Supplementary Information (SI) for Digital Discovery. This journal is © The Royal Society of Chemistry 2024

Supporting information

Stability and Transferability of Machine Learning Force Field for Molecular Dynamics Applications

Salatan Duangdangchote, Dwight S. Seferos, and Oleksandr Voznyy*

Prof. O. Voznyy, S. Duangdangchote
Department of Physical and Environmental Sciences, University of Toronto (Scarborough), 1065
Military Trail, M1C 1A4 Toronto, Ontario, Canada
Prof. D. S. Seferos
Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada

Table S1 Comparison of MLFF-MD computation results with AIMD reference data of

 $Li_{10}GeP_2S_{12}$ for energy, forces, and radial distribution functions (RDF) across various

temperatures

Madal	MAE		1				
WIGUEI	MAL	800 K	900 K	1000 K	1100 K	1200K	лиегиде
	Energy	0.105	0.106	0.116	0.136	0.166	0.126
CGCNN	Forces	0.051	0.056	0.063	0.167	0.072	0.082
	RDF	0.007	0.008	0.087	0.282	0.601	0.197
	Energy	0.079	0.055	0.616	0.084	0.120	0.191
SchNet	Forces	0.024	0.028	0.031	0.033	0.037	0.031
	RDF	0.007	0.004	0.003	0.003	0.009	0.005
	Energy	0.027	0.033	0.038	0.047	0.053	0.030
DimeNet	Forces	0.011	0.013	0.014	0.015	0.017	0.014
	RDF	0.003	0.004	0.003	0.002	0.003	0.003
	Energy	0.022	0.025	0.029	0.034	0.038	0.030
DimeNet++	Forces	0.008	0.009	0.010	0.011	0.012	0.010
	RDF	0.003	0.006	0.004	0.002	0.003	0.004
	Energy	0.074	0.046	0.041	0.056	0.083	0.060
GNS-TAT	Forces	0.011	0.013	0.014	0.015	0.017	0.014
	RDF	0.037	0.003	0.005	0.154	0.078	0.055
	Energy	0.095	0.091	0.103	0.133	0.166	0.118
DeeperGATGNN	Forces	0.042	0.047	0.051	0.055	0.059	0.051
	RDF	140.703	34.883	112.352	35.528	101.464	84.986
	Energy	0.028	0.033	0.034	0.038	0.042	0.035
SCN	Forces	0.006	0.007	0.007	0.008	0.009	0.007
	RDF	0.003	0.006	0.003	0.003	0.003	0.004
	Energy	0.061	0.052	0.046	0.044	0.041	0.049
eSCN	Forces	0.007	0.008	0.009	0.009	0.010	0.009
	RDF	0.004	0.006	0.004	0.004	0.003	0.004
	Energy	N/A	N/A	N/A	N/A	N/A	_
ForceNet	Forces	0.020	0.022	0.024	0.026	0.287	0.076
	RDF	0.274	0.272	0.302	0.279	0.282	0.282
	Energy	0.105	0.096	0.094	0.104	0.019	0.084
Equiformer	Forces	0.012	0.013	0.014	0.015	0.016	0.014
	RDF	0.005	0.006	0.005	0.003	0.003	0.004
	Energy	0.039	0.045	0.047	0.052	0.058	0.048
LeftNet	Forces	0.009	0.011	0.013	0.014	0.015	0.012
	RDF	0.003	0.005	0.004	0.003	0.003	0.004

Table S2 Comparison of MLFF-MD computation results with AIMD reference data of Li_3PS_4

	MAE	Temperature						
Niodel	MAE	800 K	900 K	1000 K	1100 K	1200K	Average	
	Energy	0.105	0.106	0.116	0.136	0.166	0.126	
CGCNN	Forces	0.051	0.056	0.063	0.167	0.072	0.082	
	RDF	0.007	0.008	0.087	0.282	0.601	0.197	
	Energy	0.079	0.055	0.616	0.084	0.120	0.191	
SchNet	Forces	0.024	0.028	0.031	0.033	0.037	0.031	
	RDF	0.007	0.004	0.003	0.003	0.009	0.005	
	Energy	0.027	0.033	0.038	0.047	0.053	0.030	
DimeNet	Forces	0.011	0.013	0.014	0.015	0.017	0.014	
	RDF	0.003	0.004	0.003	0.002	0.003	0.003	
	Energy	0.022	0.025	0.029	0.034	0.038	0.030	
DimeNet++	Forces	0.008	0.009	0.010	0.011	0.012	0.010	
	RDF	0.003	0.006	0.004	0.002	0.003	0.004	
	Energy	0.074	0.046	0.041	0.056	0.083	0.060	
GNS-TAT	Forces	0.011	0.013	0.014	0.015	0.017	0.014	
	RDF	0.037	0.003	0.005	0.154	0.078	0.055	
	Energy	0.095	0.091	0.103	0.133	0.166	0.118	
DeeperGATGNN	Forces	0.042	0.047	0.051	0.055	0.059	0.051	
	RDF	140.703	34.883	112.352	35.528	101.464	84.986	
	Energy	0.028	0.033	0.034	0.038	0.042	0.035	
SCN	Forces	0.006	0.007	0.007	0.008	0.009	0.007	
	RDF	0.003	0.006	0.003	0.003	0.003	0.004	
	Energy	0.061	0.052	0.046	0.044	0.041	0.049	
eSCN	Forces	0.007	0.008	0.009	0.009	0.010	0.009	
	RDF	0.004	0.006	0.004	0.004	0.003	0.004	
	Energy	N/A	N/A	N/A	N/A	N/A	_	
ForceNet	Forces	0.135	0.139	0.146	0.148	0.152	0.144	
	RDF	0.370	0.479	0.410	0.431	0.377	0.413	
	Energy	74.168	74.154	74.153	74.179	74.145	74.160	
Equiformer	Forces	0.096	0.100	0.086	0.099	0.087	0.094	
_	RDF	1.294	0.300	0.451	0.380	0.022	0.489	
	Energy	73.324	73.333	73.173	73.367	73.341	73.308	
LeftNet	Forces	0.090	0.093	0.081	0.093	0.083	0.088	
	RDF	0.080	0.050	0.054	0.042	0.038	0.053	

for energy, forces, and radial distribution functions (RDF) across various temperatures

Table S3 Comparison of MLFF-MD computation results of GNN model with AIMD reference data of Li_4GeS_4 for energy, forces, and radial distribution functions (RDF) across various temperatures

Madal	MAE	Temperature						
Niodei	MAE	800 K	900 K	1000 K	1100 K	1200K	Averuge	
	Energy	45.356	45.342	45.706	45.686	45.801	45.578	
CGCNN	Forces	0.515	0.524	0.544	0.554	0.566	0.541	
	RDF	1.077	1.274	1.369	1.607	1.637	1.393	
	Energy	56.285	56.362	56.385	56.455	56.548	56.407	
SchNet	Forces	0.175	0.179	0.194	0.198	0.213	0.192	
	RDF	N/A	N/A	N/A	N/A	N/A	_	
	Energy	61.553	61.552	61.493	61.517	61.426	61.508	
DimeNet	Forces	0.082	0.084	0.086	0.089	0.091	0.086	
	RDF	0.018	0.018	0.015	0.012	0.013	0.015	
	Energy	61.977	61.976	61.938	61.966	61.896	61.951	
DimeNet++	Forces	0.082	0.084	0.086	0.089	0.092	0.087	
	RDF	0.018	0.017	0.013	0.009	0.012	0.014	
	Energy	60.916	60.721	60.382	60.209	59.844	60.414	
GNS-TAT	Forces	0.219	0.228	0.236	0.245	0.252	0.236	
	RDF	0.037	0.035	0.050	0.041	0.049	0.042	
	Energy	56.034	55.914	55.629	55.506	55.104	55.637	
DeeperGATGNN	Forces	0.285	0.304	0.334	0.349	0.383	0.331	
	RDF	0.111	0.108	0.087	0.097	0.483	0.177	
	Energy	62.114	62.125	62.137	62.186	62.146	62.142	
SCN	Forces	0.080	0.082	0.083	0.085	0.087	0.083	
	RDF	0.032	0.025	0.031	0.017	0.015	0.024	
	Energy	61.896	61.907	61.909	61.954	61.919	61.917	
eSCN	Forces	0.080	0.082	0.083	0.085	0.087	0.083	
	RDF	0.046	0.041	0.051	0.037	0.029	0.041	
	Energy	N/A	N/A	N/A	N/A	N/A	_	
ForceNet	Forces	0.094	0.098	0.105	0.109	0.117	0.105	
	RDF	0.382	0.398	0.345	0.267	0.342	0.347	
	Energy	62.142	62.174	62.167	62.230	62.191	62.181	
Equiformer	Forces	0.082	0.084	0.087	0.089	0.091	0.087	
	RDF	0.420	0.049	0.291	0.076	0.164	0.200	
	Energy	61.744	61.746	61.796	61.837	61.871	61.799	
LeftNet	Forces	0.077	0.079	0.081	0.083	0.086	0.081	
	RDF	0.017	0.015	0.015	0.008	0.010	0.013	

Table S4 Predicting the negative logarithm of the diffusivity via molecular dynamics of $Li_{10}GeP_2S_{12}$ across different temperatures using machine learning force field against AIMDreference data

	Temperatures							
Model	800 K	900 K	1000 K	1100 K	1200 K	<i>R</i> ²	MAE	
AIMD	2.731	4.114	4.753	5.610	8.013	0.942		
CGCNN	1.843	1.555	3.065	4.275	9.153	0.786	1.782	
SchNet	2.099	2.170	3.377	4.336	4.958	0.955	1.394	
DimeNet	1.616	1.800	2.487	4.053	5.400	0.921	0.851	
DimeNet++	1.796	1.788	3.337	4.336	4.958	0.955	1.394	
GNS-TAT	1.692	2.960	2.888	3.473	6.128	0.814	1.186	
DeeperGATGNN	0.780	1.070	0.875	2.556	0.559	0.043	3.436	
SCN	1.944	2.356	2.586	4.487	6.170	0.884	1.253	
eSCN	1.463	1.845	2.860	1.776	2.751	0.400	1.793	

ForceNet	0.000	0.000	0.000	0.000	0.000	_	_
Equiformer	2.023	2.214	2.748	4.208	5.720	0.903	1.402
LeftNet	1.592	1.439	1.469	1.505	4.270	0.478	1.619

Temperatures Model R^2 MAE 800 K 900 K 1000 K 1100 K 1200 K 0.928 AIMD 1.561 3.385 6.938 6.795 11.663 CGCNN 0.261 0.338 1.161 5.292 8.492 0.860 4.462 SchNet N/A N/A N/A N/A N/A _ DimeNet 1.813 4.263 6.264 7.384 11.437 0.966 0.178 2.268 3.864 5.928 8.810 0.972 DimeNet++ 12.456 0.374 0.032 0.172 0.920 1.092 1.574 0.958 **GNS-TAT** 5.607 DeeperGATGNN 1.349 1.253 2.019 1.561 2.359 0.617 4.556 SCN 9.823 0.889 2.570 3.347 4.715 5.777 0.328 eSCN 0.156 0.643 1.397 4.492 4.108 0.856 4.336 0.000 0.000 0.000 0.000 ForceNet 0.000 _

Table S5 Predicting the negative logarithm of the diffusivity via molecular dynamics of Li_3PS_4 across different temperatures using machine learning force field against AIMD reference data

Equiformer	2.023	2.214	2.748	4.208	5.720	0.903	1.402
LeftNet	1.592	1.439	1.469	1.505	4.270	0.478	1.619

		Т	emperatu	res						
Model	800 K	900 K	1000 K	1100 K	1200 K	R^2	MAE			
AIMD	0.005	0.229	1.774	2.805	5.305	0.927				
CGCNN	2.654	2.850	4.734	3.644	4.387	0.542	2.783			
SchNet	N/A	N/A	N/A	N/A	N/A	_	_			
DimeNet	0.045	0.524	0.823	2.721	5.360	0.863	1.911			
DimeNet++	0.119	0.317	2.450	2.688	5.341	0.910	1.911			
GNS-TAT	0.000	0.000	0.000	0.003	0.234	0.510	2.398			
DeeperGATGNN	0.082	0.174	0.254	0.554	0.488	0.862	2.302			
SCN	0.000	0.000	0.395	1.235	3.099	0.811	2.150			
eSCN	0.000	0.000	0.000	0.556	1.991	0.692	2.257			
ForceNet	0.000	0.000	0.000	0.000	0.000	_	_			

Table S6 Predicting the negative logarithm of the diffusivity via molecular dynamics of Li_4GeS_4 across different temperatures using machine learning force field against AIMD reference data

Equiformer	0.381	0.624	2.895	3.352	4.919	0.947	1.788
LeftNet	0.376	0.285	1.821	2.850	4.350	0.934	1.788

Figure S1 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of CGCNN model against AIMD reference data for different materials

Figure Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of SchNet model against AIMD reference data for different materials

Figure S3 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of DimeNet model against AIMD reference data for different materials

Figure S4 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of DimeNet++ model against AIMD reference data for different materials

Figure S5 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of GNS-TAT model against AIMD reference data for different materials

Figure S6 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of DeeperGATGNN model against AIMD reference data for different materials

Figure S7 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of SCN model against AIMD reference data for different materials

Figure S8 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of eSCN model against AIMD reference data for different materials

Figure S9 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of ForceNet model against AIMD reference data for different materials

Figure S10 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of Equiformer model against AIMD reference data for different materials

Figure S11 Training metrices (a) and losses (b) along with their direct energy and forces predictions (c–n) of LeftNet model against AIMD reference data for different materials

Figure S12 Radial distribution function prediction of CGCNN model against AIMD reference data for different materials

Figure S13 Radial distribution function prediction of SchNet model against AIMD reference data for different materials

Figure S14 Radial distribution function prediction of DimeNet model against AIMD reference data for different materials

Figure S15 Radial distribution function prediction of DimeNet++ model against AIMD reference data for different materials

Figure S16 Radial distribution function prediction of GNS-TAT model against AIMD reference data for different materials

Figure S17 Radial distribution function prediction of DeeperGATGNN model against AIMD reference data for different materials

Figure S18 Radial distribution function prediction of SCN model against AIMD reference data for different materials

Figure S19 Radial distribution function prediction of eSCN model against AIMD reference data for different materials

Figure S20 Radial distribution function prediction of ForceNet model against AIMD reference data for different materials

Figure S21 Radial distribution function prediction of Equiformer model against AIMD reference data for different materials

Figure S22 Radial distribution function prediction of LeftNet model against AIMD reference data for different materials

Figure S23 Time evolution of MLFF-MD trajectories for Li Atoms within the simulation system of $Li_{10}GeP_2S_{12}$ over 50 ps at 800K.

Figure S24 Time evolution of MLFF-MD trajectories for Li Atoms within the simulation system of Li_3PS_4 over 50 ps at 800K.

Figure S25 Time evolution of MLFF-MD trajectories for Li Atoms within the simulation system of Li_4GeS_4 over 50 ps at 800K.