# Supplementary information for:

# Machine learning-guided high throughput nanoparticle design

Ana Ortiz-Perez<sup>1,†</sup>, Derek van Tilborg<sup>1,2,†</sup>, Roy van der Meel<sup>1</sup>, Francesca Grisoni<sup>1,2\*</sup>, Lorenzo Albertazzi<sup>1\*</sup>

<sup>1</sup>Institute for Complex Molecular Systems (ICMS), Eindhoven University of technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.

<sup>2</sup>Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands.

<sup>*t*</sup> These authors contributed equally to this work

\*Corresponding authors

## **Table of contents**

### Part 1. Composition of the nanoparticle design space

- Sup. Table 1. Formulation variable characteristics.
- Algorithm 1. Formulation space estimation.

### Part 2. Composition and experimental values for all formulated nanoparticles

- Sup. Table 2. Starting dataset: Composition and experimental values.
- Sup. Table 3. Cycle 1 (Exploration): Composition and experimental values.
- Sup. Table 4. Cycle 2 (Exploitation): Composition and experimental values.
- Sup. Table 5. Validation cycle: Composition and experimental values.
- Sup. Figure 1. Overview of all formulated nanoparticles.

### Part 3. Model predictions

- Sup. Figure 2. Predicted vs measured uptake for different models.
- Sup. Figure 3. Predicted vs measured Uptake, PDI, and size.
- Sup. Table 6. Model performance.
- Sup. Figure 4. Nanoparticle formulation-property relationships for Uptake, PDI, and size.

### Part 4. Experimental set-up and high content imaging optimization

- Sup. Figure 5. Schematic representation of the valve setup in the LSPOne pump.
- Sup. Table 7. Pipetting errors from Manual.
- Sup. Figure 6. Importance of optical bottom for Nanoparticle signal.
- Sup. Figure 7. Reproducibility between wells and days.
- Sup. Figure 8. Nanoparticle uptake over time.

### Part 1. Formulation variable characteristics

### Theoretical space of the design space

The design space consists of one discrete variable (the solvent/antisolvent ratio) of four steps and four continuous formulation variables as shown in Sup. Table 1. Since these formulation variables represent composition fractions and need to sum to one, we sample them from a Dirichlet distribution, which we constrain by variable range and distinguishability according to the experimental errors of each variable.

Sup. Table 1. Characteristics of the formulation variables.

| Formulation variable | Range                  | Experimental error |
|----------------------|------------------------|--------------------|
| PLGA                 | 0.06 - 0.70            | 1.2490%            |
| PP-L                 | 0.06 – 1.00            | 1.2121%            |
| PP-COOH              | 0.06 - 1.00            | 1.2359%            |
| PP-NH2               | 0.06 – 1.00            | 1.2398%            |
| S/AS                 | 0.10, 0.15, 0.20, 0.25 |                    |

To estimate the number of unique nanoparticle formulations in this design space, we first calculate the

$$N = \int_{a}^{b} \frac{1}{a \times a} dz$$

number of distinguishable points for each variable  $\int_{a}^{b} \varepsilon \times x^{a}$ , where *a* and *b* are the lower and upper bounds of the variable range, respectively, and  $\varepsilon$  is the experimental error. This yields:

$$N_{PLGA} = \int_{0.06}^{0.70} \frac{1}{0.01249 x} dx$$
$$N_{PP-L} = \int_{0.06}^{1.00} \frac{1}{0.012121 x} dx$$
$$N_{PP-COOH} = \int_{0.06}^{1.00} \frac{1}{0.012359 x} dx$$
$$N_{PP-NH2} = \int_{0.06}^{1.00} \frac{1}{0.012398 x} dx$$

Since solvent/antisolvent ratio can only take on four values,  $N_{S/AS} = 4$ . This gives us

$$N_{design \ space} = N_{PLGA} \times N_{PP-L} \times N_{PP-COOH} \times N_{PO-NH2} \times N_{S/AS}$$

To factor in the constraint of  $x_{PLGA} + x_{PP-L} + x_{PP-COOH} + x_{PO-NH2} = 1$ , we can simulate the number of valid formulations by finding all combinations in the discretized vector *X* for each variable and check if all values sum to one considering an error  $\varepsilon$  (see Algorithm 1). If we take  $\varepsilon$  as the mean experimental error of all formulation variables, this yields an  $N_{design space} \approx 1.85 \times 10^8$ .

```
Algorithm 1 Design space estimation1. procedure ValidCombinations (X_1, X_2, X_3, X_4, \varepsilon)2. n \leftarrow 03. for x_{1_i}, \dots, x_{4_i} in X_1, \dots, X_4 do4. if 1 - \varepsilon < \sum x_{1_i}, \dots, x_{4_i} < 1 + \varepsilon5. n = n + 16. end if
```

# 7. end for

8. end procedure

### Part 2. Composition and experimental values for all formulated nanoparticles

Sup. Table 2. Starting dataset: Composition and experimental values.

|       |      | Comp | osition | variables (X | )      |       | E    | cperime | ntal values   |       |       |         | Physi    | cochem | ical prop | erties |         |        |
|-------|------|------|---------|--------------|--------|-------|------|---------|---------------|-------|-------|---------|----------|--------|-----------|--------|---------|--------|
|       |      |      | Com     | position (%) |        |       |      | Up      | take          |       | N     | lalvern | Zetasize | er     | Wyat      | t Dyna | Pro (bo | nus!)  |
|       | S/AS | PLGA | PP-L    | PP-COOH      | PP-NH2 | Raw   | σ    | Coeff   | Corrected (Y) | σ     | Size  | σ       | PDI      | σ      | D (nm)    | σ      | PDI     | σ      |
| F1    | 0.1  | 0.33 | 0.67    | 0.00         | 0.00   | 0.60  | 0.07 | 1.01    | 0.696         | 0.083 | 119   | 1.18    | 0.069    | 0.008  | 116.3     | 0.07   | 0.082   | 0.0212 |
| F2    | 0.1  | 0.33 | 0.33    | 0.33         | 0.00   | 0.85  | 0.15 | 1.15    | 0.830         | 0.145 | 121   | 1.32    | 0.063    | 0.006  | 123.1     | 0.92   | 0.089   | 0.0170 |
| F3    | 0.1  | 0.33 | 0.33    | 0.00         | 0.33   | 0.64  | 0.11 | 0.95    | 0.743         | 0.122 | 121   | 0.58    | 0.072    | 0.009  | 124.1     | 0.78   | 0.064   | 0.0000 |
| F4    | 0.1  | 0.33 | 0.00    | 0.67         | 0.00   | 1.06  | 0.16 | 1.14    | 1.122         | 0.171 | 134.4 | 0.66    | 0.079    | 0.017  | 140.1     | 0.71   | 0.091   | 0.0184 |
| F5    | 0.1  | 0.33 | 0.00    | 0.33         | 0.33   | 1.03  | 0.04 | 1.25    | 0.987         | 0.037 | 132.9 | 0.64    | 0.069    | 0.011  | 136.8     | 1.34   | 0.103   | 0.0212 |
| F6    | 0.1  | 0.33 | 0.00    | 0.00         | 0.67   | 0.93  | 0.22 | 1.24    | 0.888         | 0.211 | 145   | 1.17    | 0.057    | 0.018  | 148.3     | 0.71   | 0.098   | 0.0035 |
| F7    | 0.1  | 0.00 | 1.00    | 0.00         | 0.00   | 0.57  | 0.05 | 1.34    | 0.400         | 0.034 | 80.2  | 0.87    | 0.059    | 0.01   | 76.7      | 0.21   | 0.098   | 0.0028 |
| F8    | 0.1  | 0.00 | 0.67    | 0.33         | 0.00   | 2.18  | 0.11 | 1.39    | 2.368         | 0.115 | 103.3 | 0.95    | 0.11     | 0.014  | 102.5     | 0.21   | 0.165   | 0.0057 |
| F9    | 0.1  | 0.00 | 0.33    | 0.67         | 0.00   | 2.16  | 0.18 | 1.56    | 1.870         | 0.157 | 111.3 | 1.04    | 0.134    | 0.015  | 114.0     | 0.64   | 0.183   | 0.0014 |
| F10   | 0.1  | 0.00 | 0.33    | 0.33         | 0.33   | 4.48  | 0.25 | 1.56    | 3.982         | 0.225 | 105.2 | 0.47    | 0.142    | 0.017  | 106.2     | 0.14   | 0.160   | 0.0212 |
| F11   | 0.1  | 0.00 | 0.33    | 0.00         | 0.67   | 5.88  | 0.14 | 1.58    | 4.770         | 0.113 | 89.04 | 0.96    | 0.075    | 0.005  | 87.0      | 0.14   | 0.095   | 0.0099 |
| F12   | 0.1  | 0.00 | 0.00    | 1.00         | 0.00   | 2.53  | 0.42 | 1.52    | 2.055         | 0.338 | 125.3 | 0.20    | 0.142    | 0.013  | 130.3     | 1.56   | 0.177   | 0.0184 |
| F13   | 0.1  | 0.00 | 0.00    | 0.67         | 0.33   | 4.56  | 0.12 | 1.65    | 3.615         | 0.097 | 121.4 | 0.36    | 0.14     | 0.014  | 124.7     | 0.71   | 0.175   | 0.0071 |
| F14   | 0.1  | 0.00 | 0.00    | 0.00         | 1.00   | 1.79  | 0.29 | 1.33    | 1.673         | 0.271 | 94.63 | 0.95    | 0.098    | 0.035  | 97.5      | 0.00   | 0.112   | 0.0064 |
| F15   | 0.1  | 0.25 | 0.25    | 0.25         | 0.25   | 1.38  | 0.17 | 1.85    | 1.095         | 0.139 | 128.2 | 0.35    | 0.05     | 0.015  | 128.0     | 0.71   | 0.085   | 0.0092 |
| F16   | 0.25 | 0.67 | 0.33    | 0.00         | 0.00   | 1.41  | 0.22 | 1.94    | 0.575         | 0.091 | 177.3 | 2.45    | 0.116    | 0.012  | 189.4     | 7.21   | 0.159   | 0.0141 |
| F17   | 0.25 | 0.67 | 0.00    | 0.33         | 0.00   | 10.77 | 2.08 | 1.95    | 3.662         | 0.706 | 246.4 | 1.03    | 0.062    | 0.021  | 281.4     | 0.85   | 0.107   | 0.0106 |
| F18   | 0.25 | 0.67 | 0.00    | 0.00         | 0.33   | 11.27 | 1.17 | 2.70    | 2.293         | 0.237 | 260.9 | 2.68    | 0.233    | 0.006  | 275.1     | 9.55   | 0.317   | 0.0332 |
| F19   | 0.25 | 0.33 | 0.33    | 0.33         | 0.00   | 1.69  | 0.32 | 1.44    | 1.014         | 0.191 | 165.3 | 1.48    | 0.131    | 0.015  | 175.3     | 1.13   | 0.165   | 0.0219 |
| F20   | 0.25 | 0.33 | 0.33    | 0.00         | 0.33   | 1.93  | 0.09 | 1.71    | 0.705         | 0.031 | 144.7 | 1.30    | 0.083    | 0.017  | 154.1     | 5.30   | 0.101   | 0.0113 |
| F21   | 0.25 | 0.33 | 0.00    | 0.67         | 0.00   | 3.74  | 0.63 | 1.47    | 2.177         | 0.370 | 176.7 | 2.50    | 0.087    | 0.007  | 184.6     | 1.84   | 0.110   | 0.0156 |
| F22   | 0.25 | 0.33 | 0.00    | 0.33         | 0.33   | 3.33  | 1.27 | 1.58    | 1.478         | 0.563 | 198.1 | 1.70    | 0.108    | 0.011  | 206.4     | 5.16   | 0.141   | 0.0318 |
| F23   | 0.25 | 0.00 | 1.00    | 0.00         | 0.00   | 7.04  | 1.01 | 1.84    | 3.126         | 0.450 | 86.76 | 0.46    | 0.101    | 0.018  | 89.1      | 0.21   | 0.134   | 0.0134 |
| F24   | 0.25 | 0.00 | 0.67    | 0.00         | 0.33   | 9.11  | 1.32 | 2.09    | 3.598         | 0.522 | 87.65 | 0.56    | 0.129    | 0.006  | 91.6      | 0.35   | 0.138   | 0.0163 |
| F25   | 0.25 | 0.00 | 0.33    | 0.67         | 0.00   | 4.92  | 0.37 | 1.89    | 1.883         | 0.141 | 141.9 | 1.56    | 0.134    | 0.027  | 142.5     | 0.14   | 0.156   | 0.0042 |
| F26   | 0.25 | 0.00 | 0.33    | 0.33         | 0.33   |       |      |         |               |       | 122.6 | 1.18    | 0.163    | 0.014  | 135.1     | 0.42   | 0.192   | 0.0099 |
| F27   | 0.25 | 0.00 | 0.33    | 0.00         | 0.67   | 7.94  | 0.41 | 2.11    | 3.767         | 0.195 | 93.14 | 1.50    | 0.131    | 0.009  | 94.8      | 0.14   | 0.143   | 0.0028 |
| F28   | 0.25 | 0.00 | 0.00    | 1.00         | 0.00   | 2.76  | 0.31 | 1.54    | 1.790         | 0.202 | 161.6 | 1.02    | 0.171    | 0.02   |           |        |         |        |
| F29   | 0.25 | 0.00 | 0.00    | 0.67         | 0.33   | 5.19  | 0.33 | 3.70    | 1.403         | 0.088 | 149.9 | 1.65    | 0.146    | 0.022  | 153.4     | 1.06   | 0.160   | 0.0127 |
| F30   | 0.25 | 0.00 | 0.00    | 0.00         | 1.00   | 7.83  | 1.14 | 1.84    | 4.265         | 0.620 | 108.4 | 0.76    | 0.139    | 0.018  | 113.9     | 0.64   | 0.177   | 0.0064 |
| Blank |      | 0.00 | 1.00    | 0.00         | 0.00   | 0     |      | 0.00    | 0             |       | 66.78 | 0.429   | 0.082    | 0.001  | 66.5      | 0.1    | 0.117   | 0.009  |
| Up    |      | 0.00 | 1.00    | 0.00         | 0.00   | 1     |      | 1.00    | 1             |       | 68.43 | 2.237   | 0.108    | 0.053  | 68.9      | 0.3    | 0.173   | 0.010  |

**Blank:** PLGA-PEG without dye, **Up (Uptake Standard):** PLGA-PEG NP with 50 μM (Formulated by bulk nanoprecipitation as described in materials and methods). These are standard particles, not used for modelling purposes. Sample F18 had a polydispersity index > 0.2 (0.233) so it was not considered for the uptake model (its physicochemical data was used to model PDI and size). Sample F26 was also not included in the uptake model, since this sample was lost during handling and the coefficient for measurement could not be measured.

Sup. Table 3. ML iteration 01 (Exploration): Composition and experimental values.

|        |              |      | Comp | osition | variables (X | )      |       |      |       | Experime      | ntal va | lues  |        |          |         |
|--------|--------------|------|------|---------|--------------|--------|-------|------|-------|---------------|---------|-------|--------|----------|---------|
|        |              |      |      | Com     | position (%) |        |       |      | Upt   | ake           |         | Physi | cochem | ical pro | perties |
|        | ID           | S/AS | PLGA | PP-L    | PP-COOH      | PP-NH2 | Raw   | σ    | Coeff | Corrected (Y) | σ       | PDI   | σ      | Size     | σ       |
| S01.01 | screen_37609 | 0.15 | 0    | 0.24    | 0.06         | 0.7    | 11.18 | 0.24 | 1.16  | 9.63          | 0.21    | 0.115 | 0.041  | 101.9    | 1.097   |
| S01.02 | screen_39525 | 0.2  | 0    | 0.46    | 0.06         | 0.48   | 11.30 | 0.30 | 1.16  | 9.78          | 0.26    | 0.099 | 0.013  | 93.52    | 0.9279  |
| S01.03 | screen_65935 | 0.2  | 0    | 0.07    | 0.06         | 0.87   | 13.00 | 0.35 | 1.15  | 11.31         | 0.31    | 0.099 | 0.01   | 109.6    | 0.4163  |
| S01.04 | screen_95443 | 0.2  | 0    | 0.83    | 0.07         | 0.1    | 6.57  | 0.35 | 1.15  | 5.72          | 0.30    | 0.117 | 0.021  | 87.87    | 0.9051  |
| S01.05 | screen_9364  | 0.2  | 0    | 0.3     | 0.16         | 0.55   | 11.52 | 0.18 | 1.10  | 10.49         | 0.17    | 0.127 | 0.011  | 105      | 1.607   |
| S01.06 | screen_39930 | 0.2  | 0    | 0.08    | 0.21         | 0.71   | 14.09 | 0.40 | 1.22  | 11.59         | 0.33    | 0.135 | 0.015  | 120.3    | 1.217   |
| S01.07 | screen_51944 | 0.2  | 0    | 0.62    | 0.06         | 0.32   | 7.29  | 0.40 | 1.23  | 5.93          | 0.33    | 0.108 | 0.007  | 89.42    | 0.7111  |
| S01.08 | screen_72795 | 0.2  | 0    | 0.67    | 0.17         | 0.16   | 10.58 | 0.44 | 0.73  | 14.40         | 0.60    | 0.121 | 0.007  | 96.39    | 0.695   |
| S01.09 | screen_24111 | 0.2  | 0    | 0.13    | 0.37         | 0.5    | 11.13 | 0.77 | 1.02  | 10.89         | 0.75    | 0.108 | 0.003  | 119.1    | 1.114   |
| S01.10 | screen_56633 | 0.2  | 0    | 0.44    | 0.24         | 0.32   | 8.15  | 0.25 | 1.10  | 7.44          | 0.23    | 0.13  | 0.013  | 105.6    | 1.778   |

Physicochemical properties measured with the Malvern Zetasizer as described in the materials and methods.

Sup. Table 4. ML iteration 02 (Exploitation): Composition and experimental values.

|        |              | Composition variables (X) |      |      |              |        |       |      | Experimental values |               |      |        |        |          |        |  |  |  |
|--------|--------------|---------------------------|------|------|--------------|--------|-------|------|---------------------|---------------|------|--------|--------|----------|--------|--|--|--|
|        |              |                           |      | Com  | position (%) |        |       |      | Upt                 | take          |      | Physic | ochemi | cal prop | erties |  |  |  |
|        | ID           | S/AS                      | PLGA | PP-L | PP-COOH      | PP-NH2 | Raw   | σ    | Coeff               | Corrected (Y) | σ    | PDI    | σ      | Size     | σ      |  |  |  |
| S02.01 | screen_72872 | 0.1                       | 0    | 0.33 | 0.22         | 0.45   | 14.55 | 0.63 | 1.69                | 8.60          | 0.37 | 0.113  | 0.014  | 97.38    | 0.81   |  |  |  |
| S02.02 | screen_91542 | 0.1                       | 0    | 0.34 | 0.22         | 0.44   | 15.08 | 0.19 | 1.57                | 9.62          | 0.12 | 0.098  | 0.032  | 98.14    | 1.13   |  |  |  |
| S02.03 | screen_52734 | 0.2                       | 0    | 0.25 | 0.3          | 0.45   | 17.93 | 0.44 | 1.29                | 13.91         | 0.34 | 0.11   | 0.004  | 107      | 0.20   |  |  |  |
| S02.04 | screen_38116 | 0.2                       | 0    | 0.3  | 0.28         | 0.42   | 17.49 | 1.23 | 1.27                | 13.78         | 0.97 | 0.108  | 0.032  | 104      | 0.95   |  |  |  |
| S02.05 | screen_96636 | 0.2                       | 0    | 0.22 | 0.29         | 0.49   | 18.66 | 0.93 | 1.29                | 14.50         | 0.72 | 0.109  | 0.015  | 107      | 0.20   |  |  |  |
| S02.06 | screen_72388 | 0.2                       | 0    | 0.29 | 0.27         | 0.44   | 17.29 | 1.10 | 1.27                | 13.62         | 0.87 | 0.108  | 0.021  | 103.2    | 0.42   |  |  |  |
| S02.07 | screen_38000 | 0.2                       | 0.07 | 0.26 | 0.17         | 0.5    | 14.42 | 1.54 | 1.28                | 11.27         | 1.21 | 0.108  | 0.005  | 106.9    | 0.68   |  |  |  |
| S02.08 | screen_20306 | 0.25                      | 0    | 0.38 | 0.28         | 0.34   | 14.18 | 0.78 | 1.23                | 11.54         | 0.64 | 0.112  | 0.023  | 103.8    | 0.40   |  |  |  |
| S02.09 | screen_62254 | 0.25                      | 0.07 | 0.17 | 0.19         | 0.57   | 17.55 | 0.33 | 1.25                | 14.02         | 0.26 | 0.123  | 0.016  | 112.5    | 0.30   |  |  |  |
| S02.10 | screen_82381 | 0.25                      | 0    | 0.44 | 0.29         | 0.28   | 14.86 | 0.98 | 1.22                | 12.17         | 0.81 | 0.117  | 0.024  | 104      | 1.42   |  |  |  |

Physicochemical properties measured with the Malvern Zetasizer as described in the materials and methods.

# Sup. Table 5. Validation: Composition and experimental values.

|     |              |      | Composition variables (X) |      |              |        |       | Experimental values |       |               |      |       |         |         |         |         |       |  |
|-----|--------------|------|---------------------------|------|--------------|--------|-------|---------------------|-------|---------------|------|-------|---------|---------|---------|---------|-------|--|
|     |              |      |                           | Com  | position (%) |        |       |                     | Upt   | ake           |      |       | Physico | ochemic | al pro: | perties |       |  |
|     | ID           | S/AS | PLGA                      | PP-L | PP-COOH      | PP-NH2 | Raw   | σ                   | Coeff | Corrected (Y) | σ    | PDI   | σ       | Size    | σ       | Zpot    | σ     |  |
| V1  | screen_64729 | 0.1  | 0.53                      | 0.37 | 0.00         | 0.09   | 2.70  | 0.50                | 1.41  | 1.92          | 0.36 | 0.043 | 0.033   | 152.7   | 2.26    | -28.4   | 0.493 |  |
| V2  | screen_91456 | 0.1  | 0.47                      | 0.42 | 0.00         | 0.12   | 2.05  | 0.25                | 1.41  | 1.46          | 0.18 | 0.051 | 0.035   | 137.9   | 0.38    | -29.1   | 0.404 |  |
| V3  | screen_79724 | 0.1  | 0.52                      | 0.29 | 0.07         | 0.12   | 4.23  | 0.76                | 1.35  | 3.14          | 0.56 | 0.066 | 0.032   | 151     | 1.48    | -38.9   | 1.32  |  |
| V4  | screen_19528 | 0.1  | 0.46                      | 0.43 | 0.11         | 0.00   | 4.84  | 0.51                | 1.32  | 3.66          | 0.38 | 0.076 | 0.017   | 139.8   | 0.56    | -30.2   | 1.04  |  |
| V5  | screen_23350 | 0.25 | 0.67                      | 0.18 | 0.00         | 0.15   | 4.51  | 0.84                | 1.29  | 3.50          | 0.66 | 0.06  | 0.018   | 191     | 2.16    | -31.2   | 0.379 |  |
| V6  | screen_60153 | 0.15 | 0.00                      | 0.35 | 0.30         | 0.36   | 14.14 | 0.66                | 1.30  | 10.91         | 0.51 | 0.103 | 0.013   | 106.6   | 0.38    | -18.1   | 0.781 |  |
| V7  | screen_82424 | 0.15 | 0.00                      | 0.31 | 0.30         | 0.39   | 14.22 | 0.78                | 1.37  | 10.39         | 0.57 | 0.13  | 0.012   | 110.6   | 0.57    | -38.8   | 1.97  |  |
| V8  | screen_3544  | 0.2  | 0.06                      | 0.37 | 0.20         | 0.37   | 12.22 | 1.28                | 1.28  | 9.57          | 1.00 | 0.109 | 0.016   | 116.2   | 1.60    | -21.9   | 0.551 |  |
| V9  | screen_30061 | 0.25 | 0.10                      | 0.30 | 0.22         | 0.38   | 12.49 | 0.54                | 1.10  | 11.33         | 0.49 | 0.133 | 0.003   | 117.8   | 1.96    | -35.5   | 1.01  |  |
| V10 | screen_73941 | 0.25 | 0.08                      | 0.30 | 0.21         | 0.42   | 12.70 | 0.60                | 1.21  | 10.49         | 0.50 | 0.134 | 0.008   | 118.8   | 0.87    | -25.5   | 0.306 |  |

Physicochemical properties measured with the Malvern Zetasizer as described in the materials and methods.



Sup. Figure 1. Size and PDI for all formulated nanoparticles.

#### Part 2. Model predictions



Sup. Figure 2. Predicted vs measured uptake for different models on the initial data (cycle 0). a) Bayesian neural network. b) XGBoost. c) Random Forest. d) Gaussian Process. Error bars represent the predicted 90% confidence interval. Performance is shown as the Root Mean Square Error (RMSE) determined through 5-fold cross validation. Different machine learning models achieve similar predictive errors, while uncertainty estimates differ considerably.



Sup. Figure 3. Predicted vs measured Uptake, PDI, and size. Every plot contains the training data used to fit the model (circles) and the nanoparticles proposed for formulation and screening (triangles). Bayesian neural networks were used for uptake predictions, while XGBoost models were used for PDI and size predictions. Error bars represent the predicted 90% confidence interval. **a-c)** Modelled uptake, PDI, and size using the initial dataset of 28 nanoparticles. **d-e)** Modelled uptake, PDI, and size using data from cycle 0 and 1. **g-h)** Modelled uptake, PDI, and size using data from cycle 0, 1, and 2.

**Sup. Table 6. Model performance.** Performance is shown as the Root Mean Square Error (RMSE) determined through five-fold-cross validation.

| Cycle | Uptake RMSE | PDI RMSE | Size RMSE |
|-------|-------------|----------|-----------|
| 0     | 1.2271      | 0.0363   | 12.3527   |
| 1     | 3.1468      | 0.0320   | 10.2354   |
| 2     | 3.1295      | 0.0286   | 12.3659   |



**Sup. Figure 4. Nanoparticle formulation-property relationships for Uptake, PDI, and size.** Every dot is a nanoparticle in the *in-silico* screening library. Predictions are made using the models trained on cycle 0-2. **a)** Relationships between NP formulation variables and predicted uptake using a Bayesian neural network. Colored by prediction uncertainty. **b-c)** Relationships between NP formulation variables and predicted size/PDI using a XGBoost model. Colored by prediction predicted uptake.

### Part 3. Experimental set-up and high content imaging optimization

### Pump port set-up



Sup. Figure 5. Schematic representation of the valve setup in the LSPOne pump.

### **Pipetting error**

| Sup. Table 7. | Pipetting | errors fro | om manuf | facturer's | manual. |
|---------------|-----------|------------|----------|------------|---------|
|---------------|-----------|------------|----------|------------|---------|

| Volume range | Dispensing button color                             | Sy     | stematic error <sup>1)</sup> | Random error <sup>1)</sup> |          |  |  |
|--------------|-----------------------------------------------------|--------|------------------------------|----------------------------|----------|--|--|
| 10 μL        | medium gray<br>(for epT.I.P.S. <sup>®</sup> 20 μL)  | ±1.2 % | ±0.12 μL                     | ±0.6 %                     | ±0.06 μL |  |  |
| 20 μL        | light gray<br>(for epT.I.P.S. <sup>®</sup> 20 μL L) | ±0.8 % | ±0.16 μL                     | ±0.3 %                     | ±0.06 μL |  |  |
| 10 μL        | yellow                                              | ±1.2 % | ±0.12 μL                     | ±0.6 %                     | ±0.06 μL |  |  |
| 20 μL        | (for epT.I.P.S. <sup>®</sup> 200 µL)                | ±1.0 % | ±0.2 μL                      | ±0.3 %                     | ±0.06 μL |  |  |
| 25 μL        |                                                     | ±1.0 % | ±0.25 μL                     | ±0.3 %                     | ±0.08 μL |  |  |
| 50 μL        |                                                     | ±0.7 % | ±0.35 μL                     | ±0.3 %                     | ±0.15 μL |  |  |
| 100 µL       |                                                     | ±0.6 % | ±0.6 μL                      | ±0.2 %                     | ±0.2 μL  |  |  |
| 200 µL       |                                                     | ±0.6 % | ±1.2 μL                      | ±0.2 %                     | ±0.4 μL  |  |  |
| 200 µL       | blue                                                | ±0.6 % | ±1.2 μL                      | ±0.2 %                     | ±0.4 μL  |  |  |
| 250 µL       | (for epT.I.P.S. <sup>®</sup> 1,000 μL)              | ±0.6 % | ±1.5 μL                      | ±0.2 %                     | ±0.5 μL  |  |  |
| 500 μL       | 201                                                 | ±0.6 % | ±3.0 μL                      | ±0.2 %                     | ±1.0 μL  |  |  |
| 1,000 µL     |                                                     | ±0.6 % | ±6.0 μL                      | ±0.2 %                     | ±2.0 μL  |  |  |

<sup>11</sup> The error data, according to EN ISO 8655, only apply if original Eppendorf tips are used. Technical specifications are subject to change. Errors and omissions excepted.

Manual available online: <u>https://www.eppendorf.com/product-media/doc/en/672922/Liquid-Handling\_Technical-data\_Research-plus\_Eppendorf-Research-plus.pdf</u>

### **Optimization High content imaging**

Optimization of (1) sample preparation (*i.e.*, seeding densities, nanoparticle concentration, incubation time, etc.) and (2) analysis pipeline was done with MDA-MB-231 cells in ibidi 8-µWell with optical bottom (glass and/or polymer).

HT screening was then performed in ibidi 96-µWells with optical bottom (polymer). Polymer (over glass) optical bottom was chosen for its superior cell attachment. We highly recommend using a plate with optical bottom to minimize scattering and be able to quantify uptake differences using microscopy:



Sup. Figure 6. Importance of optical bottom for Nanoparticle signal.



Sup. Figure 7. Reproducibility between wells and days.



