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S1 Statistical analysis of cosine similarity10

The model recommendation is based on the cosine similarity of embedding vectors as described11

in Section 2. To verify the effectiveness of the model recommendation, the fundamental ques-12

tion one would like to address is: what is the threshold value to assess the recommendation13

similarity? Explicitly, which thresholds are suggested for MOFs with similarity scores? Hence,14

we conducted a statistical survey of the similarity score of the relevant subsets, for which the15

results are shown in Figure S1. We computed the probability of observing the cosine scores of16

each MOF subset above a threshold value. For the same probability, the threshold becomes17

larger from initialization to the subsequent recommendation rounds, indicating the structures in18

the recommendation rounds share significant similarities. Besides, the probability drops down19

more rapidly in the QMOF database than in the ARC-MOF database in the initialization stage,20

indicating that finding a similarity value exceeding a threshold value is more probable to be a21

rare event. This reflects the structure similarity in the overall database, which can be used to22

evaluate the diversity of the database.23

We also analyzed the distribution of the similarity score in each round, as shown in the first row24
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of Figure S1. In the context of methane storage, the distributions for the three recommendation25

rounds are similar, with two peaks around 0.7 and 1.0, especially for the second and third rounds.26

For carbon capture, the density of high cosine similarity is extremely large. When suggesting27

MOFs with band gaps within a specific range, the cosine similarity spans over a large range.28

Compared to methane storage and carbon capture, the similarity distribution for the band gap29

is generally wider due to the diversity of the QMOF database.30

Supplementary Figure S1: Statistical analysis of cosine scores in the ARC-MOF (methane
storage and carbon capture) and QMOF (QMOF band gap) databases. The first row shows the
normalized distributions. The second row depicts the probability of observing the cosine scores
of an MOF subset above a threshold value.

S2 Top 100 recommendations in simulations31

As mentioned in Section 4.1, 44% for methane storage and 61% for carbon capture of the top32

100 recommended materials also appear in the 100 top-performing materials ranked by the33

simulations. We show the rankings of the 100 recommendations in simulations in Figure S2.34

The recommendations are within the top 300 for methane storage and within the top 200 for35

carbon capture.36
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Supplementary Figure S2: The top 100 recommendations for (a) methane storage and (b) carbon
capture in simulation rankings. All the recommendations are within the top 300 materials
ranked by simulations.

S3 Comparison with random selections37

The probability of finding k candidates among the K top-performing ones in the n MOFs drawn38

can be calculated by39

P (X = k) =

(
K
k

)
·
(
N−K
n−k

)(
N
n

) (S1)

Where:40

• N is the number of MOFs in the ARC-MOF database we used in this work (22,035)41

• K is the number of candidates identified through molecular simulations. Here, we set it42

to 10043

• n is the number of MOFs drawn by random selection44

• k is the number of candidates covered in the draw45

We plot the probability distribution as a function of the percentage of identified candidates in46

Figure S3. To reach a comparable percentage with our model (around 40%–60%), one needs to47
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evaluate at least 10,000 MOFs (around 45% of the database).48

Supplementary Figure S3: The probability distribution of identifying candidates in a randomly
drawn MOF subset.

S4 Doc2Vec embeddings in supervised tasks49

The embeddings from the Doc2Vec model can also be used as MOF feature vectors for supervised50

models. We display regression model performances in predicting the KPIs for methane storage51

(Henry coefficient in logarithm and CH4 deliverable capacity) and carbon capture (CO2/N252

selectivity and CO2 working capacity) in Figure S4. We used the extreme gradient boosting53

(XGBoost) algorithm1 to train the regression model, splitting the data into training and testing54

sets with a ratio of 80% to 20%. The training and testing sets were stratified based on the target55

values. Hyperparameters were fine-tuned through a 5-fold grid search cross-validation using the56

training dataset. Overall, the model predictions perform well. However, some extreme values57

in CO2/N2 selectivity make the training extremely challenging.58
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Supplementary Figure S4: Parity plot for the supervised regression model. Embedding vectors
from the recommendation model can be utilized in supervised models, performing well for
methane storage. Specifically, these models achieve an R2 score of 0.60 for the Henry coefficient
and 0.76 for deliverable capacity.

S5 Semantic analysis of molecular fragments59

We display the similarity confusion matrix of some molecular fragments in Figure S5. They are60

often the functional groups of organic linkers. As expected, halogen atoms share high similarity61

scores.62
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Supplementary Figure S5: Cosine similarity matrix of molecular fragments.
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