 33 reactions were filtered due to 3D structure errors. 4 reactions encounter
re-indexing errors during the atom-to-atom mapping for competitive pathways.

Combined dataset

The overlaps between the datasets with the ‘chk_dup_v2.py’ script via converting the reactant and
product into InChl strings. The test shows that there are overlaps between the RGD1 and Green dataset
(EA cut-off < 40 kcal mol?). Three reactions (idx in RGD1 dataset = 1308, 6573, 6574) in the RGD1
dataset also appear in the Green dataset. One reaction (idx in RGD1 dataset = 11190) from the RGD1
dataset is a competitive pathway, the same reactants but different products, to reactions in the Green
dataset. These reactions were removed from the RGD1 dataset prior to selecting reactions of the
combined dataset.



1.2 Scripts

GitHub repository TwoBondChem/
https://github.com/Goodman-lab/TwoBondChem

A. Directory tree of the TwoBondChem/

TwoBondChem/

— bond strength descriptor/

— bond pre classifier v2.py
— bondlength fromsmi v2.py
— data processing/

— competitive pathway atom mapping.py
— initial treatment.py

'— remove emb error.py

— dataset/

— cyclo data v2 16072024.csv
— da 08012024 vCorr.csv

— diels alder data v7 19052024.csv
— exam test.csv

— exam test 28122023.csv

— fav RGD1 13012024 v2.csv
— first-year data all 27122023.csv
— green 04012024.csv

— green eat6t0 c 23052024.csv
— rgd _ea60 c 23052024.csv

— model evaluation/

— chk dup v3.py

— evaluation.py

— random_ sample test.py

— random_ sample test all.py
— random sample test Bmix.py
— random sample test Cmix.py
— save model.py

— save model2.py

— take one out test.py

'— train size test.py

— model test 2.ipynb

— React.py

— README . md

— RF model yrl 28122023.sav

L— scripts/

— atidx.py

— bond classification 01112022.csv
— get descriptors v2.py

— get label v4.py

— model training v3.py

— training prepare v5.py

— cyclo 2b+/

— cyclo 0 13012024 label.csv
— cyclo 1 13012024 label.csv
— cyclo 2 13012024 label.csv
— cyclo 3 13012024 label.csv
— cyclo 4 13012024 label.csv
— cyclo 5 13012024 label.csv
— cyclo 6 13012024 label.csv
— cyclo 7 13012024 label.csv




t: cyclo 8 13012024 label.csv

cyclo 9 13012024 label.csv

random sample test EXAMPLE.py
evaluate EXAMPLE.ipynb

*Archive files have not been included
B. Environment
The scripts in this project are written in Python under the following environment:

- The Python (3.8.12) Standard Library
- Pandas (1.1.5)

- Numpy (1.19.2)

- Sklearn (0.24.2/1.0.1)

- RDkit (2021.9.4)

- Scipy (1.4.1)

- Rxnmapper (0.1.4)

C. Data

dataset/ folder:

All the datasets (Type A: the first-year reactions + three reactions from Part 1A exam at the University
of Cambridge; Type B: [3+2] cycloaddition! and Diels-Alder reaction dataset;? Type C: the Reaction
Graph Depth 1 (RGD1))? and the Green dataset).? are available in the dataset/ folder as csv files. The
reaction data is processed and formatted in the same style for the purpose of this investigation. The
atom-to-atom mapping numbering in the reaction SMILES is consistent for competitive pathways with
the same reactants. There are three columns in each csv file:

e idx: index of the reaction
e code: reactions with the same code are competitive pathways (ie having the same reactants)
e reaction: mapped reaction SMILES

The RGD1 dataset csv file also has an ‘Rind’ column, which corresponds to the index in the ‘reaction’
column in the original datafile:

https://figshare.com/articles/dataset/model reaction database/21066901?file=40272727 (accessed
Feb 5™, 2024).

‘da_08012024 vCorr.csv’ contains 100 Diels-Alder reactions, where the atom-to-atom mapping errors
have been picked out and corrected manually.> Before the correction, reactions with index = 2, 30, 31,
49, 66, 70, 88 and 99 contain errors.

Three out of 147 reactions in the first-year reaction dataset (‘first-year_data_all 27122023.csv’) had
mapping errors, which were subsequently corrected manually. Before the correction, reactions with
index = 50, 74 and 124 contain errors. Reactions with a code greater than 77 belong to the testing data
set.

We filtered and processed the RGD1 and the Green datasets to ensure that the reactions are
thermodynamically favourable (ie AH, < 0 kcal mol™) with a low kinetic barrier (je activation energy, EA
< 40 kcal molt). This gives the ‘fav_ RGD1_13012024 v2.csv’ and ‘green_04012024.csv’. To study the


https://figshare.com/articles/dataset/model_reaction_database/21066901?file=40272727

effect of varying the EA cut-off, we also filtered and processed the RGD1 and the Green datasets with
an EA cut-off of 60 kcal mol and AH, < 0 kcal mol! — ‘rgd_ea60 c_23052024.csv’ and
‘ereen_eab0 _c_23052024.csv’.

data_processing/competitive_pathway_atom_mapping.py input and output example files:
‘exam_test.csv’ and ‘exam_test _28122023.csv’



D. Scripts

React_v2.py: code for using the random forest model
model_test_3.ipynb: Jupyter notebook on how to use the ‘React.py’ script

Saved models:

Table S2. Saved models in the GitHub

File Note

RF_model_yrl 28122023.sav RF model trained from all reactions in the first-year dataset

RF_model_cyclo_11062024.sav RF model trained from the first 100 reactions in the [3+2] cycloaddition
dataset

RF_model_da_11062024.sav RF model trained from the first 100 reactions in the Diels-Alder dataset

RF_model_green_11062024.sav RF model trained from the first 100 reactions in the Green dataset

RF_model_rgd_11062024.sav RF model trained from the first 300 reactions in RGD1 dataset

RF_model_Bmix_11062024.sav RF model trained from 100 sets of randomly selected [3+2]
cycloaddition reactions and 100 sets of randomly selected Diels-Alder
reactions.

RF_model_Cmix_11062024.sav RF model trained from 100 sets of randomly selected Green reactions
and 100 sets of randomly selected RGD1 reactions.

RF_model_all_11062024.sav RF model trained from 78 sets of first-year reactions, 100 sets of [3+2]

cycloaddition reactions, 100 sets of Diels-Alder reactions, 100 sets of
Green reactions and 100 sets of RGD1 reactions. All reactions were
randomly selected from the corresponding full dataset.

scripts/ folder:

atidx.py: contains the functions for conducting atom-to-atom mapping and formatting the reaction
SMILES strings for competitive pathways

get_descriptors_v2.py: contains functions for generating the atomistic descriptor components
e Associated file: ‘bond_classification_01112022.csv’ — the parameters for generating the bond
strength descriptors
get_label_v4.py: contains functions for generating the atomistic label
training_prepare_v5.py: compiles functions in ‘get_descriptors_v2.py’ and ‘get_label_v4.py’ to
generate the descriptor arrays and labels for atoms in a set of reactants
model_training_v3.py: functions for training and evaluating the model

data processing/ folder:

initial_treatment.py: group reactions with the same reactants together vis InChl strings; for the Diels-
Alder dataset only, reactions with placeholder atoms are also removed. Reactions with hypervalent
molecules lead to errors in the model training and testing. They are removed manually from the Diels-
Alder dataset.

remove_emb_error.py: filter reactions with 3D structure errors



competitive_pathway_atom_mapping.py: This script executes the functions in atidx.py to conduct
atom-to-atom mapping of individual reactions and between the competitive pathways. This process
was conducted only on the first-year and Diels-Alder datasets.
e Associated files in the dataset/ folder: ‘exam_test.csv’ and ‘exam_test_28122023.csv’ — the
input and output csv file from executing the script are provided for illustrations

bond strength descriptor/ folder:

bondlength_fromsmi_v2.py: gather bond length data from SMILES strings
bond_pre_classifier_v2.py: using the bond length data to generate bond strength descriptor
classification criteria, ie the ‘bond_classification_01112022.csv’ file

model evaluation/ folder:

All the scripts under the model_evaluation/ should be moved from TwoBondChem/model_evaluation/
to TwoBondChem/ before execution.

chk_dup_v3.py: check if there are overlaps between datasets

random_sample_test.py, random_sample_test_all.py, random_sample_test_Bmix.py,
random_sample_test_Cmix.py: scripts for carrying out random sampling test

take_one_out_test.py: the script for carrying out the take-one-out cross-validation test
test_size_test.py: The script for investigating the effect of varying the testing or training dataset size

save_model.py: executing this script to train models using reactions from a single dataset and return
the trained models in .sav files

save_model2.py: executing this script to train models using reactions from multiple datasets and
return the trained models in .sav files

evaluation.py: This script takes the .csv output from the above script to calculate performance metrics
by comparing the predictions with the actual labels.

hyperpara_test_v5.py and para_df.csv: the script and csv file for conducting hyperparameter tuning
The following files under TwoBondChem/ provide an example of the training and evaluation procedure:

random_sample_test_EXAMPLE.py: training and testing for 2-bond+ models trained from the [3+2]
cycloaddition dataset. The code is taken from ‘random_sample_test.py’ under model_evaluation/
folder. This script can be executed as it is from the TwoBondChem/ folder

cyclo_2b+/ contains output files from executing the ‘random_sample_test EXAMPLE.py’ script
evaluate_EXAMPLE.ipynb: evaluation of the predictions using the ‘evaluation.py’ under
model_evaluation/ folder

10



1.3 Atom-to-Atom Mapping

1. Atom-to-atom mapping of the non-H atoms with

RXNMapper
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atoms, number the H atoms according to the atom mapping
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5. It is assumed that only one H atom is involved in the
reaction. Based on this assumption, complete atom-to-atom
mapping of the reaction.
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Figure S4. Atom-to-atom mapping procedures for the first-year and Diels-Alder reaction dataset
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2. Bond strength descriptors

The bond strength component involves categorising the bonds to which the atom is connected into
one of the 86 bond classes across 12 bond types (ie CC, CN, CH, CCl, CO, CS, CF, NO, HN, HO and OP).
The complete list of bond classes is in SI Table S3. The classification of the 86 bond classes was
established using the method employed in the MolE8 machine-learned potential energy surface
model.® The classification of bonds is based on the bond length of the specific bond type. The
parametrisation procedure was repeated and the bond length distributions of each bond type on
MMFF-optimised structures were studied using a dataset of 100,000 molecules from ChEMBL-28.”
Kernel density estimations (KDE) were applied to the histogram of the bond length distribution (Sl
Figure S5). The minima observed on the KDE curve were identified as the boundaries dividing each
bond class.

The bond strength descriptors explicitly provide information on the chemical environment of the atom
beyond the two-bond range. The bond strength descriptors can distinguish between the same bond
(ie the same bond type and bond order) but located in different chemical environments due to subtle
bond length differences. For example, the single C-C bond within a conjugated system and in a
saturated chain have slightly different bond lengths and are categorised into two bond strength classes
(SI Figure S6).
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Figure S5. Derivation of the bond strength classes from bond length distribution histograms. The
corresponding plot for CC, CN, CO and CF are given above as examples.®’
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Figure S6. Bond strength class and bond length in A for all the CC bonds in an example molecule.
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Table S3. Classification of the bond strength class based on the bond length: bond classes and the associated
parameters under each bond type.

Bond Type Bond strength classes
{*bond class name’:[minimum length in A, maximum length in A]}

CC {'cC_0"[0, 1.1007], 'CC_1":[1.1007, 1.3593], 'CC_2": [1.3593, 1.4769], 'CC_3": [1.4769,
1.3223],'CC_4":[1.3223, 1.4429], 'CC_5":[1.4429, 1.4924], 'CC_6": [1.4924, 1.5144], 'CC_7":
[1.5144, 1.6075], 'CC_8'": [1.6075, 1.784], 'CC_9": [1.784, 31}

CN {'CN_0": [0, 1.0569], 'CN_1":[1.0569, 1.3056], 'CN_2": [1.3056, 1.3271], 'CN_3": [1.3271,
1.3602], 'CN_4":[1.3602, 1.233], 'CN_5":[1.233, 1.4057], 'CN_6": [1.4057, 1.4342],'CN_7":
[1.4342,1.5273], 'CN_8":[1.5273, 1.6554], 'CN_9'": [1.6554, 3]}

CH {'CH_0":[0, 0.9363], 'CH_1":[0.9363, 1.0756], 'CH_2": [1.0756, 1.1072], 'CH_3":[1.1072,
1.2415], 'CH_4":[1.2415, 1.0912], 'CH_5": [1.0912, 3]}

ccl {'CCl_0": [0, 1.5942], 'CCl_1":[1.5942, 1.7386], 'CCl_2": [1.7386, 1.7251], 'CCl_3": [1.7251,
1.713],'CCl_4":[1.713, 1.8929], 'CCl_5": [1.8929, 31}

co {'CO_0":[0, 1.1058], 'CO_1":[1.1058, 1.5842], 'CO_2":[1.5842, 1.3065], 'CO_3": [1.3065,
1.4016], 'CO_4": [1.4016, 3]}

HN {'"HN_0": [0, 0.8936], 'HN_1'":[0.8936, 1.0002], '"HN_2": [1.0002, 1.0173], '"HN_3": [1.0173,
1.0113], '"HN_4":[1.0113, 1.0108], '"HN_5": [1.0108, 1.0243], 'HN_6": [1.0243, 1.0248],
'HN_7':[1.0248, 1.0293], 'HN_8": [1.0293, 1.1665], '"HN_9": [1.1665, 3]}

CS {'CS_0": [0, 1.5101], 'CS_1":[1.5101, 1.7539], 'CS_2":[1.7539, 1.6793], 'CS_3": [1.6793,
1.7428], 'CS_4":[1.7428, 1.6302], 'CS_5": [1.6302, 1.8009], 'CS_6": [1.8009, 1.875], 'CS_7":
[1.875, 1.9866], 'CS_8'": [1.9866, 3]}

0s {'0S_0": [0, 1.3371], '0S_1":[1.3371, 1.7609], 'OS_2": [1.7609, 1.4747], '0S_3": [1.4747, 3]}

CF {'CF_0": [0, 1.3558], 'CF_1":[1.3558, 1.2366], 'CF_2": [1.2366, 1.3477], 'CF_3":[1.3477,
1.3713], 'CF_4":[1.3713, 1.2977], 'CF_5": [1.2977, 1.4784], 'CF_6": [1.4784, 3]}

NO {'NO_0": [0, 1.1352], 'NO_1": [1.1352, 1.4542], 'NO_2": [1.4542, 1.5734], 'NO_3'": [1.5734,
1.3306], 'NO_4'": [1.3306, 3]}

HO {'"HO_0'": [0, 0.8564], 'HO_1": [0.8564, 0.9611], '"HO_2':[0.9611, 0.9747], 'HO_3': [0.9747,
0.9752], 'HO_4':[0.9752, 0.9777], '"HO_5": [0.9777, 0.9792], 'HO_6'": [0.9792, 0.9797],
'HO_7':[0.9797, 0.9872], 'HO_8'": [0.9872, 1.1189], 'HO_9": [1.1189, 3]}

oP {'OP_0": [0, 1.3884], 'OP_1":[1.3884, 1.7245], 'OP_2": [1.7245, 1.5467], 'OP_3": [1.5467, 3]}
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Understand bond strength descriptors

Model evaluation with the Diels-Alder reaction dataset: Train: 100, Test: 100

Actual label / the reactions in the dataset

SB1 @
(o] OMe

Cl

o — U
N H

0

07 “OMe
SB2 Ph

cl

m# — o«

X Ph Ph

Ph/\/\/ E cl Cl

F

Prediction (2-bond+)

O

Cl
Ph
PhM \iF

Cl

e

Molecules from the reactions

All C-C bonds cc_2
here are CC_3 i\
o cc_4
OMe
B (o] (o)

cc_2
- cc4 CC4 cC 4
Lot
cc_s cc_3 Ph
CC_2 cc_2
CC_2
o 662 ¢
CC_3< cc_3
Cl F

Benchmark molecules

All C-C bonds
here are CC_3

cc_2 cc_a
cce ~>CC6 ——>cCC.2

C_2

CC_1 H cc 1

Cl

Cl -
cc_3 —
SNt s ey Fens
F

Figure S7. Additional case studies on model trained with Diels-Alder reaction data to understand bond

strength descriptors.

The bond strength descriptor classification depends on the bond length measurements on the force
field structure. In frequently appeared chemical motifs, the classifications should match our chemical
intuition better. For example, single, aromatic, double and triple C-C bonds typically have the bond
strength descriptor of CC_6, CC_3, CC_2 and CC_1, respectively. For the less common chemical motif,
the classification tends to be harder to interpret and might be against our intuition. For example, the
three C-C bonds within a cyclopropene are classified as CC_3, CC_3 and CC_1, respectively. Inevitably,
this would impact the performance of the model. In the above study, the model trained on Diels-Alder
reactions could not identify the cyclopropene motif as a potential dienophile.

14



3. Model Evaluation

Algorithm Benchmarking:

Table S4. Performance on benchmarking with different machine learning algorithms: random forest (RF), K-
nearest neighbour (KNN), support vector (SVC), gaussian process (Gaussian) and multi-layer perceptron
classifier (NN). The number of sets of reactions involved in training and testing are specified below in bracket.
The 2-bond +’ descriptor composition was used. The sets of reactions for training and testing are indicated in

the brackets.

Model Accuracy Precision Recall
Train: year 1 A (78), Test: year 1 B (30)
RF 92.0% 86.9% 70.5%
KNeigh 89.5% 80.4% 62.1%
svC 86.5% 73.3% 50.0%
Gaussian 91.1% 86.9% 65.2%
NN 91.0% 84.6% 66.7%
Train: [3+2] cycloaddition (100), Test: [3+2] cycloaddition (100)
RF 100.0% 99.8% 100.0%
KNeigh 99.1% 99.8% 94.4%
svC 97.7% 100.0% 85.2%
Gaussian 99.4% 99.8% 96.5%
NN 99.9% 99.8% 99.3%
Train: RGD1 (300), Test: RGD1 (100)

model accuracy precision recall
RF 81.4% 76.4% 60.7%
KNeigh 80.6% 74.9% 59.2%
svC 78.9% 74.3% 52.3%
Gaussian 81.3% 78.0% 58.0%
NN 81.1% 76.8% 58.8%
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Take-one-out cross-validations procedures:

1. Aset of reactions was taken out for testing and evaluation. The model training was carried out
on the rest of the dataset. The ‘2-bond +’ descriptor composition was used. The training is
performed with random forest classifier.

2. Predictions were made and recorded on atoms in the set of reactions outside of the training
set.

3. The above steps were repeated for all sets of reactions in the dataset.

The unit for training and testing data is ‘set’, ie a set of competitive reactions with the same reactants.

The specific datasets and number of sets of reactions involved are specified in the tables below.

Table S5A: Results of the take-one-out cross-validation test. Predictions from the models were treated
collectively to calculate the metrices below.

% by atoms % sets of reactants with:
Dataset B No fault No more than All reactlye
(no. of sets of Accuracy  Precision Recall . one fault atoms predicted
. predictions .
reactions) prediction correctly
First-year 89.8% 80.6% 63.9% 24.3% 39.3% 41.1%
(107)
[3+2]'°{§g%a;ddm°” 99.9% 99.5% 99.5% 96.0% 100.0% 98.0%
) . (o] . 0 . (o] . (o] . (s] . (s]
D'e('i O’%')der 97.3% 90.6% 82.4% 47.0% 76.0% 63.0%
) . 0 . 0 . (o] . (o] . (s] . (s]
D"(e'lsog)'fer 98.5%  922%  91.6% 58.0% 85.0% 72.0%
. 0 . (o] . (o] . (s] . (s] . (s]
?fo%} 82.1% 74.3% 67.8% 7.0% 29.0% 28.0%
. (o] . 0 . (o] . (o] . (s] . (s]
f{gg;‘ 83.8% 83.9% 80.4% 27.0% 49.0% 50.0%

*After correcting the atom-to-atom mapping errors

Table S5B: Results of the take-one-out cross-validation test. The predictions for each set of reactions were
treated individually to compute performance metrices, followed by calculating the mean and standard
deviation for the entire dataset. As each set of results from testing only involve less than 50 atoms, the
standard deviation is expected to be large.

% by atoms

Dataset Accurac Precision Recall
(no. of sets of reactions) ¥
First-year
(107) 89.8+10.3% 72.4+27.2% 83.1+22.4%
[3+2]-cycloaddition (100) 99.8+0.7% 99.5+3.5% 99.742.4%
Diels-Alder
(100) 97.1+4.9% 86.3+20.8% 92.7+13.9%
Diels-Alder
(100)* 98.5+2.3% 91.6+15.3% 94.3+12.3%
RGD1
(100) 81.8+12.1% 70.5+25.7% 72.7+24.4%
Green
(100) 83.6+15.1% 82.9+20.4% 86.3+17.8%

*After correcting the atom-to-atom mapping errors
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Increasing the size of the training data:

Table S6: Model performance when varying the size of the training data. The RGD1 dataset was used for
conducting this investigation. The 2-bond +’ descriptor composition was used. The unit for training and testing
data is ‘set’, je a set of competitive reactions with the same reactants. The same set of data, 100 sets of RGD1

reactions (ie 100 reactions in total), was used for testing.

No. of sets of

% by atoms

% sets of reactants with:

No more than

All reactive

reactions in Accuracy  Precision Recall 2}3:;%;5 one fault atoms predicted
training P prediction correctly

100 76.3% 63.1% 63.0% 6.0% 14.0% 28.0%

300 81.2% 76.4% 59.9% 8.0% 30.0% 24.0%

600 81.7% 75.8% 62.8% 6.0% 27.0% 25.0%

900 82.6% 78.8% 62.4% 12.0% 35.0% 27.0%
3000 83.2% 79.6% 63.9% 16.0% 38.0% 25.0%
6000 84.9% 84.5% 64.7% 14.0% 47.0% 26.0%

10300 84.3% 83.5% 63.5% 15.0% 43.0% 28.0%
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Combining the datasets:

Table S7: Performance of ‘2-bond + models trained from the combined dataset. The specific datasets and
number of sets of reactions involved are specified below in a consistent format. Let us take the first model
presented below, ‘Train: 50 (104) [3+2] cycloaddition + 50 (50) Diels-Alder’, as an example. 50 sets of [3+2]
cycloaddition reactions with the same reactants (ie equivalent to 104 reactions) and 50 sets of Diels-Alder
reactions with the same reactants (ie equivalent to 50 reactions) are involved in training. In total, there are 154
reactions in the training dataset. Other than the overall results, the performance breakdown by the reactions
from different datasets in the testing dataset is also given below.

% by atoms % sets of reactants with:
No fault No more than All reactive
Testing dataset Accuracy Precision Recall - one fault atoms predicted
predictions o
prediction correctly
Type B

Train: 50 (104) [3+2] cycloaddition + 50 (50) Diels-Alder,
Test: 50 (101) [3+2] cycloaddition + 50 (50) Diels-Alder

Overall 97.6% 91.1% 89.7% 58.0% 85.0% 75.0%
[3+2] cycloaddition 99.2% 100.0% 95.3% 80.0% 100.0% 80.0%
Diels-Alder 96.5% 83.5% 84.6% 36.0% 70.0% 70.0%
Train: 100 (205) [3+2] cycloaddition + 100 (100) Diels-Alder,
Test: 100 (219) [3+2] cycloaddition + 100 (100) Diels-Alder
Overall 98.2% 94.1% 91.3% 68.0% 88.0% 80.5%
[3+2] cycloaddition 99.5% 99.8% 97.2% 88.0% 99.0% 89.0%
Diels-Alder 97.4% 88.6% 85.7% 48.0% 77.0% 72.0%
Type C
Type C: Train: 50 (53) RGD1 + 50 (59) Green,
Test: 50 (57) RGD1 + 50 (61) Green
Overall 80.3% 76.6% 69.8% 11.0% 31.0% 36.0%
RGD1 79.3% 73.0% 62.3% 4.0% 18.0% 22.0%
Green 81.9% 80.1% 78.1% 18.0% 44.0% 50.0%
Train: 100 (107) RGD1 + 100 (126) Green,
Test: 100 (110) RGD1 + 100 (120) Green
Overall 79.8% 76.5% 67.3% 20.0% 35.0% 39.0%
RGD1 77.7% 66.0% 62.6% 7.0% 20.0% 31.0%
Green 82.8% 88.7% 72.0% 33.0% 50.0% 47.0%
Combining all datasets: the global model
Train:

77(105) first-year + 100 (205) [3+2] cycloaddition + 100 (100) Diels-Alder + 100 (107) RGD1 + 100 (126) Green,

Overall
First-year
[3+2] cycloaddition
Diels-Alder
RGD1

Test:
30 (41) first-year + 100 (219) [3+2] cycloaddition + 100 (100) Diels-Alder + 100 (110) RGD1 + 100 (120) Green
92.5% 81.1% 75.7% 35.3% 50.7% 54.2%
91.3% 83.0% 68.8% 33.3% 56.7% 53.3%
99.1% 96.8% 96.6% 80.0% 94.0% 87.0%
96.1% 78.8% 83.3% 38.0% 54.0% 65.0%
77.6% 68.2% 59.0% 6.0% 19.0% 27.0%
82.5% 81.1% 70.1% 18.0% 34.0% 38.0%

Green
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Hyperparameter tuning

Table S8. Performance on benchmarking with different hyperparameter setting for the RF model. The
hyperparameter tuning test was conducted on three different datasets: first-year, [3+2] cycloaddition and
RGD1. In the hyperparameter tuning using the first-year dataset, the split of the training and testing dataset
is as presented in Sl Figure S8. 78 sets of reactions were chosen for training and the rest for testing. For the
hyperparameter tuning using the [3+2] cycloaddition and RGD1 dataset, the first 100 sets of reactions were
used for training and the sequential 100 sets of reactions were used for testing. The results with the default
hyperparameter setting from the scikit-learn package are highlighted in yellow.
Parameter Accuracy Precision Recall
max_features, criterion, n_estimators
Train: first-year (78), Test: first-year (30)

entropy, log2, 100 92.5% 71.9% 86.8%
entropy, log2, 200 93.2% 73.4% 89.5%
entropy, log2, 20 92.8% 75.0% 85.7%
entropy, log2, 50 92.6% 71.9% 87.6%
entropy, log2, 75 93.8% 76.6% 89.9%
entropy, sqrt, 100 93.4% 75.0% 88.9%
entropy, sqrt, 200 92.9% 73.4% 87.9%
entropy, sqrt, 20 92.8% 70.3% 90.0%
entropy, sqrt, 50 93.1% 73.4% 88.7%
entropy, sqrt, 75 93.2% 75.0% 88.1%
gini, log2, 100 93.7% 75.0% 90.6%
gini, log2, 200 93.1% 72.7% 89.4%
gini, log2, 20 92.0% 72.7% 83.8%
gini, log2, 50 92.9% 75.0% 86.5%
gini, log2, 75 93.2% 75.8% 87.4%
gini, sqrt, 100 93.4% 75.0% 88.9%
gini, sqrt, 200 93.7% 74.2% 91.4%
gini, sqrt, 20 92.6% 71.9% 87.6%
gini, sqrt, 50 93.2% 73.4% 89.5%
gini, sqrt, 75 93.4% 75.8% 88.2%
Train: [3+2] cycloaddition (100), Test: [3+2] cycloaddition (100)

entropy, log2, 100 99.9% 99.3% 99.8%
entropy, log2, 200 99.9% 99.8% 99.8%
entropy, log2, 20 99.7% 98.2% 99.8%
entropy, log2, 50 99.8% 99.1% 99.8%
entropy, log2, 75 99.9% 100.0% 99.1%
entropy, sqrt, 100 100.0% 100.0% 99.8%
entropy, sqrt, 200 99.9% 100.0% 99.1%
entropy, sqrt, 20 99.8% 99.3% 99.1%
entropy, sqrt, 50 100.0% 100.0% 99.8%
entropy, sqrt, 75 100.0% 100.0% 99.8%
gini, log2, 100 100.0% 100.0% 99.8%
gini, log2, 200 100.0% 100.0% 99.8%
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gini, log2, 20 99.6% 97.7% 99.8%
gini, log2, 50 99.9% 100.0% 99.1%
gini, log2, 75 99.9% 99.5% 99.8%
gini, sqrt, 100 100.0% 100.0% 99.8%
gini, sqrt, 200 99.9% 99.8% 99.8%
gini, sqrt, 20 99.9% 99.3% 99.8%
gini, sqrt, 50 99.9% 99.8% 99.8%
gini, sqrt, 75 100.0% 100.0% 99.8%
Train: RGD1 (100), Test: RGD1 (100)
entropy, log2, 100 76.8% 65.7% 63.4%
entropy, log2, 200 77.0% 63.6% 64.3%
entropy, log2, 20 77.6% 63.6% 65.4%
entropy, log2, 50 76.3% 61.6% 63.3%
entropy, log2, 75 77.6% 65.3% 64.9%
entropy, sqrt, 100 76.9% 64.1% 64.0%
entropy, sqrt, 200 76.6% 63.6% 63.6%
entropy, sqrt, 20 77.2% 60.5% 65.6%
entropy, sqrt, 50 76.7% 63.4% 63.7%
entropy, sqrt, 75 77.0% 63.0% 64.5%
gini, log2, 100 76.1% 62.0% 62.9%
gini, log2, 200 76.2% 62.2% 63.1%
gini, log2, 20 77.2% 63.9% 64.6%
gini, log2, 50 76.5% 61.5% 63.9%
gini, log2, 75 76.0% 60.7% 63.0%
gini, sqrt, 100 76.1% 61.1% 63.1%
gini, sqrt, 200 76.6% 63.2% 63.7%
gini, sqrt, 20 76.3% 60.3% 63.7%
gini, sqrt, 50 76.8% 63.9% 63.7%
77.6% 66.8% 64.5%

gini, sqrt, 75
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The random sampling test procedure for results in Table S9 and S10:

The following procedures were conducted on each dataset individually:

1. 100 sets of reactions with the same reactants were randomly selected for training and
testing, respectively.

2. Model training was performed using the ‘two-bond +' descriptor composition. The metrics
from the evaluation were recorded after the testing.

3. The above steps were repeated five times. The mean and standard deviation of the

performance metrics were calculated.

The effect of increasing the test data size:

Table S9: Investigating the effect of increasing the test data size: The mean and standard deviation of the
performance metrics were calculated based on the results of random sampling tests.

% by atoms

% sets of reactants with:

No more All reactive
Test data . No fault than one .
size Accuracy Precision Recall oredictions fault atoms predicted
- correctly
prediction
[3+2] cycloaddition

100 99.7+0.2%  97.2+1.5% 99.2+1.0% 87.4+6.3% 98.0+1.8% 89.2+5.0%

200 98.8+0.5% 92.1+4.3% 96.1+4.1% 64.9+11.7% 84.4+9.1% 74.0+£11.2%

500 98.7+0.4%  93.0+2.8% 94.9+2.0% 64.2+6.8% 85.1+9.0% 73.249.4%

1000 98.1+0.2%  88.6t1.5% 93.2+2.1% 55.613.6% 72.5+3.2% 63.7+2.4%

1500 97.9+0.4%  89.6%+2.5% 91.7+5.1% 53.4+7.4% 69.1+8.2% 67.0+4.3%

2000 97.7+0.4%  88.0+2.7% 90.6%3.3% 52.5+4.8% 64.616.8% 64.6+3.3%

Diels-Alder

100 96.1+0.7% 72.2+4.9% 90.0+£1.8% 42.8+3.5% 64.0+2.4% 54.4+1.9%

200 96.6+0.3% 75.9+2.8% 90.0+1.4% 41.4+4.6% 66.2+3.1% 56.5+8.6%

500 96.3+0.2% 74.1+1.3% 89.7+0.6% 43.7+1.9% 65.5+1.6% 60.8+5.4%

1000 96.3+0.3% 73.1+2.1% 90.8+1.1% 43.3+4.2% 65.1+3.6% 57.2+5.4%

1500 96.3+0.2% 73.810.7% 89.9+1.4% 43.2+2.5% 65.8+2.0% 58.2+1.2%

2000 96.4+0.1% 74.61£1.1% 89.4+0.2% 43.612.4% 65.6+0.3% 60.4+2.4%

RGD1

100 79.2+2.0% 58.1+5.7% 68.0+1.7% 6.611.2% 21.6+4.3% 28.8+5.9%

200 78.0+£0.5% 55.842.2% 66.8+2.3% 4.611.4% 18.6+1.4% 23.743.3%

500 78.0+0.6% 57.612.4% 65.8+1.6% 5.5+0.4% 17.0+1.5% 23.4+1.3%

1000 78.0+£0.9% 60.3+3.8% 64.8+1.5% 4.7+0.3% 17.9+1.5% 27.1+2.4%

1500 78.2+0.6% 60.3+2.5% 65.1+2.0% 4.7+1.0% 17.9+1.6% 28.3+1.7%

2000 77.7+0.6% 58.4+1.7% 64.8+1.3% 4.520.7% 17.2+1.4% 27.0+£3.6%
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The effect of changing the activation energy (EA) cut-off:

Table S10: Investigating the effect of changing the activation energy (EA) cut-off: The mean and standard
deviation of the performance metrics were calculated based on the results of random sampling tests.

% by atoms

% sets of reactants with:

No more All reactive
EA cut-off - No fault than one )
(kcal mol) Accuracy Precision Recall predictions fault atoms predicted
prediction correctly
Green
37 85.1+0.2%  78.0+0.6%  87.9+0.6%  27.6x1.5%  49.6+1.0% 41.4+2.2%
40 84.3+0.6%  76.8t1.4% 87.3t0.9%  27.4+3.5% 47.212.6% 43.4+3.3%
45 84.0+0.6%  76.4+0.8%  86.6+0.8%  22.4+2.5%  46.410.5% 39.2+2.6%
50 83.0t1.0%  77.5+2.2%  84.2+2.5% 19.6+2.5%  43.0%+3.3% 44.0t4.2%
55 81.9+0.5%  77.2+1.0%  82.4+1.6% 19.621.9%  38.4+1.7% 44.4+2.7%
60 78.6t1.6%  70.743.3%  82.5+0.7% 15.4+3.2%  31.842.4% 33.617.4%
RGD1
30 79.5¢1.8%  50.7+2.3%  70.8+5.0% 7.4+3.3% 24.8+6.8% 23.245.7%
35 79.140.7%  57.843.2% 66.7+1.8% 6.8+2.6% 20.0+1.4% 25.8+4.9%
40 78.5t1.7%  57.0+5.8%  66.3+2.7% 5.6£1.7% 18.612.6% 26.249.2%
45 77.6£1.0%  55.4+1.9% 67.2+2.3% 4.0+1.4% 15.842.7% 22.2+2.3%
50 76.6£2.4%  55.1+6.6%  65.3+4.2% 4.2+1.3% 16.0+6.8% 24.2+6.6%
55 76.8t1.6%  56.245.5%  65.7+2.0% 2.4+1.2% 14.4+2.9% 18.2+3.4%

Using the Eyring equation (eq S1), the rate constant (k) and the half-life (¢,,,, eq S2) at the room
temperature, 298 K, were calculated (Table S11). It is assumed that the reaction is simple and
monomolecular, A>B. kg, h, R and T are Boltzmann’s constant, Planck’s constant, ideal gas constant
and temperature respectively.

Table S11. The rate constant (k) and the half-life (¢, ,) based on the Eyring equation at 298 K

AG*
(kcal mol?) k(s?) ti; (s)
20 1.33E-02 52.01
30 6.17E-10 1.12E+09
40 2.86E-17 2.42E+16
50 1.32E-24 5.23E+23
kgT -AG*
k = Te RT (1)
ti2 =In(2) /k (S2)

The above calculation shows that the reaction will take days when the barrier is above 30 kcal mol™.
Therefore, our chosen cut-off is sensible for leaving out the less kinetically favourable reactions at room

temperature.
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Table S12. Performance of the models with first-year reactions. ‘Train: 78 (105)’ implies that 78 sets of
reactions with the same reactants, equivalent to 105 reactions, were involved in training. ‘Test: 30 (42)’ means
30 sets of reactions with the same reactants, equivalent to 42 reactions, were involved in testing. In total, 147
reactions were involved in the training and testing of the model. This corresponds to 100% of the first-year

reaction dataset. For each set of data, ‘one-bond’, ‘two-bond’ and ‘two-bond +’ descriptor compositions were
considered.

% by atoms % sets of reactants with:
Entry - No more than All reactive
. Precisio No fault atoms
Descriptors  Accuracy Recall . . one fault R
n predictions . predicted
prediction
correctly
Type A
First-year reactions: Train: 78 (105), Test: 30 (42) = total 147 reactions, ie 100% of the dataset
1 One-bond 88.59%  73.64%  63.28% 10.0% 56.7% 43.3%
2 Two-bond 91.59%  83.96%  69.53% 26.7% 56.7% 56.7%
3 Two-bonds+ 93.09%  87.27%  75.00% 40.0% 70.0% 63.3%
Train Test

SN2

Nucleophilic Addition
Enolation

Proton Transfer
Elimination
Electrophilic Addition
Borylation

Reduction

Other

Epoxidation

ONDDEEEEOE

Figure S8. Composition of the training and testing first-year dataset in model evaluation for producing
results in Table S12
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4. Performance on non-elementary reaction examples

Actual label / The reaction from the exam Prediction (2-bond+)
0]
SA1 I OH o
OH 1.CI—S Br | I
I : 0=8=0 S—Cl
o B B I
— > Cl (0]
2.Br _
Br
Mechanism |
v
OH/\R — Only become reactive
S—Cl when the substituents
@ I ) converted to OTs group
(o)
HCI
SA2 OFEt OEt

N

Mechanism
OEt
Only become
P

( OEt +(|)Et "H\G))\ acidic after the Nu
— OH — = L addition
cl T ) /—\ /\)
=

Cl Z

Figure S9. Additional examples: Predictions from the ‘two-bond + model trained on all first-year
reactions using reactions from first-year exams at the University of Cambridge. These reactions are
non-elementary.

It is assumed that reactions within the first-year reaction data set are elementary. This categorisation
is based on chemical intuition rather than computations. Thus, we expect a few non-elementary
reactions within the dataset and a better performance of the models on the elementary reactions
compared to non-elementary reactions. In the above cases, the model trained on the first-year
reaction dataset cannot pick out atoms that become more reactive in the intermediate than in the
reactant.
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