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1 Comparison study with Gryffin

Gryffin [1]: This algorithm is a Bayesian optimization (BO) framework designed specifically
for categorical variables, leveraging expert knowledge in the form of physicochemical descrip-
tors. Gryffin augments traditional Bayesian optimization by using kernel density estimation
(KDE) directly on categorical spaces and incorporates smooth approximations to categorical
distributions through the use of concrete distributions. In cases where domain knowledge is
available, Gryffin utilizes descriptors to redefine the metric on the categorical space, enabling
more efficient search by highlighting similarities between categorical options.

Like other Bayesian optimization approaches, Gryffin operates in two stages: the initial
sampling stage, where the algorithm randomly samples from the search space, and the active-
learning stage, where the acquisition function (influenced by the domain knowledge) guides
the selection of the next points to evaluate. Furthermore, Gryffin can dynamically refine the
descriptors during the optimization process to improve the quality of the search, allowing
the algorithm not only to optimize but also to enhance the domain knowledge used. This
dual capacity makes Gryffin particularly suitable for optimization problems in chemistry
and materials science, where categorical variables are common and can be described by
meaningful descriptors. Similar to other BO methods, it cannot handle discrete/mixed-
variable constraints explicitly.

We use Gryffin to solve the first two case studies. The relevant code and results are included
in the following folder of the code repository: https://github.com/mjzhu-p/olympus/

tree/pwas_comp/case_studies/case_study_pwas/z_comparisonStudy

1.1 Suzuki-Miyaura cross-coupling

As shown in Figs. 1 and 2, the performance of Gryffin is similar to the performance of
Hyperopt [2] but worse than EDBO [3] and PWAS.

1.2 Crossed barrel

As for the crossed-barrel problem, the performance of Gryffin is similar to random search
and worse than the rest of methods compared (see Fig. 3). Additionally, the computational
time required by Gryffin is relatively high compared to Genetic, Hyperopt, and PWAS (see
Table 1).
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Figure 1: A comparison of the performance of PWAS and the benchmark methods on Suzuki-
Miyaura cross-coupling reaction optimization. For each method, the solid line represents the
mean value, and the filled area comprises the 95% confidence interval, i.e., mean ± 1.96 std.
(a) Best yield achieved (%) so far at different iterations, and (b) Best yield rank achieved so
far at different iterations.

Table 1: CPU time (seconds) required by different methods for one run of the optimization
for the crossed barrel design. Statistics were obtained from 30 random runs.

Random Genetic Hyperopt BoTorch Gryffin PWAS EDBO 1 EDBO 2 EDBO 3

Average 1.85 1.77 2.80 398.68 148.38 35.36 272.54 227.54 212.92
std 0.44 0.35 0.71 260.71 105.89 2.00 67.61 2.52 20.38

2 Illustrative predictability comparisons

We focus on problems with mixed-variables and discontinuous functions, for which we argue
that, when the number of training samples are limited, piecewise affine (PWA) function can
be an efficient surrogate model. Here, we selected 1-D and 2-D examples for better visual-
ization. We compare PWA surrogate model with Gaussian Process models, for which three
types of kernels are considered, namely, radial basis function (RBF), Matern, and linear ker-
nels. For non-biased comparisons, training samples are evenly selected from their domain.
We consider the following two synthetic functions:
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Figure 2: Number of iterations each method takes in each run to obtain the first top-20 ranked
yield. The results for 30 repetitions are summarized in the boxplot. Each dot represents one
run of the repetitions. The diamond-shaped points are the ones classified as outliers by the
boxplot.
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Figure 3: Best toughness achieved so far at different iterations for the designed structure
at different iterations for crossed barrel design. Results are summarized over 30 repetitions.
For each method, the solid line represents the mean value, and the filled area comprises the
95% confidence interval, i.e., mean ± 1.96 std.

Function 1: 1-D, discontinuous function, continuous variables only

f(x1, x2) =


x2 − 3 −5 ≤ x ≤ 1

0.5x+ 31 1 ≤ x ≤ 4

0.2x3 4 ≤ x ≤ 10

(1)
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Function 2: 2-D, mixed-variable (1 continuous, 1 categorical), for different classes of the
categorical variable (x2), the function behaves differently at the same continuous variable
(x1)

f(x1, x2) =


−(x1 + .5)2 + 2x1 + 1 x2 = 0

−x1 − 100 x2 = 1

(x1 − 1)3 x2 = 2

12x+ 50 x2 = 3

−5 ≤ x1 ≤ 5, x2 ∈ {0, 1, 2, 3},

(2)

The trend of both functions are depicted in Fig. 4 based on the analytic formula.

• Jupyter notebook: https://github.com/MolChemML/ExpDesign/blob/main/surrogate_
model_comparison/pred_comp_illustrative_example.ipynb

– Figs. 5- 16 shows the surrogate fitting for Function 1 and 2 after different numbers
of training samples.

– As can be seen in Figs. 5- 16, the results highlight the benefits of using a piecewise
affine (PWA) function as a surrogate model, particularly for problems with mixed-
variables and discountinuous function behaviors, and when the number of training
samples is limited.

• Notes:

– We want to note that PWAS is proposed mainly as an optimization tool rather
than a regression tool. It is used to adaptively suggest the next promising sample
to test, and it is particularly useful for problems involves mixed-variable linear
constraints. PWA surrogate is selected since it has a MILP reformulation, which
makes it possible to incorporate constraints directly when solve the optimization
problem of the acquisition function (formed by the surrogate and the exploration
function) to propose feasible samples.

– Also, due to the natural of PWA functions, it can handle problems with sharp
transitions well, which can often occur in problems within chemistry domain.
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Figure 4: (a) Function 1: 1-D, discontinuous function with continuous variable, (b) Function
2: 2-D, mixed-variable (1 continuous, 1 categorical), for different classes of the categorical
variable (x2), the function behaves differently at the same continuous variable (x1)
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Figure 5: Surrogate model of Function 1 fitted with 10 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear

6



4 2 0 2 4 6 8 10
x

10

0

10

20

30

f(x
)

PARC

(a)

4 2 0 2 4 6 8 10
x1

5

0

5

10

15

20

25

30

f(x
1,

x 2
)

Kernel: RBF(length_scale=0.1)

(b)

4 2 0 2 4 6 8 10
x1

5

0

5

10

15

20

25

30

f(x
1,

x 2
)

Kernel: Matern(length_scale=0.1, nu=0.5)

(c)

4 2 0 2 4 6 8 10
x1

0.5

1.0

1.5

2.0

2.5

f(x
1,

x 2
)

Kernel: linear

(d)

Figure 6: Surrogate model of Function 1 fitted with 15 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 7: Surrogate model of Function 1 fitted with 20 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 8: Surrogate model of Function 1 of Function 1 fitted with 30 training samples (a)
PWAS, (b) GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 9: Surrogate model of Function 1 fitted with 40 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 10: Surrogate model of Function 1 fitted with 50 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 11: Surrogate model of Function 2 fitted with 10 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 12: Surrogate model of Function 2 fitted with 20 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 13: Surrogate model of Function 2 fitted with 30 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 14: Surrogate model of Function 2 fitted with 50 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 15: Surrogate model of Function 2 fitted with 70 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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Figure 16: Surrogate model of Function 2 fitted with 80 training samples (a) PWAS, (b)
GP-RBF, (c) GP-Matern, and (d) GP-Linear
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