Digichem: Computational Chemistry For Everyone

Supporting Information

Oliver S. Lee^{a,b}, Malte C. Gather^{b,c*} and Eli Zysman-Colman^{a*}

^aOrganic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, UK, KY16 9ST

^bOrganic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, UK, KY16 9SS.

^cHumboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939 Köln, Germany.

Contents

Benchmarking3

References19

Benchmarking

Method

Optimisation calculations were performed on five different benzene oligomers (**Figure S1**), starting from benzene and including *para*-terphenyl (**3Phenyl**), *para*-pentaphenyl (**5Phenyl**), *para*-heptaphenyl (**7Phenyl**), and *para*-nonaphenyl (**9Phenyl**). The geometry of the larger oligomers take (on average) more optimisation cycles to converge to a minimum, and thus result in a larger log file (more program output). This permits the impact of the log file size to be evaluated in the parsing benchmarks.

Figure S1. Names and structures of the five molecules benchmarked.

Identical calculations were carried out on all five molecules using Gaussian 16, revision C.01,¹ using the PBE0 functional²⁻⁴ with the D3⁵ version of Grimme's dispersion (including Beck-Johnson damping⁶) and the 6-31G** basis set.^{7–9} The input files used for each calculation are available in the supporting information. All the calculations were performed on the same compute node of the University of St Andrews high-performance computing (HPC) cluster (Kennedy) and were submitted using the same version of Digichem (7.0.0-pre.3).¹⁰ All 3D images were rendered using VMD 1.9.3¹¹ and the included version of Tachyon.¹² The number of threads used by Tachyon to render in parallel was left as the default, which uses the same number of threads as available CPU cores (32 in these tests) .For each calculation, Digichem automatically recorded the time taken to render each 3D image, as well as the total time spent rendering the entire PDF report (including all images together). The time taken to parse the log file and to generate just the PDF file (excluding image generation) were recorded separately using the main login node of the cluster.

We compared the rendering times for three different types of images for each molecule, to evaluate how the complexity of each render (*i.e.*, the number of surfaces in the scene) impacts the rendering time. The first render (structure) contains only the molecular geometry and does not include any isosurfaces. The second render (HOMO) additionally contains a single isosurface (the HOMO of each molecule), while the third render (HOMO/LUMO) contains two isosurfaces (the HOMO and LUMO of each molecule). The images were rendered in this order, which may be important when evaluating the impact of file caching. Each 'image' was rendered four times from four different angles, which is the same behaviour encountered in the PDF reports. The reported render time is the total time to render each of the four angles for each image. The four angles where the same for each molecule and each image type. The images rendered for Benzene are shown in **Figure S2**, and the complete set of rendered images is available in the supporting information.

Figure S2. The three image types rendered for Benzene. a) the structure image (no isosurface). b) the HOMO image (1 isosurface). c) the HOMO/LUMO image (2 isosurfaces).

The Kennedy HPC system uses a network distributed file system (the General Parallel File System (GPFS)). This system permits each node in the cluster to seamlessly access the same file system but can be significantly slower than a traditional locally-mounted filesystem, especially when the system is under load (experiencing many simultaneous reads and/or writes). Additionally, GPFS utilises a form of local file caching that is beyond the control of the end-user. This file caching can result in inconsistent program timings because the first access to a file (which cannot make use of the cache as it does not exist yet) is often much slower than subsequent accesses to the same file. To combat this, each of the manually recorded operations (log file parsing and PDF report writing) was repeated three times. The first run (which typically does not make use of caching) produced inconsistent timings and was discarded. The second and third runs were averaged to give the reported times. All timings (included the discarded values) are reported for consistency in **Table S1**, **Table S2**, and **Table S3**.

Results

Log file parsing

As expected, the size of the log file produced by each calculation increases with the size of the molecule (**Figure S3a**), as the larger oligomers both require more optimisation steps and produce more output per optimisation step. The time taken by Digichem to parse each log file increased proportionally to the size of the log file (**Figure S3b**), likely indicating that the parsing process is IO-limited (*i.e.*, the bottleneck is reading from the log file rather than processing the resulting data), although this wasn't investigated directly. Even for the largest log file (**9Phenyl**, 29 MB, 420,000 lines), the parsing was complete in under 12 s.

Figure S3. Log file size and parsing duration for each of the five molecules. The file size is reported in megabytes, where $1 \text{ MB} = 1024^2$ bytes.

Image rendering

There is little trend between the rending time of each image and the size of the molecule and/or the image complexity (**Figure S4a**). In two cases (**Benzene** and **7Phenyl**), the first image rendered (structure) took significantly longer than either the HOMO or HOMO/LUMO images, despite being the least complex (having no isosurfaces), again suggesting that the speed of the filesystem may by limiting the overall rendering speed. Except for **Benzene**, the render duration for the HOMO/LUMO image increased slightly with the larger oligomers, but no such trend can be observed for the other two types of images. Except for the outliers of the structure images for **Benzene** and **7Phenyl**, each image took between 10 - 30 s to render. Even for the slowest image, rendering was complete in under a minute (**Benzene**, structure).

Figure S4. Duration of each image render (a) and PDF report generation (b).

Report generation

The report generation process consists of two broad steps. First, each of the required 3D images is rendered, followed by the PDF writing itself. The number of images included in each PDF is customizable by the user (depending on how many orbitals they wish to visualise etc.) and the type of calculation. Generally, excited-state calculations (which include natural-transition orbitals and/or difference density plots) include more images. In the calculations tested here, each report contained 6 different types of images (the total SCF electron density, the structure (no isosurfaces), the structure with the permanent dipole moment vector, the HOMO, the LUMO, and the HOMO/LUMO simultaneously). The time required to generate each report in its entirety (**Figure S4b**, pink bars) varied without much pattern from molecule to molecule and took on average 3.5 min (\pm 1.7 min). Between **3Phenyl**, **5Phenyl**, and **9Phenyl** there is some suggestion that the larger oligomers resulted in longer report writing, but the pattern is not observable in **Benzene** or **7Phenyl**. In all cases, the time required to write the PDF file itself was only a small fraction of the overall process, taking 13 s (\pm 4 s) on average (**Figure S4b**, purple bars). This indicates that the number of images in the report is the main determining factor for the overall report writing duration, rather than the log file size.

		Parsing duration /s							
Molecule	Log file size / MB	First run (discounted)	Second run	Third run	Average				
Benzene	0.9	33	2	2	2				
3Phenyl	5.7	4	4	4	4				

Table S1. Log file parsing duration.

5Phenyl	14.2	7	7	6	6
7Phenyl	17.7	95	9	8	8
9Phenyl	28.7	114	12	12	12
Average					6
Deviation					4

 Table S2. PDF file writing duration.

		PDF Generation / s						
Molecule	Log file size / MB	First run (discounted)	Second run	Third run	Average			
Benzene	0.9	7	7	7	7			
3Phenyl	5.7	13	11	10	10			
5Phenyl	14.2	15	14	14	14			
7Phenyl	17.7	77	14	14	14			
9Phenyl	28.7	105	18	19	18			
Average					13			
Deviation					4			

 Table S3. Image rendering and total report generation duration.

	Image	rendering du		
Molecule	Structure	номо	HOMO/LUMO	Total report generation duration / s
Benzene	59	11	17	454
3Phenyl	14	18	10	271
5Phenyl	20	12	16	302
7Phenyl	41	17	25	520
9Phenyl	15	18	26	412
Average	30	15	19	392
Deviation	20	3	7	104

Molecular alignment procedures

Digichem supports three different molecular alignment procedures to re-orientate the molecular geometry, called **Symmetry (SYM)**, **Average angle (AA)**, and **Furthest atom pair (FAP)**. **FAP** is *ab initio* and is entirely implemented in Digichem, while **SYM** and **AA** rely on the symmetry detection algorithm of the computational engine. The performance of these methods has been previously benchmarked elsewhere,^{13,14} but in summary **SYM** typically performs the best so long as the computational engine implements a robust symmetry detection algorithm. For computational programs where symmetry is not routinely used (Orca, for example), **FAP** offers a reasonable fallback method. The performance of **FAP** and **AA** is normally similar, but **FAP** is more widely available as it does not rely on symmetry detection. The implementation of each method is briefly described below, see ref.¹³ for more information.

In all cases, the longest identified molecular axis is rotated to coincide with the x-axis, while the second longest axis (confined to be at 90° to the long axis) is rotated to coincide with the y-axis.

Symmetry (SYM)

The molecule is aligned by the computational engine according to its detected symmetry. Exactly how this is done depends on the computational program, but typically the principal axis of symmetry (having the highest order) is rotated to coincide with one of the cartesian axes (often the y axis, although which does not matter). The molecule is then rotated by Digichem about its origin so that the greatest maximum difference in coordinates is in the x-axis, and the second most in the y-axis. The position of the origin is determined by the computational engine, and typically it is the molecule's centre of mass.

Average Angle (AA)

The molecule is first fully aligned using the **SYM** procedure before being translated so that the molecular origin is the centre of coordinates (**Equation S1**).

$$(\overline{x}, \overline{y}, \overline{z}) = \frac{1}{n} \sum_{j=1}^{n} (x_j, y_j, z_j)$$
 Equation S1

Where (x_j, y_j, z_j) are the coordinates for atom *j* and *n* is the total number of atoms.

$$\overline{C} = \frac{1}{n} \sum_{j=1}^{n} \cos(\theta_j)$$
 Equation S2

$$\overline{S} = \frac{1}{n} \sum_{j=1}^{n} \sin(\theta_j)$$
Equation S3
$$\overline{\theta} = \begin{cases} \tan^{-1}(\frac{\overline{S}}{\overline{C}}) & \overline{C} > 0, \overline{S} > 0\\ \tan^{-1}(\frac{\overline{S}}{\overline{C}}) + \pi & \overline{C} > 0\\ \tan^{-1}(\frac{\overline{S}}{\overline{C}}) + 2\pi & otherwise \end{cases}$$
Equation S4

Where θ_j is the angle of the coordinates of atom *j* in a specific plane.

The molecule is then rotated in the XY-plane by the average angle (calculated according to Mardia and Jupp,¹⁵ **Equation S4**) of each atom (in the same plane). This process is then repeated for the XZ- and YZ-planes, before the molecule is finally rotated about its origin so that the greatest maximum difference in coordinates is in the x-axis, and the second most in the y-axis.

Furthest Atom Paint (FAP)

Every unique pair of atoms in the molecule is iterated over to determine the pair with the greatest linear distance between them. The molecule is then translated so that the point equidistant between these two atoms becomes the origin, and rotated about this new origin so that the vector defined by this furthest atom pair coincides with the x-axis. The pair of atoms with the greatest linear distance in the newly defined YZ-plane is then found, and the molecule is rotated so the vector defined by these two points is parallel to the y-axis.

Additional graphs and figures

Figure S5. Comparison of the method file format for three equivalent calculations for the calculation engines a) Gaussian, b) Turbomole, and c) Orca.

Figure S6. Screenshots of the submission sub-module showing simultaneous set-up of three molecules (benzene, naphthalene, and pyridine) to be performed in parallel and two calculations (a geometry optimisation followed by TD-DFT excited-states calculation at the PBE0/6-31G** level of theory) to be performed in series. a) input coordinate file-picker. b) main submission interface.

c) internal method library, from which the calculation can be chosen. d) the same method library, but further expanded to show more options.

	Tables (Of Results				32	LUMO+10	А	9.0154	1	Excited	States										
1						31	LUMO+9	А	8.3057			outes										
	Atom Coc	ordinates				30	LUMO+8	A	6.8448		Table 8: E	nergies and oth	er properties	of the colculated	excited states.							
	Table 9: Cool	rdinates of the atom	s of the system	under study, a	is aligned to the	29	LUMO+7	A	5.1949		Number	Symbol	Symmetry	Energy /eV	Wavelength /nm	Co	lour (CIE x,y) Osc	llator Strength	n Tran	sitions (Pro	shability
	cartesian axe.	s by the Minimal n	wethod. Atoms the	hat are chem	ically equivalent	28	LUMO+6	A	5.1713		1	т1	Triplet-A	4.2263	293.36	Ultravi	olet (0.31,	0.33)	0.0000	HOMO	$D \rightarrow LUMO (0)$ $D \rightarrow LUMO+4$	97) 4 (0.03)
	Index El	lement Group	X Coord /Å	Y Coord /Å	Z Coord /Å	27	LUMO+5	A .	4.5870		2	Τ2	Triplet-A	4.2920	288.87	Ultravá	olet 🔳 (0.31,	0.33)	0.0000	HOMO	D-1 → LUMO-	+1 (0.65
	1	N N1	0.0001410	-1.4160600	-0.0000000	26	LUMO+4	A	4.3389											HOM	$D-2 \rightarrow LUMO$	(0.30)
	2	c c ₂	-1.1375180	-0.7202630	-0.0000100	23	LUMO+3	4	2.8281		3	T.	Triplet-A	4.7025	263.66	Ultravi	olet 🔳 (0.31.	0.33)	0.0000	HOM	D-1 → LUMO	(0.97)
	3	c c3	-1.1954270	0.6707410	-0.0000000	23	LUMO+1	A	0.0950			-3								HOMO	D-2 → LUMO-	+1 (0.0
-	4	с с ₄	-0.0001390	1.3819500	-0.0000000	22	LUMO	A.	-0.4517		4	s_1	Singlet-A	5.0479	245.62	Ultravi	olet 🔳 (0.31,	0.33)	0.0059	HOMO	$D \rightarrow LUMO (0)$	J.99)
	5	c c3	1.1952930	0.6709800	-0.0000000	21	номо	A.	-7.1830		5	т4	Triplet-A	5.0624	244.91	Ultravi	olet 🔳 (0.31,	0.33)	0.0000	HOMO	D-2 → LUMO	(0.68)
	6	c c ₂	1.1376620	-0.7200460	0.0000100	20	HOMO-1	А	-7.4129			-	Triplot &	5 1602	240.27	Ultrasic	olot 🔳 (0.21	1 221	0.0000	HOM	D LUMO+1	1 (1.00)
	7	н н ₂	-2.0544490	-1.3082350	-0.0000100	19	HOMO-2	А	-8.1161	Lh	7	15	Simplet-A	5 3181	233.14	Ultrasi	olet (0.31,	0.000	0.0000	HOM	0 - LUM0+1	1 (1.00)
	8	н н ₃	-2.1548580	1.1796150	0.0000300	18	HOMO-3	А	-10.1629		8	52 S.	Singlet-A	5.8288	212.71	Ultravi	olet (0.31,	0.33)	0.0285	HOM	D-1 → LUMO	(0.66)
	9	н н ₄	-0.0002470	2.4686600	-0.0000000	17	HOMO-4	А	-11.1923	(cont.)		-3								HOMO	D-2 → LUMO-	+1 (0.33
	10	H H ₃	2.1546320	1.1800360	-0.0000200	16	HOMO-5	А	-11.3101		9	т	Triplet-A	5.8554	211.74	Ultravi	olet 🔳 (0.31,	9.33)	0.0000	HOMO	D-2 → LUMO-	+1 (0.9
	11	н Н ₂	2.0547110	-1.3078340	0.0000200	15	HOMO-6	А	-11.9833	l d.	10		Circulat ."	e 0069	120.20	Iller -	-1-1 - (0.22		0.0181	HOMO	D-1 → LUMO	(0.03)
- 5						14	HOMO-7	А	-13.1679		10	54	Singlet-A	0.8900	179.78	Ultravi	over 🔳 (0.31,	1.53]	0.0181	HOMO	$D-1 \rightarrow LUMO$ $D-2 \rightarrow LUMO$	(0.37)
	Molecula	r Orbitals				13	HOMO-8	А	-13.4098		11	Τ7	Triplet-A	7.6165	162.78	Ultravi	olet 🔳 (0.31,	0.33)	0.0000	HOMO	D-3 → LUMO	(0.98)
	Table 10: End	ergies of the calculat	ed molecular orb	vitals.		12	HOMO-9	А	-14.8177		12	Tg	Triplet-A	7.8158	158.63	Ultravi	olet 🔳 (0.31,	0.33)	0.0000	HOMO	D-4 → LUMO	(0.83)
	Level	Label	Symme	try	Energy /eV	11	HOMO-10	А	-17.5780											HOMO	D-2 - LUMO-	+4 (0.1)
	37	LUMO+15	Α		15.0637	10	HOMO-11	А	-17.6362		13	s ₅	Singlet-A	7.9249	156.45	Ultravé	olet 🔳 (0.31,	0.33)	0.0000	HOMO	D-3 → LUMO	(0.99)
	36	LUMO+14	А		14.5679	9	HOMO-12	A	-21.3283		14	т9	Triplet-A	7.9586	155.79	Ultravs	olet (0.31,	9.33)	0.0000	HOMO	5-3 → LUMO-	+1 (0.90
	35	LUMO+13	А		12.8443	8	HOMO-13	A	-22.5427		15	T10	Triptet-A	8.0781	153.48	Ultrava	ooet (0.31,	0.33)	0.0000	HOMO	$D-4 \rightarrow LUMO-$ $D-1 \rightarrow LUMO-$	+4 (0.33
	34	LUMO+12	Α		12.6876	7	HOMO-14	A	-26.3594		16	Se	Singlet-A	8.2535	150.22	Ultravi	olet 🔳 (0.31,	0.33)	0.6935	HOMO	D-2 → LUMO-	+1 (0.65
1	33	LUMO+11	Α		9.0562	6	HOMO-15	А	-278.8704											HOMO	D-1 → LUMO	(0.29)
											17	8 ₇	Singlet-A	8.3438	148.59	Ultravi	olet (0.31,	0.33)	0.0059	HOMO	D-3 → LUMO-	+1 (0.9
											18	S ₈	Singlet-A	8.3666	148.19	Ultravi	olet 🔳 (0.31,	0.33)	0.6874	HOM0 HOM0 HOM0	$D-2 \rightarrow LUMO$ $D-1 \rightarrow LUMO$ $D \rightarrow LUMO+2$	(0.51) +1 (0.3 2 (0.08)
											19	s ₉	Singlet-A	8.8265	140.47	Ultravi	olet 🔳 (0.31,	0.33)	0.0000	HOMO	$D-1 \rightarrow LUMO$	+2 (0.9
											20	\$ ₁₀	Singlet-A	8.9246	138.92	Ultravi	olet 🔳 (0.31,	0.33)	0.0689	HOM0 HOM0 HOM0	D → LUMO+2 D-4 → LUMO D-2 → LUMO D-1 → LUMO	2 (0.86) (0.05) (0.05) +1 (0.0
											Transit	ion Dipole	Moment	s								_
											Table 11: the x-axis of Angle betw gram, seco in Gaussia of the tran	Properties of the of the molecule ween the TMDN and) units. [h]: 1 in CGS units. [j] sition dipole mo	te calculated i . [c]: Angle be f and the x-ax The TMDM, it i: The cosine c iment.	transition dipole r tween the TEDM is of the molecule t Gaussian CGS (o of the angle betwo	toments. [a]: The ele and xy-plane of the r . [f]: Angle between entimetre, gram, sec en the electric and n	ctric transi nolecule. [- the TMDM ond) units. nagnetic tr	ition dipole m id]: The magn f and xy-plane . [i]: The angl vansition dipol	oment (TEDM etic transition of the molecu e between the ie moments, in	, in Debye (D). [dipole moment le. [g]: The TEL electric and ma Gaussian CGS	[b]: Angle (TMDM), i OM, in Gau gnetic trai units. [k]:	between the in atomic uni ussian CGS (a nsition dipole The dissymm	TED9 Is (au centin e mon netry ;
											Excited State	µ ^[a] Vector /D	µ ^[a] /D	θ _{μ,x} [b] θ _{μ,xy} [c	m ^[d] Vector /au	m ^[d] 0, /au	m,x ^[e] 0m,x	[f] μ ^[g] /esu-cn	m ^[b] /erg-G ^{*1}	θ _{μ.m} [1]	cos(0 _{µ,m}) ^[]]	g lu
											т,	0.00, 0.00, 0.0	0 0.00	0.00 0.00	0.00, 0.00, 0.00	0.00	0.00 0.0	0 0.00e+0	0.00e+00	90.00	0.00	0.0
										- (b	т,	0.00, 0.00, 0.0	0 0.00	0.00 0.00	0.00, 0.00, 0.00	0.00	0.00 0.0	0 0.00e+0	0.00e+00	90.00	0.00	0.0
										~)	Тз	0.00, 0.00, 0.0	0 0.00	0.00 0.00	0.00, 0.00, 0.00	0.00	0.00 0.0	0 0.00e+0	0.00e+00	90.00	0.00	0.
											s ₁	0.00, 0.00, 0.5	5 0.55	90.00 90.00	0.68, 0.00, 0.00	0.68	0.01 0.0	0 5.53e-1	6.35e-21	90.00	-0.00	-0.
											Т4	0.00, 0.00, 0.0	0 0.00	0.00 0.00	0.00, 0.00, 0.00	0.00	0.00 0.0	0 0.00e+0	0.00e+00	90.00	0.00	0.
											Т5	0.00, 0.00, 0.0	0 0.00	0.00 0.00	0.00, 0.00, 0.00	0.00	0.00 0.0	0 0.00e+0	0.00e+00	90.00	0.00	0.
											s22	0.00, 0.00, 0.0	0 0.00	0.00 0.00	0.00, -0.02, 0.00	0.02 5	0.0 00.00	0 0.00e+0	0 2.29e-22	90.00	0.00	0.
											s3	-1.14, 0.00, 0.0	0 1.14	0.00 0.00	0.00, 0.00, -0.18	0.18 9	90.00 90.0	0 1.14e-1	1.64e-21	90.00	0.00	0.
											T ₆	0.00, 0.00, 0.0	0.00	0.00 0.00	0.00, 0.00, 0.00	0.00	0.00 0.0	0 0.00e+0	0.00e+00	90.00	0.00	0.

Figure S7. Excerpts from an example calculation report generated by Digichem, demonstrating tabulated data. The excited states of pyridine at the PBE0/6-31G* level of theory using the Tamm-Dancoff approximation (TDA) to time-dependent DFT (TD-DFT) were calculated. a) table of molecular geometry, b) table of selected molecular orbitals, c) table of electronic excited states, d) table of transition dipole moments.

Figure S8. Screenshots of the calculation method editor interface. a) general overview, showing example options for the calculation level of theory. b) example validation for the DFT dispersion correction option.

1	id	1	45	operation	0.0	summetry index 24 00
2			45		89	Synamotry_index S4.00
3	203e80e7acc83845224fbe15	9f785d7db8aaab3d	40	final / eV10499_6	90	
4			10	ecfinum stone	91	orbitals:LUMO
s			40	scf.final / eV _10488 6	92	
6	metadata		50	mp:num steps 0	93	index 35.00
7			51	mp:final / eV	94	label LUMO
8	name	Naphthalene	52	mp:order 0	95	homo distance 1.00
9	log files	Output/Naphthalene.log	53	cc:num steps 0	96	energy / eV =0.85
10	auxiliary files:fchk file	Output/Naphthalene.fchk	54	cc:final / eV	97	symmetry A
11	auxiliary files:chk file	Output/Naphthalene.chk	55		98	symmetry index 35.00
12	auxiliary files:rwf file	Output/Naphthalene.rwf	56		99	
13	history		57	atoms	100	
14	charge	0.00	58		101	beta orbitals
15	multiplicity	1.00	59	formula C10H8	102	
16	user	osl	60	charge 0.00	103	dE(HOMO-LUMO) / eV
17	package	Gaussian	61	smiles c1ccc2c(c1)cccc2	104	num occupied 0
18	package version	2016+C.01	62	exact mass / g mol^-1 128.06	105	num virtual 0
19	silico version	3.1.0	63	molar mass / g mol^-1 128.17	106	spin type
20	calculations	Optimisation	64	num atoms 18.00	107	
21	methods	DFT	65	x-extension / Å 6.74	108	
22	functional	PBE1PBE	66	v-extension / Å 4.97	109	pdm
23	basis_set	6-31G (d)	67	z-extension / Å 0.00	110	
24	orbital_spin_type	restricted	68	linearity ratio 0.26	111	total / D 0
25	success	True	69	planarity ratio 1.00	112	origin:x / Å 0
26	optimisation_converged	True	70	alignment method Minimal	113	origin:y / Å 0
27	date / s	1695642681.00	71		114	origin:z / Å 0
28	date:string	25/09/2023 12:51:21	72		115	vector:x / D 0
29	duration / s	85.90	73	orbitals	116	vector:y / D 0
30	duration:string	1 m, 26 s	74		117	vector:z / D -0
31	temperature / K		75	dE(HOMO-LUMO) / eV 5.21	118	x-angle / deg 90
32	pressure / atm		76	num_occupied 34.00	119	xy-angle / deg 90
33			77	num_virtual 132.00	120	
34			78	spin_type none	121	
35	ground_state		79		122	vibrations
36			80		123	
37	index 0.00		81	orbitals:HOMO	124	num_vibrations 0
38	symbol S(0)		82		125	num_negative 0
39	charge 0.00		83	index 34.00	126	
40	multiplicity 1.00		84	Label HOMO		
41	apargu / aV 10400	61	85	nomo_distance 0.00		
42	energy / ev -10488	.01	86	energy / ev -6.06		
43			87	symmetry A		

Figure S9. Excerpts from an example result summary output file written by Digichem.

Figure S10. Excerpts from an example calculation report generated by Digichem, demonstrating tabulated data. The excited states of pyridine at the PBE0/6-31G* level of theory using the Tamm-Dancoff approximation (TDA) to time-dependent DFT (TD-DFT) were calculated. a) table of

molecular geometry, b) table of selected molecular orbitals, c) table of electronic excited states, d) table of transition dipole moments.

Code	Description	Read	Write	C&M
abinit	ABINIT Output Format		×	X
acesin	ACES input format	×		×
acesout	ACES output format		×	×
acr	ACR format		×	×
adf	ADF cartesian input format	×	\checkmark	×
adfband	ADF Band output format	\checkmark	×	×
adfdftb	ADF DFTB output format	\checkmark	×	×
adfout	ADF output format		×	×
alc	Alchemy format		 	×
aoforce	Turbomole AOFORCE output format	\checkmark	×	×
arc	Accelrys/MSI Biosym/Insight II CAR format		×	×
ascii	ASCII format	×	\checkmark	×
axsf	XCrySDen Structure Format		×	×
bgf	MSI BGF format	\checkmark	\checkmark	×
box	Dock 3.5 Box format	\checkmark	\checkmark	×
bs	Ball and Stick format		\checkmark	×
c09out	Crystal 09 output format		×	×
c3d1	Chem3D Cartesian 1 format	\checkmark	\checkmark	×
c3d2	Chem3D Cartesian 2 format		\checkmark	×
cac	CAChe MolStruct format	×	\checkmark	×
caccrt	Cacao Cartesian format		\checkmark	×
cache	CAChe MolStruct format	×	\checkmark	×
cacint	Cacao Internal format	×	\checkmark	×
can	Canonical SMILES format		\checkmark	×
car	Accelrys/MSI Biosym/Insight II CAR format	\checkmark	×	×
castep	CASTEP format		×	×
ccc	CCC format	\checkmark	×	×
cdjson	ChemDoodle JSON	\checkmark	\checkmark	×
cdx	ChemDraw binary format		×	×
cdxml	ChemDraw CDXML format	\checkmark		×
cht	Chemtool format	×		×
cif	Crystallographic Information File	\checkmark		X
ck	ChemKin format	\checkmark	\checkmark	×
cml	Chemical Markup Language	\checkmark	\checkmark	×
cmlr	CML Reaction format	\checkmark	\checkmark	×

 Table S4. Table of supported input file types.

Code	Description	Read	Write	C&M
cof	Culgi object file format	\checkmark	 	X
com	Gaussian Input		\checkmark	\checkmark
confabreport	Confab report format	×		×
CONFIG	DL-POLY CONFIG		\checkmark	×
CONTCAR	VASP format		\checkmark	×
CONTFF	MDFF format		\checkmark	×
crk2d	Chemical Resource Kit diagram(2D)		\checkmark	×
crk3d	Chemical Resource Kit 3D format		\checkmark	×
csr	Accelrys/MSI Quanta CSR format	X	\checkmark	×
cssr	CSD CSSR format	X	\checkmark	×
ct	ChemDraw Connection Table format		\checkmark	×
cub	Gaussian cube format		\checkmark	×
cube	Gaussian cube format		\checkmark	×
dallog	DALTON output format		×	×
dalmol	DALTON input format		\checkmark	\checkmark
dat	Generic Output file format		X	×
dmol	DMol3 coordinates format			×
dx	OpenDX cube format for APBS			×
ent	Protein Data Bank format			×
exyz	Extended XYZ cartesian coordinates format			×
fa	FASTA format			×
fasta	FASTA format			×
fch	Gaussian formatted checkpoint file format		X	×
fchk	Gaussian formatted checkpoint file format		×	×
fck	Gaussian formatted checkpoint file format		X	×
feat	Feature format			×
fh	Fenske-Hall Z-Matrix format	X		×
fhiaims	FHIaims XYZ format			×
fix	SMILES FIX format	X		×
fps	FPS text fingerprint format (Dalke)	X		×
fpt	Fingerprint format	X	\checkmark	×
fract	Free Form Fractional format			×
fs	Fastsearch format			×
fsa	FASTA format			×
g03	Gaussian Output		X	×
g09	Gaussian Output		×	×
g16	Gaussian Output		×	×
g92	Gaussian Output		×	×
g94	Gaussian Output		×	×
g98	Gaussian Output		X	×

Table S4.	Table of sur	ported input	file types.
	14010 01 04	pporte a mpa	ine cypes.

Code	Description	Read	Write	C&M
gal	Gaussian Output		X	X
gam	GAMESS Output		×	×
gamess	GAMESS Output		×	×
gamin	GAMESS Input			×
gamout	GAMESS Output		×	×
gau	Gaussian Input			\checkmark
gjc	Gaussian Input			
gjf	Gaussian Input			
got	GULP format		×	×
gpr	Ghemical format		\checkmark	×
gr96	GROMOS96 format	X	\checkmark	×
gro	GRO format			×
gukin	GAMESS-UK Input			×
gukout	GAMESS-UK Output			×
gzmat	Gaussian Z-Matrix Input		\checkmark	
hin	HyperChem HIN format			×
HISTORY	DL-POLY HISTORY		X	×
inchi	InChI format			×
inchikey	InChIKey	X		×
inp	GAMESS Input			×
ins	ShelX format		X	×
jin	Jaguar input format			×
jout	Jaguar output format		×	X
k	Compare molecules using InChI	X		×
lmpdat	The LAMMPS data format	X		×
log	Generic Output file format		×	×
lpmd	LPMD format			X
mcdl	MCDL format			X
mcif	Macromolecular Crystallographic Info			×
MDFF	MDFF format			×
mdl	MDL MOL format			×
ml2	Sybyl Mol2 format			×
mmcif	Macromolecular Crystallographic Info			X
mmd	MacroModel format			X
mmod	MacroModel format			×
mna	Multilevel Neighborhoods of Atoms (MNA)	×		×
mol	MDL MOL format			×
mol2	Sybyl Mol2 format			×
mold	Molden format			×
molden	Molden format			X

 Table S4. Table of supported input file types.

Code	Description	Read	Write	C&M
molf	Molden format			×
molreport	Open Babel molecule report	×		×
moo	MOPAC Output format		×	×
mop	MOPAC Cartesian format			×
mopert	MOPAC Cartesian format			×
mopin	MOPAC Internal			×
mopout	MOPAC Output format		×	×
mp	Molpro input format	×		×
mpc	MOPAC Cartesian format			×
mpd	MolPrint2D format	×		×
mpo	Molpro output format		×	×
mpqc	MPQC output format		×	×
mpqcin	MPQC simplified input format	×		×
mrv	Chemical Markup Language			×
msi	Accelrys/MSI Cerius II MSI format		×	X
msms	M.F. Sanner's MSMS input format	×		X
nw	NWChem input format	×	\checkmark	X
nwo	NWChem output format		×	×
orca	ORCA output format		×	X
orcainp	ORCA input format	×		X
out	Generic Output file format		X	X
outmol	DMol3 coordinates format		\checkmark	X
output	Generic Output file format		×	×
paint	Painter format	×	\checkmark	X
pc	PubChem format		X	X
pcjson	PubChem JSON		\checkmark	X
pcm	PCModel Format			×
pdb	Protein Data Bank format		\checkmark	X
pdbqt	AutoDock PDBQT format		\checkmark	X
png	PNG 2D depiction		\checkmark	X
pointcloud	Point cloud on VDW surface	×	\checkmark	X
pos	POS cartesian coordinates format		×	X
POSCAR	VASP format		\checkmark	X
POSFF	MDFF format		\checkmark	×
pov	POV-Ray input format	×		X
pqr	PQR format			X
pqs	Parallel Quantum Solutions format			X
prep	Amber Prep format		×	X
pwscf	PWscf format		×	X
qcin	Q-Chem input format	×		X

 Table S4. Table of supported input file types.

Code	Description	Read	Write	C&M
qcout	Q-Chem output format		X	X
report	Open Babel report format	×		×
res	ShelX format		×	×
rinchi	RInChI	×		×
rsmi	Reaction SMILES format			×
rxn	MDL RXN format			×
sd	MDL MOL format			×
sdf	MDL MOL format			×
si	Silico Input Format			\checkmark
siesta	SIESTA format		×	×
smi	SMILES format			×
smiles	SMILES format			×
smy	SMILES format using Smiley parser		×	×
stl	STL 3D-printing format	×		×
svg	SVG 2D depiction	×		×
sy2	Sybyl Mol2 format			×
t41	ADF TAPE41 format		×	×
tdd	Thermo format			×
therm	Thermo format			×
tmol	TurboMole Coordinate format			×
txyz	Tinker XYZ format			×
unixyz	UniChem XYZ format			×
VASP	VASP format			×
vmol	ViewMol format			×
wln	Wiswesser Line Notation		×	×
xed	XED format	×		×
xml	General XML format		×	×
xsf	XCrySDen Structure Format		×	×
xtc	XTC format		×	×
xyz	XYZ cartesian coordinates format		\checkmark	×
yob	YASARA.org YOB format		\checkmark	×
zin	ZINDO input format	×		×

Table S4. Table of supported input file types.

Recreated from ref.¹⁶ **Read**: Indicates this format can be read. **Write**: indicates this format can be written. **C&M**: Indicates this format supports charge and multiplicity. The 'com'/'gjf', 'si', and 'xyz' formats are parsed internally. The 'log' and related formats are parsed with cclib.¹⁷ The remaining formats are parsed with Open Babel.^{18,19}

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision C.01 2016.
- 2 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396–1396.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 4 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158–6170.
- 5 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 6 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 7 R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724–728.
- 8 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.
- 9 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654–3665.
- 10 O. S. Lee and E. Zysman-Colman, Digichem (version 7.0.0-pre.3) Digichem Project, St Andrews, Scotland, 2024.
- 11 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33–38.
- 12 J. Stone, PhD thesis, Computer Science Department, University of Missouri-Rolla, 1998.
- 13 O. S. Lee, PhD thesis, University of St Andrews, 2024.
- 14 F. Tenopala-Carmona, O. S. Lee, E. Crovini, A. M. Neferu, C. Murawski, Y. Olivier, E. Zysman-Colman and M. C. Gather, *Adv. Mater.*, 2021, **33**, 2100677.
- 15 K. V. Mardia and P. E. Jupp, in *Encyclopedia of Statistical Sciences*, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2006, vol. 25.
- 16 Digichem Convert Digichem 6.1.0 documentation, https://doc.digichem.co.uk/reference/digichem-convert.html#supported-file-formats, (accessed 22 July 2024).
- 17 E. Berquist, A. Dumi, S. Upadhyay, O. D. Abarbanel, M. Cho, S. Gaur, V. H. C. Gil, G. R. Hutchison, O. S. Lee, A. S. Rosen, S. Schamnad, F. S. S. Schneider, C. Steinmann, M. Stolyarchuk, J. E. Vandezande, W. Zak and K. M. Langner, .
- 18 N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, *J. Cheminformatics*, 2011, **3**, 33.
- 19 N. M. O'Boyle, C. Morley and G. R. Hutchison, Chem. Cent. J., 2008, 2, 5.