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S1 Implementation Details

S1.1 Data splits

In this section, we detail how the data was split.

Diffusion model and time-conditioned regressor We use the same split to train the diffusion model and time-
conditioned regressor. We partition the data at random as follows: 90% for training (6348 data points), 5% for validation
(352 data points), and 5% for testing (354 data points). We deviate from the usual 80−10−10 split, as the performance
of the generative model is evaluated on generated samples, and not on a held-out fold. We therefore made the validation
and test folds as small as possible, while keeping a sufficient amount of data points to allow for meaningful estimation
of the error metrics (e.g. for early stopping of the regressor model). Figs. 7b and S12 are obtained by evaluating
the error of the time-conditioned regressor on the test fold. The purpose of that evaluation is qualitative rather than
quantitative. The same holds for Fig. S1, where the different diffusion models are evaluated on the test fold.

Screening regressor To obtain the numbers reported in Table 2, we perform a stratified 10-fold cross-validation,
where we make sure that (1) the proportion of metal centers is kept constant across folds, (2) the property range is
covered uniformly. For each test fold, the screening surrogate is consequently trained on the remaining 90% of the data
(further split in 80− 10 for train-validation). The standard deviation is reported across folds.

To perform the production run, we retrain one model on 95% of the data (6701 data points), and keep 5% (353 data
points) for early stopping.

S1.2 Denoiser architecture

In this section, we provide additional details regarding the architecture of the different variants of the denoising neural
network εθ. As a recall, εθ maps a noisy atomistic structure Ct and a time step t to a noise estimate [ϵ̂x(L) , ϵ̂h(L) ].

OM-DIFF(✓, {✓, x}) These variants implement an architecture similar to that of EDM 48, based on EGNN 78.
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OM-DIFF({✓, x},✓) These variants implement an improved architecture εθ. Internally, each atom i is given a
hidden state defined by a tuple hm

i = (smi ,vm
i ) where smi ∈ R1×D is a scalar feature vector, and vm

i ∈ R3×D a set of
vectorial features. Initially, s0i is obtained via a linear projection of the one-hot encoded atom type, while v0

i is set to
0. Time is featurized through 16 random Fourier features, and concatenated with each atom scalar features. Then, h0

i
gets updated through M successive message-passing rounds. We employ message and update blocks similar to those
of PAINN 79. Connectivity is defined with a 7.5Å cutoff, and for each edge we keep track of a scalar state, that also
gets updated at each message passing step through a simple one layer MLP that maps the current edge state and the
states of the two corresponding atoms to the new edge state. The initial edge states are obtained by featurizing pairwise
distances through Gaussian radial basis functions. After the message-passing phase, the final states hM

i are read out to
produce [ϵ̂x(L) , ϵ̂h(L) ]. A gated equivariant block79 is employed to obtain ϵ̂x(L) from hM

i , while sMi is processed through
a one hidden-layer MLP to obtain ϵ̂h(L) . The different hidden sizes are kept constant throughout the network. The most
important hyperparameters are summarized in Table S1.

Table S1: Hyper-parameters setup for the denoiser architecture εθ

Hyper-parameter Value
Number of interactions size 5
Hidden node size (D) 256
Edge size 64
Activation functions SILU
RBF Gaussian
Cutoff 7.5 Å

Optimizer AdamW
Learning rate 10−4

Weight decay 10−12

Denoising steps (T ) 1000
Noise schedule VP-Polynomial48

S1.3 Denoiser performance

In Fig. S1, we display the loss of the different variants of OM-DIFF. The loss is evaluated on a held-out test fold. The
left column displays the errors related to h, i.e. the atom types, while the right column displays the errors related to
x, i.e. the coordinates. The top row shows the noise prediction error – similar to the training objective of the neural
network. The bottom row displays the resulting error on the estimated denoised sample obtained using the relationship
C(L) = 1

αt
(C(L)

t − σtϵ).

S2 Evaluation of sampled complexes

In this section, we provide additional details regarding the evaluation of the complexes sampled from our generative
model.

S2.1 Validity, Uniqueness, Novelty

All the reported numbers are expressed as proportions of the generated samples.

Validity A generated complex has to pass a series of checks to be deemed valid:

1. (one TM check) It has to have exactly one transition metal atom;

2. (distance check) All atoms should have the distance to their nearest neighbour that falls within a specified
range,

∀i : min
j ̸=i

dij ∈ [dmin
zi ; dmax

zi ] (S1)

where dmin
zi and dmax

zi are minimal and maximal distances to nearest neighbour for atom of type zi across the
training database (99% percentile ± a 10 % margin);
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Figure S1: Evaluation of the different denoisers. (Top row) Prediction error for the different denoisers. (Bottom row)
Resulting error on the estimated denoised sample for each denoiser.

3. (RDKit check) The ligands, i.e. complex where the TM has been removed, have to be valid according to
RDKit51. As the algorithm implemented in RDKit to determine bonds can not handle transition metals, we
proceed as follows: we remove the metal center, and we then use rdDetermineBonds.DetermineBonds
(with useHueckel=True) on the remaining atoms. We do not allow charges as the training ligands are neutral.
A sample is deemed valid if the bond allocation succeeds, and the inferred Mol object is composed of two
distinct fragments, i.e. corresponding to L1 and L2.

While not bulletproof, the validation method classifies around 99% of the training database as valid. We provide the
detailed validity results for unconditional sampling in Table S2.

Table S2: Detailed validity results for unconditional sampling. All presented numbers are expressed in % of the number
of sampled complexes. Higher is better.

OM-DIFF(x, x) OM-DIFF(✓, x) OM-DIFF(x,✓) OM-DIFF(✓,✓)

Exactly one MC 99.28 100.00 96.57 100.00

Distance check All 15.99 27.94 36.77 46.60
Ni 16.27 28.67 37.59 46.37
Cu 14.65 25.68 39.34 45.15
Pd 16.35 27.27 38.33 47.93
Ag 12.38 21.17 34.60 41.95
Pt 20.39 34.63 40.29 50.56
Au 18.50 31.55 37.21 46.06

RDKit check All 8.95 19.57 18.88 28.22
Ni 6.86 18.89 14.79 25.30
Cu 7.12 15.10 17.06 23.50
Pd 10.18 19.40 20.98 28.34
Ag 6.62 14.51 16.84 25.25
Pt 14.58 27.84 23.60 35.41
Au 11.09 23.11 19.84 31.55

3



OM-DIFF: Inverse-design of organometallic catalysts with guided equivariant denoising diffusion

Uniqueness and Novelty Once a complex is deemed valid, we convert it to a tuple
(
M, {L1, L2}

)
, where {} denotes a

multiset data-structure, i.e. unordered collection of elements which may be repeated. Uniqueness is defined as the ratio
of unique tuples among all generated tuples. Novelty is defined as the ratio of unique and novel tuples, i.e. that are not
part of the training database, among all generated tuples:

V =
# valid

# samples
, (S2)

V&U =
# (valid and unique)

# samples
, (S3)

V&U&N =
# (valid, unique and novel)

# samples
. (S4)

In Fig. S2, we show how the different metrics evolve as the number of sampled complexes increases.
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Figure S2: %Valid, %(Valid & Unique) and %(Valid & Unique & Novel) complexes for each variant of the generative
model, as a function of the number of generated complexes. Novelty can come from novel combinations of
existing compounds or from novel ligands.

Sources of novelty Due to the combinatorial nature of the training database, there are three possible sources of
novelty:

NC = the tuple
(
M, {L1, L2}

)
is novel, but L1and L2 are not, (S5)

1L = either L1or L2 is novel, (S6)
2L = both L1and L2 are novel. (S7)

In Fig. S3, how the number of novel ligands increases as the number of sampled complexes increases.
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Figure S3: #Unique and #(Unique & Novel) ligands for each variant of the generative model, as a function of the
number of generated complexes.

S2.2 Geometry and Binding Energy

In this section, we measure the discrepancy between training distributions and distributions induced by the generated
samples using the 1-Wasserstein distance. If Pz denotes the empirical measure for center z ∈ Z across the dataset, and
Qz denotes the empirical measure the same center across the samples generated by the diffusion model, the distance
between the two empirical distributions is given by

W (Pz, Qz) =
( 1
n

n∑
i=1

||X(i) − Y(i)||
)
, (S8)

where X(i) and Y(i) denote samples from Pz and Qz respectively.
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To obtain an aggregated distance value, we compute a weighted sum over the different metal-centers,

W (P,Q) =
∑
z∈Z

p(z)W (Pz, Qz), (S9)

where p(z) denotes the empirical categorical distribution over the metal center obtained from the training data.

Geometry around the metal center Given the importance of the direct neighbourhood of the center, we assess the
geometry of central and the two proximal atoms by comparing the empirical distribution of the L1,2 − M distances
and the L1 − M − L2 angle. We provide all numerical results in Table S3, along with the corresponding distribution in
Fig. S4, and the details of L1,2-M for each metal center Fig. S5.

Table S3: Detailed geometry results for unconditional sampling. All presented numbers represent the Wassertein
distance between the empirical histograms obtained from the dataset and generated samples. Lower is better.

OM-DIFF(x, x) OM-DIFF(✓, x) OM-DIFF(x,✓) OM-DIFF(✓,✓) MMFF

W L1,2−M 0.2559 0.1647 0.2034 0.1468 0.8135
W L1,2−Ni 0.3215 0.2213 0.2279 0.1828 0.8164
W L1,2−Cu 0.2621 0.1355 0.1567 0.1129 0.9225
W L1,2−Pd 0.1680 0.1184 0.1389 0.0977 0.7440
W L1,2−Ag 0.3895 0.1907 0.2766 0.1678 0.8531
W L1,2−Pt 0.3365 0.2214 0.2527 0.2262 0.8681
W L1,2−Au 0.2903 0.2219 0.3001 0.2123 0.7960

W L1−M−L2 0.0113 0.0084 0.0089 0.0079 0.0257
W L1−Ni−L2 0.0139 0.0130 0.0119 0.0113 0.0330
W L1−Cu−L2 0.0149 0.0092 0.0080 0.0065 0.0330
W L1−Pd−L2 0.0073 0.0062 0.0066 0.0064 0.0259
W L1−Ag−L2 0.0096 0.0089 0.0097 0.0102 0.0250
W L1−Pt−L2 0.0153 0.0116 0.0132 0.0113 0.0198
W L1−Au−L2 0.0136 0.0088 0.0108 0.0083 0.0194
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Figure S4: (Top) Distribution of L1,2-M distances. (Bottom) Distribution of L1-M-L2 angles.

Binding energy Similarly, we compare the training distribution of binding energy with the distribution induced by
the generated samples. The latter is estimated tas the mean prediction of an ensemble of 10 surrogate models. The
numerical results are provided in Table S4 with the corresponding distributions being displayed in Fig. S6. In Fig. S7,
we additionally provide the cumulative distribution of predictive uncertainty, estimated as the standard deviation across
the same ensemble, detailed for each metal center.
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Figure S5: Distribution of bonds involving the metal center for the different variants of the diffusion generative model.
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Table S4: Detailed energy results for unconditional sampling. All presented numbers represent the Wassertein distance
between the empirical histograms obtained from the dataset and generated samples. Lower is better.

OM-DIFF(x, x) OM-DIFF(✓, x) OM-DIFF(x,✓) OM-DIFF(✓,✓)

W∆E All 0.0044 0.0040 0.0044 0.0036
Ni 0.0071 0.0064 0.0061 0.0058
Cu 0.0051 0.0049 0.0050 0.0043
Pd 0.0032 0.0030 0.0028 0.0026
Ag 0.0026 0.0024 0.0024 0.0025
Pt 0.0085 0.0049 0.0059 0.0043
Au 0.0040 0.0045 0.0065 0.0045
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Figure S6: Distribution of binding energies for unconditionally generated samples.
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the different variants of the generative diffusion model. Similar to Fig. 6a, with each metal centre illustrated
separately.
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S2.3 Chemical composition

We compare the chemical composition of the sampled complexes and that of the training data, by comparing marginal
distributions of atom types through total variation. We also compare distributions of molecular weights in Fig. S9, as
molecular weight act as a proxy for the joint distribution of atom types.

Total variation We measure the discrepancy between two empirical categorical distributions as the total variation
between the histogram obtained from generated samples, Q, and the histogram obtained from the training data, P. It
writes

TV(P,Q) =
∑
z∈Z

|Pz −Qz|, (S10)

where Pz refers to the average count for category z across the training data, and Qz refers to the same quantity computed
across the generated samples.

Total variation of metal-centers In this case, we compare the distributions of metal centers across generated samples
and training data. For variants OM-DIFF(✓, {x,✓)}, the total variation is virtually 0, as they directly sample from the
empirical distribution. We provide the metal center distribution in Table S5.

Table S5: Metal center distribution in % for unconditional sampling. The last column refers to the variants of OM-DIFF
where the center is fixed.

OM-DIFF(x, x) OM-DIFF(x,✓) OM-DIFF(✓, {x,✓)}
Ni 12.97 9.45 5.93
Cu 28.25 25.67 18.34
Pd 27.21 32.19 37.26
Ag 9.21 8.29 10.06
Pt 7.75 9.02 8.98
Au 13.89 12.59 19.43

Total variation of non-TM elements We compute the total variation for all atom types except transition metals.

Total variation of proximal atoms We compute the total variation for proximal atoms, i.e. atoms that bind to the
metal center. In Table S6, we provide the detailed numerical values for each metal center, and the corresponding
distributions in Fig. S8.

Table S6: Detailed TVprox, i.e. total variation of proximal atomic elements, in unconditional sampling. Lower is better.

OM-DIFF(x, x) OM-DIFF(✓, x) OM-DIFF(x,✓) OM-DIFF(✓,✓)

All 0.082 0.028 0.028 0.019

Ni 0.110 0.032 0.014 0.021
Cu 0.074 0.023 0.040 0.039
Pd 0.068 0.022 0.025 0.011
Ag 0.058 0.035 0.028 0.014
Pt 0.181 0.017 0.043 0.033
Au 0.088 0.050 0.013 0.009
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Figure S8: Distribution of proximal atoms, in unconditional sampling. Proximal atoms are defined as the atoms of the
ligands to which the metal center is bound.
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model, detailed for each model. The mass of the metal center has been subtracted such that only the weight
of the ligands is displayed.
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Table S7: Mean Absolute Error (MAE) of the surrogate used for final screening detailed for each metal center. The
presented values are given in kcal/mol. Lower is better. For baselines SLATM26 and string+MLP42, we
report results are from the respective papers.

µM SLATM26 string+MLP42 Ours (MSE) Ours (revHuber)

All 6.49 2.61 2.42 2.14± 0.08 2.04± 0.08

Ni 7.69 3.74 – 3.85± 0.36 3.84± 0.47
Cu 7.32 4.04 – 2.64± 0.25 2.53± 0.19
Pd 7.12 2.81 – 2.07± 0.14 1.94± 0.12
Ag 5.12 2.08 – 2.06± 0.44 1.91± 0.36
Pt 7.72 1.81 – 1.77± 0.28 1.63± 0.24
Au 4.28 1.60 – 1.49± 0.17 1.44± 0.19

S3 Evaluation of the surrogate models

In this section, we provide details of the evaluatuon of the different surrogate models employed in this work.

S3.1 Screening surrogate

In this section, we detail the performance of the screening surrogate for the two different loss functions employed in
this work. For each variant, we performed 10-fold cross validation in order to get an error estimate for each sample in
the training database.

In Fig. S10, we display the residuals. Fig. S11 shows the MAE across the property space, while Tables S8 to S10
provide the numerical details, comparison against baselines.
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Figure S10: Residuals of the two variants of loss functions employed to train the screening regressor for each metal
center. ’MSE’ refers to mean-square error, while ’revHuber’ stands for reverse Huber.
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Figure S11: MAE across the property space of the two variants of loss functions employed to train the screening
regressor, shown for each metal center. ’MSE’ refers to mean-square error, while ’revHuber’ stands for
reverse Huber.

Table S8: Root Mean Square Error (RMSE) of the surrogate used for final screening detailed for each metal center. The
presented values are given in kcal/mol. Lower is better. For baseline string+MLP42, we report results from
the paper.

µM string+MLP42 Ours (MSE) Ours (revHuber)

All 8.50 3.85 3.50± 0.34 3.42± 0.29

Ni 9.50 – 5.40± 0.68 5.44± 0.96
Cu 9.27 – 3.84± 0.45 3.79± 0.30
Pd 9.16 – 3.35± 0.67 3.23± 0.64
Ag 7.15 – 3.58± 1.62 3.38± 1.54
Pt 9.26 – 2.95± 0.65 2.84± 0.49
Au 5.92 – 2.41± 0.43 2.33± 0.37

Table S9: Maximum Absolute Error (Max AE) of the surrogate used for final screening detailed for each metal center.
The presented values are given in kcal/mol. Lower is better. For baseline string+MLP42, we report results
are from the respective papers.

µM string+MLP42 Ours (MSE) Ours (revHuber)

All 41.71± 12.38 26.02 32.09± 16.94 32.36± 16.37

Ni 23.79± 5.09 – 17.03± 4.13 17.33± 6.65
Cu 27.56± 2.96 – 16.90± 6.74 17.49± 6.50
Pd 35.84± 12.64 – 21.83± 15.97 21.45± 15.33
Ag 26.21± 13.90 – 18.77± 15.48 17.96± 14.88
Pt 24.25± 4.14 – 12.35± 3.60 12.89± 3.43
Au 22.45± 4.03 – 13.60± 6.38 12.51± 5.08
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Table S10: Coefficient of determination (R2) of the surrogate used for final screening detailed for each metal center.
The presented values are given in kcal/mol. Higher is better. For baseline string+MLP42, we report results
are from the respective papers.

string+MLP42 Ours (MSE) Ours (revHuber)

All 0.974 0.978± 0.004 0.979± 0.004

Ni – 0.652± 0.104 0.650± 0.104
Cu – 0.824± 0.043 0.830± 0.027
Pd – 0.865± 0.043 0.874± 0.041
Ag – 0.735± 0.161 0.763± 0.149
Pt – 0.891± 0.046 0.899± 0.039
Au – 0.830± 0.050 0.842± 0.036
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S3.2 Time-conditioned surrogate

In Fig. S12, we display the error of the time-conditioned surrogates detailed for each metal center.
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Figure S12: Performance of the two variants of the time-conditioned regressor as a function of the diffusion time step
for each metal center individually. C+L refers to the noise model that jointly corrupt center and ligands,
whereas L stands for the noise where the corruption is limited to the ligands. The horizontal dotted lines
represent the errors of the mean and conditional mean predictors.
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S4 Conditional sampling

In this section, we provide the conditional distributions for metal center in Fig. S13, and the corresponding Valid-
ity/Uniqueness/Novelty breakdowns in Fig. S14.
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Figure S13: Binding energy distributions, as evaluated by surrogate, obtained through conditional sampling of OM-
DIFF. The distribution in grey in the background represents the training data distribution, i.e. DFT labels.
Black vertical lines represent target values.
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Figure S14: #Valid, #(Valid & Unique) and #(Valid & Unique & Novel) complexes for conditionally sampled complexes.
The novelty is further divided in 3 categories: ’NC’ standing for ’Novel Combination’, ’1L’ referring to
samples where 1 ligand is novel, and ’2L’ referring to samples where both ligands are novel.
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S5 Overview of dataset

In Fig. S15, we provide an overview of the different metal-ligand combinations that are found in the dataset. All ligands
are illustrated in Figs. S16 and S17.
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Figure S15: Combinations metal-ligand L1 − M − L2 composing the dataset. Black squares represent data points
present in the dataset.
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Figure S16: Ligands 0-41 used to build the dataset26.
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Figure S17: Ligands 42-72 used to build the dataset26.
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