
Electronic Supporting Information:

PerQueue: Managing Complex and Dynamic Workflows

Benjamin H. Sjølin, William S. Hansen, Armando A. Morin-Martinez, Martin H. Petersen,
Laura H. Rieger, Tejs Vegge, Juan M. Garćıa-Lastra, and Ivano E. Castelli‡

Department of Energy Storage and Conversion, Technical University of Denmark, Anker
Engelunds Vej 301, DK-2800 Kongens Lyngby, Denmark.

‡Corresponding author email: ivca@dtu.dk

1

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024

1 Submission Example Codes

Below are the code scripts for the workflow presented in Lst. 1 in the main text. The workflow uses a Monte
Carlo method to estimate π and uses this value to calculate the proposed diameter of a perfect sphere made
of silicon-28 weighing exactly 1 kilogram.

1.1 Estimation of π

This code uses a Monte Carlo method to estimate the value of π. This is done by randomly generating points
in the 2D plane such that the x- and y-coordinate is in the range [0; 1[. Dividing the fraction of points where
x2 + y2 ≤ 1 by the total number of generated points and multiplying by 4 gives the estimated value of π.

This script estimates π using N samples generated points and returns the estimate for each order of
magnitude of points.

1 from typing import Tuple

2

3 import numpy as np

4

5

6 def main(N_samples: int = 1, ** kwargs) -> Tuple[bool , dict]:

7 """ Compute an estimate of pi using Monte Carlo sampling

8

9 Parameters

10 ----------

11 N_samples : int

12 The number of samples to generate for the estimate

13 """

14 # Seed the random number generator

15 np.random.seed (1023)

16

17 # Generate N points in the x-y plane

18 X = np.random.random_sample ((2, N_samples))

19

20 # Calculate the squared distance from origo of each point and determine

21 # which points are inside the unit circle

22 inside_mask = (X**2).sum(axis =0) <= 1

23

24 # Calculate the cumulative number of points inside the unit circle

25 cs = np.cumsum(inside_mask)

26

27 # Calculate the estimate of pi in logaritmic intervals

28 estimates = np.array([

29 4 * cs[10**i - 1] / 10**i

30 for i in range(np.log10(N_samples).astype(int) + 1)

31])

32

33 return True , {"pi_estimates": estimates , ’N_samples ’: N_samples}

1.2 Plotting of the Absolute Error to the Value of π

This script finds the absolute error between the estimates of π and the established value of π. It then
generates a log-log plot of the error versus the number of points. Depending on the value of the parameter
savefig filename, the plot is either saved to file or shown to the user.

1 from typing import List , Tuple , Union

2

3 import matplotlib.pyplot as plt

4 import numpy as np

5

6 # Increase resolution of the saved figure

7 plt.rcParams["savefig.dpi"] = 300

8

9

10 def main(

2

11 pi_estimates: Union[List[float], np.ndarray] = None , N_samples: int = 1,

12 savefig_filename: str = None , ** kwargs

13) -> Tuple[bool , dict]:

14 """ Plot the absolute error of the given estimates of pi

15

16 Compute the absolute error between the given values of pi and the value

17 given by ‘numpy.pi ‘.

18

19 Parameters

20 ----------

21 pi_estimates : list of float or 1D ‘numpy.ndarray ‘

22 A list of estimates for the value of the constant pi

23 N_samples : int

24 The number of samples used to generate the last estimate

25 savefig_filename : str , optional

26 If this parameter is not ‘None ‘, the generated graph is saved to the

27 filename and path given. Otherwise , the graph is shown as an

28 interactive window.

29 """

30 if pi_estimates is None or len(pi_estimates) == 0:

31 raise ValueError("Empty list of pi estimates given")

32

33 # Compute the x-tick locations

34 n = [10**i for i in range(np.log10(N_samples).astype(int) + 1)]

35

36 # Create figure and plot the absolute error as a log -log plot

37 fig , ax = plt.subplots ()

38 ax.loglog(n, np.abs(np.array(pi_estimates) - np.pi))

39 ax.set(

40 xlabel="Number of generated points",

41 ylabel="Absolute error from value of \"numpy.pi\""

42)

43 ax.grid()

44

45 # Either save or show the graph

46 if savefig_filename is not None:

47 fig.savefig(savefig_filename)

48 else:

49 plt.show()

50

51 return True , None

1.3 Calculation of the Diameter of the Silicon Sphere

The script below calculates the diameter of a perfect sphere made of silicon-28 using the estimated values of
π. The sphere is assumed to weigh 1 kilogram. It returns both the diameters that use the estimates of π and
one that uses the established value of π.

1 from typing import List , Tuple , Union

2

3 import numpy as np

4

5

6 def main(

7 pi_estimates: Union[List[float], np.ndarray] = None , ** kwargs

8) -> Tuple[bool , dict]:

9 """ Compute the diameter of the newest protoype for the kilogram

10

11 Using the estimates for pi that we’ve computed earlier , we want to compute

12 the diameter of the silicon sphere that works as a prototype for the

13 kilogram after the 2018 redefinition of the SI -system. Given that we know

14 the weight of the sphere , we can compute its diameter from the basic

15 definitions and constants of the revised SI -system.

16

17 We shall assume that the silicon in the sphere is only silicon -28, but the

18 amount of other impurities in the bulk and on the surface are still

3

19 included. These values and the method for computation is taken from

20 https ://doi.org /10.1016/j.crhy .2018.12.005.

21

22 Parameters

23 ----------

24 pi_estimates : list of float or 1D ‘numpy.ndarray ‘

25 A list of estimates for the value of the constant pi

26 """

27 if pi_estimates is None or len(pi_estimates) == 0:

28 raise ValueError("Empty list of pi estimates given")

29

30 # Define phsical constants

31 planck = 6.62607015e-34 # Planck ’s constant [J/Hz]

32 Rydberg = 10973731.568157 # Rydberg constant [1/m]

33 fine_structure = 7.2973525643e-3 # fine structure constant [-]

34 c = 299792458 # speed of light [m/s]

35 Ar_Si_28 = 27.9769265 # Relative molecular weight of Si -28 [-]

36 Ar_e = 5.489e-4 # Relative molecular weight of an electron [-]

37 lattice_parameter = 5.43102051e-10 # Si -28 lattice parameter [m]

38

39 # We know the target mass of the silicon sphere.

40 target_mass = 1.0 # Target mass of the sphere [kg]

41

42 # Define the mass deficits of the bulk and surface layer

43 m_SL = (7.1 + 12.0 + 58.2) * 1e-9 # Surface layer mass

44 m_deficit = (17.1 - 2.3 - 0.5 + 6.0) * 1e-9 # Bulk mass

45

46 # Compute the rest energy of an electron

47 m_e = 2* planck*Rydberg / (c*fine_structure **2)

48

49 # Compute the core volume of the silicon sphere

50 V = (target_mass - m_SL + m_deficit) * Ar_e * \

51 lattice_parameter **3 / (m_e * Ar_Si_28 * 8) # [m^3]

52

53 # Add the ‘numpy ‘ value for pi to the end of the array

54 pi_x = np.array ([* pi_estimates , np.pi])

55

56 # Compute the core diameter of the sphere using the estimates of pi

57 # Final sphere diameters [mm]

58 sphere_diameters = np.cbrt(6 * V / np.array(pi_x)) * 1e3

59

60 return True , {

61 "sphere_diameters": sphere_diameters [:-1],

62 "actual_sphere_diameter": sphere_diameters [-1]

63 }

4

2 Use Case Workflow Codes

Here, we present the submission scripts used for the four use cases presented in Section 3. The contents of
the task scripts are not presented herein, but they are available upon reasonable request. As a consequence
of this, the arguments to the tasks herein have generally been replaced by {...} for brevity.

2.1 High-Throughput Screening

The following submission script shows how the high-throughput screening workflow, described in the main
paper, is set up in PerQueue terms. It should be noted that due to the size of the screening (more than
6000 instances of the workflow) the submission script takes two inputs, j and k. These limit the index into
the search space for decorations, allowing the user to submit a subset of the full workflow, such that other
projects can use resources in parallel to this study.

Running the central part of the workflow in three parallel sub-workflows is achieved by wrapping tasks
t2-t6 in a StaticWidthGroup with a width of 3.

Since the convex hull and the band gap are both post-processing steps in this study they are fast to
compute and are run on local.

1 from sys import argv

2

3 from perqueue import PersistentQueue , StaticWidthGroup , Task , Workflow

4

5 j = int(argv [1])

6 k = int(argv [2])

7 WIDTH = 3

8

9 # Defining the tasks for a specific range of entries.

10 for i in range(j, k):

11 # Define tasks

12 t1 = Task("generation.py", {’index’: i}, "local :10m")

13

14 t2 = Task("relax.py", None , "40: xeon40 :1:50h")

15 t3 = Task("convex_hull.py", None , "local :5m")

16 t4 = Task("band_gap.py", None , "local:5m")

17 t5 = Task("preneb.py", {...} , "112: xeon56 :1:50h")

18 t6 = Task("neb.py", {...}, "168: xeon56 :1:50h")

19

20 # Define the subworkflow as a list of tasks - each depends on the previous

21 swf = Workflow ([t2, t3, t4, t5, t6])

22

23 # Wrap subworkflow in width group to get parallel workflows

24 swg = StaticWidthGroup(swf , width=WIDTH)

25

26 # Define final workflow layer

27 wf = Workflow ([t1 , swg])

28

29 # Submit entire workflow through PerQueue

30 with PersistentQueue () as pq:

31 pq.submit(wf)

2.2 Active Learning for MLIPs

The script presented below is that used for submitting the workflow for training machine-learned interactomic
potentials using active learning. As shown, the complex workflow is distilled down into four distinct tasks,
and the dynamic nature arises from wrapping these in sub-workflows inside Static-/DynamicWidthGroups

and a CyclicalGroup.
The training, simulation and selection tasks all utilize GPU resources (through the sm3090 resource), and

the labeling runs Density Functional Theory calculations on a 24-core CPU resource.
To control when to break out of the CyclicalGroup, the t train task returns the PerQueue constant

CYCLICALGROUP KEY with a value of True for stopping the loop or False for continuing to iterate.

5

1 from perqueue import CyclicalGroup , DynamicWidthGroup , PersistentQueue ,

StaticWidthGroup , Task , Workflow

2

3 # Define tasks

4 t_train = Task(’work_train.py’, None , ’1: sm3090 :30m’)

5 t_sim = Task(’work_simulate.py’, None , ’1: sm3090 :30m’)

6 t_select = Task(’work_select.py’, None , ’1: sm3090 :30m’)

7 t_label = Task(’work_label.py’, None , ’24: xeon24 :10m’)

8

9 # Define groups for workflow width

10 swg_train = StaticWidthGroup(t_train , width =2)

11 dwg_ssl = DynamicWidthGroup ([t_sim , t_select , t_label])

12 dwg_train = DynamicWidthGroup(t_train)

13

14 # Wrap width groups in a CyclicalGroup for looping

15 cg = CyclicalGroup ([dwg_ssl , dwg_train], max_tries =10)

16

17 # Define and submit workflow

18 wf = Workflow ([swg_train , cg])

19

20 # Submit the workflow through PerQueue

21 with PersistentQueue () as pq:

22 pq.submit(wf)

2.3 Cluster Expansion

Below, we present the submission script used for the Cluster Expansion workflow explained in the main
paper. Not much is different here from the previous use cases, which speaks to the simplicity for setting up
workflows in PerQueue. Once the workflow structure is defined, converting it to PerQueue constructs yields
rather simple code.

Here, we show the use of the optional name parameter to a Task, which gives it a different name for
visualization and searching.

1 from perqueue import CyclicalGroup , DynamicWidthGroup , PersistentQueue ,

StaticWidthGroup , Task , Workflow

2

3 # Define tasks

4 CE_task_init = Task(’CE_model.py’, {...}, ’local :10m’)

5 CE_task = Task(’CE_model.py’, {...}, ’24: xeon24 :10m’, name=’train’)

6 relax_task = Task(’relaxation.py’, {...}, ’8: sm3090 :3h’, name=’optimize ’)

7 MC_task = Task(’MC.py’, {...}, ’24: xeon24 :10m’)

8 KMC_task = Task(’KMC.py’, {...} , ’24: xeon24 :10m’)

9

10 # Wrap up subworkflow for loop

11 dwg = DynamicWidthGroup(relax_task)

12 cg = CyclicalGroup ([dwg , CE_task], max_tries =10)

13

14 # Wrap (kinetic) Monte Carlo in width group

15 swg = StaticWidthGroup ([MC_task , KMC_task], width =5)

16

17 # Package up workflow

18 wf = Workflow ([CE_task_init , cg , swg])

19

20 # Submit the workflow through PerQueue

21 with PersistentQueue () as pq:

22 pq.submit(wf)

2.4 Active Learning for Image Segmentation

While the image segmentation workflow should be the hardest to express due to the human-in-the-loop
constraint, the submission script is the most simple with only three Tasks that are connected through a
CyclicalGroup and wrapped in a workflow. Currently, human-in-the-loop is achieved be purposefully failing

6

the t3 task after writing output to the human and restarting the Entry once data has been written to a
pre-specified file for the task to read from. In future versions of PerQueue the intention is for this to be a
more graceful maneuver.

The key to starting with the training step and have it be at the end of the CyclicalGroup is the ordering
of the Task objects in line 9.

1 from perqueue import CyclicalGroup , PersistentQueue , Task , Workflow

2

3 # Define tasks

4 t1 = Task("train.py", {...}, "1: sm3090 :2h")

5 t2 = Task("predict_select.py", None , "1: sm3090 :30m")

6 t3 = Task("label.py", None , "1: sm3090 :10m")

7

8 # Wrap tasks in CyclicalGroup for looping

9 cg = CyclicalGroup ([t2 , t3 , t1], max_tries =10)

10

11 # Define full workflow

12 wf = Workflow ([t1 , cg])

13

14 # Submit the workflow through PerQueue

15 with PersistentQueue () as pq:

16 pq.submit(wf)

7

