Electronic Supporting Information: PerQueue: Managing Complex and Dynamic Workflows

Benjamin H. Sjølin, William S. Hansen, Armando A. Morin-Martinez, Martin H. Petersen, Laura H. Rieger, Tejs Vegge, Juan M. García-Lastra, and Ivano E. Castelli[‡]

Department of Energy Storage and Conversion, Technical University of Denmark, Anker Engelunds Vej 301, DK-2800 Kongens Lyngby, Denmark.

‡Corresponding author email: ivca@dtu.dk

1 Submission Example Codes

Below are the code scripts for the workflow presented in Lst. 1 in the main text. The workflow uses a Monte Carlo method to estimate π and uses this value to calculate the proposed diameter of a perfect sphere made of silicon-28 weighing exactly 1 kilogram.

1.1 Estimation of π

This code uses a Monte Carlo method to estimate the value of π . This is done by randomly generating points in the 2D plane such that the x- and y-coordinate is in the range [0; 1]. Dividing the fraction of points where $x^2 + y^2 \le 1$ by the total number of generated points and multiplying by 4 gives the estimated value of π .

This script estimates π using N_samples generated points and returns the estimate for each order of magnitude of points.

```
1 from typing import Tuple
3 import numpy as np
6 def main(N_samples: int = 1, **kwargs) -> Tuple[bool, dict]:
       """Compute an estimate of pi using Monte Carlo sampling
8
9
      Parameters
10
11
      N_samples : int
          The number of samples to generate for the estimate
12
      # Seed the random number generator
14
      np.random.seed(1023)
15
16
      \mbox{\tt\#} Generate N points in the x-y plane
17
      X = np.random.random_sample((2, N_samples))
18
19
      # Calculate the squared distance from origo of each point and determine
20
      # which points are inside the unit circle
21
      inside_mask = (X**2).sum(axis=0) <= 1
22
23
      # Calculate the cumulative number of points inside the unit circle
24
      cs = np.cumsum(inside_mask)
25
26
      # Calculate the estimate of pi in logaritmic intervals
27
       estimates = np.array([
28
          4 * cs[10**i - 1] / 10**i
29
           for i in range(np.log10(N_samples).astype(int) + 1)
30
31
32
      return True, {"pi_estimates": estimates, 'N_samples': N_samples}
```

1.2 Plotting of the Absolute Error to the Value of π

This script finds the absolute error between the estimates of π and the established value of π . It then generates a log-log plot of the error versus the number of points. Depending on the value of the parameter savefig_filename, the plot is either saved to file or shown to the user.

```
from typing import List, Tuple, Union

import matplotlib.pyplot as plt
import numpy as np

# Increase resolution of the saved figure
plt.rcParams["savefig.dpi"] = 300

def main(
```

```
pi_estimates: Union[List[float], np.ndarray] = None, N_samples: int = 1,
      savefig_filename: str = None, **kwargs
13 )
    -> Tuple[bool, dict]:
      """Plot the absolute error of the given estimates of pi
14
15
      Compute the absolute error between the given values of pi and the value
16
      given by 'numpy.pi'.
17
      Parameters
19
20
      pi_estimates : list of float or 1D 'numpy.ndarray'
21
          A list of estimates for the value of the constant pi
22
      N_samples : int
23
          The number of samples used to generate the last estimate
24
25
      savefig_filename : str, optional
          If this parameter is not 'None', the generated graph is saved to the
26
          filename and path given. Otherwise, the graph is shown as an
27
28
          interactive window.
29
      if pi_estimates is None or len(pi_estimates) == 0:
30
           raise ValueError("Empty list of pi estimates given")
31
32
33
      # Compute the x-tick locations
      n = [10**i for i in range(np.log10(N_samples).astype(int) + 1)]
34
35
      # Create figure and plot the absolute error as a log-log plot
36
      fig, ax = plt.subplots()
37
      ax.loglog(n, np.abs(np.array(pi_estimates) - np.pi))
38
39
      ax.set(
40
          xlabel="Number of generated points",
          ylabel="Absolute error from value of \"numpy.pi\""
41
      )
43
      ax.grid()
44
      # Either save or show the graph
45
      if savefig_filename is not None:
46
           fig.savefig(savefig_filename)
47
      else:
48
49
          plt.show()
50
      return True, None
```

1.3 Calculation of the Diameter of the Silicon Sphere

The script below calculates the diameter of a perfect sphere made of silicon-28 using the estimated values of π . The sphere is assumed to weigh 1 kilogram. It returns both the diameters that use the estimates of π and one that uses the established value of π .

```
1 from typing import List, Tuple, Union
3 import numpy as np
6 def main(
      pi_estimates: Union[List[float], np.ndarray] = None, **kwargs
   -> Tuple[bool, dict]:
      """Compute the diameter of the newest protoype for the kilogram
9
      Using the estimates for pi that we've computed earlier, we want to compute
      the diameter of the silicon sphere that works as a prototype for the
12
      kilogram after the 2018 redefinition of the SI-system. Given that we know
      the weight of the sphere, we can compute its diameter from the basic
14
      definitions and constants of the revised SI-system.
15
16
      We shall assume that the silicon in the sphere is only silicon-28, but the
17
      amount of other impurities in the bulk and on the surface are still
18
```

```
included. These values and the method for computation is taken from
      https://doi.org/10.1016/j.crhy.2018.12.005.
20
21
22
      Parameters
23
      pi_estimates : list of float or 1D 'numpy.ndarray'
24
      A list of estimates for the value of the constant pi
25
26
      if pi_estimates is None or len(pi_estimates) == 0:
27
          raise ValueError("Empty list of pi estimates given")
28
29
      # Define phsical constants
30
      planck = 6.62607015e-34 # Planck's constant [J/Hz]
31
      Rydberg = 10973731.568157 # Rydberg constant [1/m]
32
      fine_structure = 7.2973525643e-3 # fine structure constant [-]
33
      c = 299792458 # speed of light [m/s]
34
      Ar_Si_28 = 27.9769265 # Relative molecular weight of Si-28 [-]
35
      Ar_e = 5.489e-4 # Relative molecular weight of an electron [-]
36
      lattice_parameter = 5.43102051e-10 # Si-28 lattice parameter [m]
37
      # We know the target mass of the silicon sphere.
39
      target_mass = 1.0 # Target mass of the sphere [kg]
40
41
      # Define the mass deficits of the bulk and surface layer
42
      m_SL = (7.1 + 12.0 + 58.2) * 1e-9 # Surface layer mass
43
      m_deficit = (17.1 - 2.3 - 0.5 + 6.0) * 1e-9 # Bulk mass
44
45
      # Compute the rest energy of an electron
46
      m_e = 2*planck*Rydberg / (c*fine_structure**2)
47
48
      # Compute the core volume of the silicon sphere
49
50
      V = (target_mass - m_SL + m_deficit) * Ar_e * \
          lattice_parameter**3 / (m_e * Ar_Si_28 * 8) # [m^3]
51
52
      # Add the 'numpy' value for pi to the end of the array
53
      pi_x = np.array([*pi_estimates, np.pi])
54
55
      # Compute the core diameter of the sphere using the estimates of pi
56
57
      # Final sphere diameters [mm]
      sphere_diameters = np.cbrt(6 * V / np.array(pi_x)) * 1e3
58
59
      return True, {
60
          "sphere_diameters": sphere_diameters[:-1],
61
          "actual_sphere_diameter": sphere_diameters[-1]
62
63
```

2 Use Case Workflow Codes

Here, we present the submission scripts used for the four use cases presented in Section 3. The contents of the task scripts are not presented herein, but they are available upon reasonable request. As a consequence of this, the arguments to the tasks herein have generally been replaced by $\{\ldots\}$ for brevity.

2.1 High-Throughput Screening

The following submission script shows how the high-throughput screening workflow, described in the main paper, is set up in PerQueue terms. It should be noted that due to the size of the screening (more than 6000 instances of the workflow) the submission script takes two inputs, j and k. These limit the index into the search space for decorations, allowing the user to submit a subset of the full workflow, such that other projects can use resources in parallel to this study.

Running the central part of the workflow in three parallel sub-workflows is achieved by wrapping tasks t2-t6 in a StaticWidthGroup with a width of 3.

Since the convex hull and the band gap are both post-processing steps in this study they are fast to compute and are run on local.

```
1 from sys import argv
3 from perqueue import PersistentQueue, StaticWidthGroup, Task, Workflow
  j = int(argv[1])
6 k = int(argv[2])
7 \text{ WIDTH} = 3
9 # Defining the tasks for a specific range of entries.
10 for i in range(j, k):
      # Define tasks
      t1 = Task("generation.py", {'index': i}, "local:10m")
      t2 = Task("relax.py", None, "40:xeon40:1:50h")
14
      t3 = Task("convex_hull.py", None, "local:5m")
15
      t4 = Task("band_gap.py", None, "local:5m")
16
      t5 = Task("preneb.py", {...}, "112:xeon56:1:50h")
      t6 = Task("neb.py", {...}, "168:xeon56:1:50h")
19
      # Define the subworkflow as a list of tasks - each depends on the previous
20
      swf = Workflow([t2, t3, t4, t5, t6])
21
22
      # Wrap subworkflow in width group to get parallel workflows
23
      swg = StaticWidthGroup(swf, width=WIDTH)
24
      # Define final workflow laver
26
      wf = Workflow([t1, swg])
27
28
      # Submit entire workflow through PerQueue
29
      with PersistentQueue() as pq:
          pq.submit(wf)
31
```

2.2 Active Learning for MLIPs

The script presented below is that used for submitting the workflow for training machine-learned interactomic potentials using active learning. As shown, the complex workflow is distilled down into four distinct tasks, and the dynamic nature arises from wrapping these in sub-workflows inside Static-/DynamicWidthGroups and a CyclicalGroup.

The training, simulation and selection tasks all utilize GPU resources (through the sm3090 resource), and the labeling runs Density Functional Theory calculations on a 24-core CPU resource.

To control when to break out of the CyclicalGroup, the t_train task returns the PerQueue constant CYCLICALGROUP_KEY with a value of True for stopping the loop or False for continuing to iterate.

```
1 from perqueue import CyclicalGroup, DynamicWidthGroup, PersistentQueue,
       StaticWidthGroup, Task, Workflow
3 # Define tasks
4 t_train = Task('work_train.py', None, '1:sm3090:30m')
5 t_sim = Task('work_simulate.py', None, '1:sm3090:30m')
6 t_select = Task('work_select.py', None, '1:sm3090:30m')
7 t_label = Task('work_label.py', None, '24:xeon24:10m')
9 # Define groups for workflow width
10 swg_train = StaticWidthGroup(t_train, width=2)
11 dwg_ssl = DynamicWidthGroup([t_sim, t_select, t_label])
12 dwg_train = DynamicWidthGroup(t_train)
14 # Wrap width groups in a CyclicalGroup for looping
15 cg = CyclicalGroup([dwg_ssl, dwg_train], max_tries=10)
17 # Define and submit workflow
18 wf = Workflow([swg_train, cg])
19
20 # Submit the workflow through PerQueue
21 with PersistentQueue() as pq:
      pq.submit(wf)
```

2.3 Cluster Expansion

Below, we present the submission script used for the Cluster Expansion workflow explained in the main paper. Not much is different here from the previous use cases, which speaks to the simplicity for setting up workflows in PerQueue. Once the workflow structure is defined, converting it to PerQueue constructs yields rather simple code.

Here, we show the use of the optional name parameter to a Task, which gives it a different name for visualization and searching.

```
1 from perqueue import CyclicalGroup, DynamicWidthGroup, PersistentQueue,
      StaticWidthGroup, Task, Workflow
3 # Define tasks
4 CE_task_init = Task('CE_model.py', {...}, 'local:10m')
5 CE_task = Task('CE_model.py', {...}, '24:xeon24:10m', name='train')
6 relax_task = Task('relaxation.py', {...}, '8:sm3090:3h', name='optimize')
7 MC_task = Task('MC.py', {...}, '24:xeon24:10m')
8 KMC_task = Task('KMC.py', {...}, '24:xeon24:10m')
10 # Wrap up subworkflow for loop
11 dwg = DynamicWidthGroup(relax_task)
12 cg = CyclicalGroup([dwg, CE_task], max_tries=10)
14 # Wrap (kinetic) Monte Carlo in width group
15 swg = StaticWidthGroup([MC_task, KMC_task], width=5)
17 # Package up workflow
18 wf = Workflow([CE_task_init, cg, swg])
20 # Submit the workflow through PerQueue
21 with PersistentQueue() as pq:
      pq.submit(wf)
```

2.4 Active Learning for Image Segmentation

While the image segmentation workflow should be the hardest to express due to the human-in-the-loop constraint, the submission script is the most simple with only three Tasks that are connected through a CyclicalGroup and wrapped in a workflow. Currently, human-in-the-loop is achieved be purposefully failing

the t3 task after writing output to the human and restarting the Entry once data has been written to a pre-specified file for the task to read from. In future versions of PerQueue the intention is for this to be a more graceful maneuver.

The key to starting with the training step and have it be at the end of the CyclicalGroup is the ordering of the Task objects in line 9.

```
from perqueue import CyclicalGroup, PersistentQueue, Task, Workflow

person perqueue import CyclicalGroup, PersistentQueue, Task, Workflow

person perqueue import CyclicalGroup, PersistentQueue, Task, Workflow

t1 = Task("train.py", {...}, "1:sm3090:2h")

t2 = Task("predict_select.py", None, "1:sm3090:30m")

t3 = Task("label.py", None, "1:sm3090:10m")

person person
```