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Supplementary Information:  

1. Experimental procedures: 

Table S1. This table presents data from high-throughput experiments utilized to develop the yield 

optimization model. The first column lists the batch number from which the data were obtained. 

Batch 0 contains historical data acquired through the traditional grid search method. Data from 

batches 1 and 2 were generated during active learning cycles. The acquisition policy that suggested 

each input combination is noted in the rightmost column. Total concentrations of C, N, and Li were 

calculated based on the concentration of these elements in the solution mix before crystallization 

occurred. This involves proper dilution calculations from the initial unmixed LiCl and 

NH4OH/CO2 solutions. Total C concentration was adjusted by sampling from the carbonation 

reactor at various times after initiating CO2 bubbling. Total N and Li concentrations were altered 

by mixing the NH4OH/CO2 solution with the LiCl solution in different volume ratios, or by 

changing the initial Li concentration in the LiCl solution. Data in the table are rounded to two 

digits after the decimal for clarity. 

# Batch 

Initial aqueous concentrations 

(before crystallization, M) 

Measured Li 

concentration 

at 

equilibrium 

(M) 

%Yield 
Acquisition 

Policy Total 

Carbon 

Total 

Nitrogen 

Total 

Lithium 

0 0.50 4.50 1.00 0.72 0.28 Grid Search 

0 1.00 4.50 1.00 0.66 0.34 Grid Search 

0 1.50 4.50 1.00 0.74 0.26 Grid Search 

0 1.00 6.00 1.00 0.62 0.38 Grid Search 

0 1.50 6.00 1.00 0.66 0.34 Grid Search 

0 0.50 4.50 1.50 0.74 0.50 Grid Search 

0 1.00 4.50 1.50 0.68 0.55 Grid Search 

0 1.50 4.50 1.50 0.74 0.51 Grid Search 

0 0.50 6.00 1.50 0.75 0.50 Grid Search 

0 1.00 6.00 1.50 0.82 0.46 Grid Search 

0 1.50 6.00 1.50 0.68 0.55 Grid Search 

0 0.50 4.50 2.00 1.01 0.50 Grid Search 

0 1.00 4.50 2.00 1.04 0.48 Grid Search 

0 1.50 4.50 2.00 0.78 0.61 Grid Search 
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0 0.50 6.00 2.00 0.98 0.51 Grid Search 

0 1.00 6.00 2.00 0.72 0.64 Grid Search 

0 1.50 6.00 2.00 0.69 0.65 Grid Search 

1 2.49 6.00 2.74 0.73 0.73 High Yield 

1 1.98 6.00 2.50 0.71 0.72 High Yield 

1 2.54 5.25 2.50 0.76 0.70 High Yield 

1 2.17 5.75 2.02 0.78 0.61 High Yield 

1 2.55 5.75 3.45 0.69 0.80 High Yield 

1 2.12 6.00 3.45 0.67 0.81 High Yield 

1 2.56 5.00 3.21 0.81 0.75 High Yield 

1 1.61 6.00 3.21 0.78 0.76 High Yield 

1 1.71 5.75 1.79 0.82 0.54 High Yield 

1 1.36 5.75 2.50 0.78 0.69 High Yield 

1 2.49 6.00 4.16 0.69 0.83 High Yield 

1 1.68 4.75 2.74 0.79 0.71 High Yield 

1 2.05 4.25 1.79 0.89 0.50 
High 

Uncertainty 

1 2.56 5.00 4.16 0.81 0.81 
High 

Uncertainty 

1 1.81 3.75 2.74 0.85 0.69 
High 

Uncertainty 

1 0.69 3.25 1.31 0.75 0.43 
High 

Uncertainty 

1 2.49 6.00 1.31 0.88 0.33 
High 

Uncertainty 

1 1.90 5.75 0.80 0.80 0.00 
High 

Uncertainty 

1 0.77 1.50 1.11 0.86 0.23 Random 

1 1.24 3.00 2.02 0.88 0.56 Random 

1 2.54 5.25 1.11 0.96 0.14 Random 

1 1.57 3.25 1.11 0.82 0.26 Random 

1 0.82 2.50 1.11 0.75 0.32 Random 

1 0.37 6.00 0.43 0.43 0.00 Random 

2 0.31 5.33 0.83 0.65 0.22 Random 

2 0.92 2.17 2.00 0.90 0.55 Random 

2 0.75 3.50 0.50 0.50 0.00 Random 

2 1.00 3.83 2.33 0.85 0.64 High Yield 

2 1.37 3.00 3.00 1.08 0.64 High Yield 

2 1.64 3.83 3.50 0.98 0.72 High Yield 

2 1.53 5.33 3.67 0.82 0.78 High Yield 

2 1.92 4.50 3.67 0.83 0.77 High Yield 

2 1.99 5.00 1.83 0.84 0.54 High Yield 

*2 0.17 0.33 0.17 0.17 0.00 
High 

Uncertainty 
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*2 0.17 1.17 0.17 0.17 0.00 
High 

Uncertainty 

*2 0.17 2.00 0.17 0.17 0.00 
High 

Uncertainty 

*2 0.17 2.83 0.17 0.17 0.00 
High 

Uncertainty 

*2 1.00 2.00 0.17 0.17 0.00 
High 

Uncertainty 

*2 0.17 3.67 0.17 0.17 0.00 
High 

Uncertainty 

*2 2.50 6.00 0.17 0.17 0.00 
High 

Uncertainty 

*2 1.33 2.83 0.17 0.17 0.00 
High 

Uncertainty 

*2 0.00 0.00 0.00 0.00 0.00 
High 

Uncertainty 

*2 2.50 5.00 0.17 0.17 0.00 
High 

Uncertainty 

*2 2.00 4.00 0.17 0.17 0.00 
High 

Uncertainty 

*2 1.17 4.83 0.33 0.33 0.00 Random 

*2 1.00 5.67 0.17 0.17 0.00 Random 

*2 0.33 4.50 0.17 0.17 0.00 Random 

* The experiments with batch numbers *2 were suggested for experimentation by the ML model. 

However, due to the low concentration of initial lithium and the control experiments conducted by 

the experimentalist in this study, they were considered extremely diluted. As a result, the output 

was automatically assumed to be zero. 
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Figure S1: Total carbon concentration as determined by IR spectroscopy. Measured every 15 

minutes by bubbling CO2 into a 50 ml solution of 12M NH4OH at a flow rate of 100 ml/min 

(temperature of reactor = 25 oC).  

 

 

Figure S2: IR spectra (overlapping) used to build the graph shown in Figure S1. The intensity of 

the carbonate band at 1395 cm-1 was used to measure the total carbon concentration in the solution 

at each time interval. The inset is a close-up view on the carbonate band. 
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2. Influence of Temperature on Lithium Softening: 

The impact of temperature on lithium softening in solutions with varying initial concentrations of 

carbon, nitrogen, and lithium was examined. Findings illustrated in Figure S3 and detailed in 

Table S2 reveal that variations in temperature below 66°C minimally affect lithium yields. Table 

S2 presents the standard deviation and the percentage difference between the minimum and 

maximum final lithium concentrations at temperatures of 25°C, 48°C, and 66°C. These results 

indicate that temperature shifts within this range do not significantly alter the reaction outcomes. 

To accommodate slower reaction kinetics at lower temperatures, samples at 25°C and 48°C were 

maintained for seven days, compared to 24 hours at 66°C, following our experimental protocols. 

 

Figure S3: This figure demonstrates an example of lithium solubility at different temperatures 

across various nitrogen and carbon matrices, with an initial 1 M of lithium added to the solution. 

It shows the concentration of remaining lithium in the solution after equilibration. Each data point 

was collected from a solution prepared according to the procedure for 8 ml vial experiments 

outlined in the main manuscript. The only exceptions are that the samples at 25°C and 48°C were 
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mixed at these temperatures for 7 days instead of the standard 24 hours, to ensure full equilibration. 

All experiments were maintained at constant controlled temperatures during these periods (24 

hours or 7 days). Thereafter, all experiments underwent a similar aliquot sampling and filtration 

process at room temperature for analysis. Given the short duration of this process, any potential 

temperature fluctuations are considered negligible and have not been factored into the results. 

Further experiments exploring the impact of temperature variations are detailed in Table S2.   
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Table S2: Temperature impact on final lithium concentration and yield. This table showcases the 

outcomes of experiments performed under various conditions at three distinct temperatures: 25°C, 

48°C, and 66°C. It details the final lithium concentration in the solution (mol/L) and the yield 

(normalized to 1, solid) for each temperature setting. The table also presents the standard deviation 

and the percentage differences in final lithium concentrations observed across these temperatures 

under specific experimental conditions (Init C, Init N, and Init Li). For access to detailed raw data, 

refer to the files associated with batch 0 of the experiments available on our dedicated GitHub 

repository for this project.  
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3. Experimentally viable ranges: 

 

Figure S4: The green hashed area identifies the experimentally viable regions for initial 

concentration and permissible areas for data acquisition. Taking into account specific experimental 

constraints, such as stoichiometric ratios within the solution and varying solubility levels of 

different elements in water, not all initial concentrations within the explored chemical space were 

deemed practical. Further details governing the selection of combinations are provided in Table 

S3. 
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Table S3: Summary of the rules defining experimentally viable initial concentration combinations 

for nitrogen, carbon, and lithium in the chemical space. The constraints are categorized into 

solubility limitations and stoichiometry-controlled relationships, reflecting both the physical 

properties of the elements and the chemical interactions between them.  

 

Our data acquisition strategy segregates the data pool into three tiers, allocated proportionally at 

50%, 25%, and 25%. Each tier samples data based on specific objectives, ensuring that no two 

sampled points in the chemical space are closer than a Euclidean distance of 1 mol/L. The three 

acquisition objectives or tiers considered are as follows: (1) lithium carbonate yield of the HTE 

experiments, where the aim is to acquire initial conditions with the highest predicted lithium yield; 

(2) uncertainty of the GPR predictions, where the acquisition policy focuses on points with the 

highest prediction uncertainty; and (3) random exploration of the parameter space, involving 

random selection of initial condition combinations.  

 

Therefore, beginning with an available initial batch of experimental data (Batch 0), we constructed 

a preliminary GPR prediction of the chemical space. We conducted two rounds of active learning, 

with each round proposing 24 experiment suggestions. The initial round (Batch 1) primarily 
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targeted high lithium yield areas, with the majority of experiments sourced from high-yield 

regions. In contrast, the second round (Batch 2) emphasized broader space exploration based on 

the GPR model’s uncertainty of the predictions (standard deviation). The specific acquisition 

breakdown for each round is detailed in Table S4. 

 

Table S4: Distribution of each data batch according to different acquisition policies.
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4. AI-Enhanced Yield Optimization in Li-Brine Softening 

 

Figure S5: Three-dimensional visualization of the predicted chemical space using the GPR model, 

trained on all collected data (Batches 0, 1, and 2). The space is intentionally under-sampled to 

highlight the meshed nature of the chemical space. Three specific slices (S1, S2, and S3) are 

extracted and displayed on the right, providing detailed views of the predicted lithium carbonate 

yield landscape at different planes within the space.  
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Figure S6: Visualization of Lithium Yield Predictions Using Gaussian Process Regression (GPR) 

in the Context of the Lithium Softening Process. The model was trained on data from three stages: 

(a) Batch 0 alone, (b) a combination of Batches 0 and 1, and (c) an aggregate of Batches 0, 1, and 

2. These stages correspond to iterations 0 to 2 in the active learning cycle. The data points acquired 

at each stage are overlaid on their respective colormaps. Each colormap captures the lithium yield 

within a specific chemical space, holding the initial lithium concentration constant at 2 mol/L while 

allowing for variations in carbon and nitrogen levels between 0 to 6 mol/L. Black and red contours 

signify lithium yield and the associated GPR prediction uncertainty (measured as standard 

deviation), respectively. 
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5. Performance Analysis of Active Learning Strategies 

During our active learning iterations, we gauged the learning quality by observing the uncertainty 

in the GPR model's predictions. As shown in Figure 3, uncertainty, measured by the standard 

deviation of the predictions, reduces with each iteration. Consequently, the areas with low 

uncertainty (or high prediction certainty) broaden. Using violin plots, we traced the prediction 

uncertainty throughout each active learning iteration. Additionally, we compared the uncertainty 

distribution from our tiered data acquisition with that from a fully random acquisition strategy, as 

illustrated in Figures S7. 

 

The datasets for fully random acquisition, encompassing both initial parameters and predictions, 

were created using the surrogate GPR model trained on all the available experimental data. To 

mimic real-world experimental conditions, we introduced a random fluctuation of up to 10% into 

the model's input parameters, specifically the initial concentrations, as well as the predicted yields. 

The fully random acquisition distributions shown in Figures S7, represent the average standard 

deviations of predictions taken over 100 different random seeds for each iteration. Breaking it 

down further, for iteration 1, we amalgamated the data from batch 0 (consisting of 17 experiments) 

with data randomly sampled to match the size of batch 1 (24 experiments). This process was 

repeated across 100 distinct random seeds. Similarly, for the subsequent iteration, data from batch 

0 was combined with data randomly drawn to cumulatively match the sizes of batches 1 and 2, 

amounting to 48 experiments in total. This amalgamation was also repeated across 100 different 

random seeds to guarantee the representativeness of the acquired datasets. 
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Figure S7 highlights that the active learning training process effectively reduced the GPR model's 

uncertainty. This reduction in prediction uncertainty, coupled with the concentration of 

uncertainties around the mean in the violin plot, suggests an enhanced robustness of the model. 

Notably, even as the second iteration targeted high-uncertainty areas from the initial predictions, 

the model remained consistent when exposed to new data. This consistent performance is 

indicative of the robustness and predictive fidelity of our active learning methodology. 

 

Figure S7: Violin plots depicting the overall standard deviation in Gaussian Process Regression 

(GPR) models across various active learning iterations. The plots compare the performance of 

models trained using the tiered data acquisition strategy employed in this study with those using 

fully random data acquisition. 
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6. Evaluation of Data Acquisition Policies  

To gauge the influence of each data acquisition tier (high yield, high uncertainty, random) used in 

this study, we evaluated the individual contributions of each tier. To do this, we trained models 

using the base data (Batch 0) combined with data sourced through each specific policy per 

iteration. We used two metrics to quantify the contribution of each acquisition method: mean 

square error (MSE) and information gain, as depicted in Figure S8. 

 

The MSE metric contrasts a surrogate GPR model—trained using all available data from Batches 

0, 1, and 2—against models trained using the base data (Batch 0) combined with data from each 

specific data acquisition tier (policy). Figure S8 shows that focusing on high-yield areas 

substantially reduces the MSE of the model, enhancing the accuracy of high-value predictions. 

Moreover, targeting high uncertainty areas considerably lowers the MSE by addressing regions 

where the model's predictive certainty is low. In contrast, random data acquisition has a less 

pronounced effect on model performance when compared to the other two data tiers. 

 

Information gain, a measure derived from information theory, determines the dataset's entropy in 

relation to a benchmark, which in our case is the entropy of predictions using only the base data 

(Batch 0). We computed entropy with a continuous differential entropy formula, taking the 

standard deviation of the GPR predictions to represent local entropy. As displayed in Figure S8, 

both high yield and uncertainty-focused acquisition strategies provide similar information gains. 

 



 17 

It's worth highlighting that although random data acquisition might not have a substantial impact 

compared to the other methods, excluding it could lead to biased data collection. Even without 

observing unexpected outcomes in our predictions and chemical space experiments, random data 

sampling could potentially identify regions prone to such anomalies. Hence, we deem all three 

data acquisition tiers crucial for this study. 

 

Figure S8: Assessment of the performance of various data sources in the active learning process 

(random acquisition, high yield acquisition, high uncertainty acquisition) using: (a) the mean 

squared error comparison of models trained with different data sources (acquisition policies) 

against those trained with all available data; (b) information gain for different data sources 

(acquisition policies) versus the model trained using only initial data (Batch 0). 
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7. Comparative Analysis of Machine Learning Models 

While the primary aim of our study is not to demonstrate the superiority of GPR over other models, 

we conducted a comparative analysis to evaluate its performance relative to commonly used 

regression models such as Random Forest Regressor (RFR), XGBoost (XGB), and Support Vector 

Machine Regression (SVR). Each model was selected based on its ability to handle non-linear 

relationships and complex patterns: GPR with a Matern kernel for its smoothness and flexibility, 

RFR for robust non-linear regression, XGB for gradient boosting efficiency, and SVR for its 

kernel-based handling of non-linearities. 

 

We conducted 5-fold cross-validation for each active learning iteration, repeating this process 10 

times with different random seeds to ensure statistical robustness. The outcomes, as depicted in 

Figure S9 using the mean squared error (MSE) metric and in Figure S10 using the R2-score, 

indicate that GPR generally outperformed other models, particularly during the first iteration when 

fewer data points were available for training. This phase (first active learning iteration) demands 

heightened extrapolative capabilities, which are critical in active learning settings where models 

must predict beyond the observed data range. Tree-based methods such as RFR and XGB showed 

some limitations for extrapolation, which is expected given their design. However, as shown in the 

results from the second iteration (Figure S10), these methods performed better within the scope 

of observed data as sample sizes increased, although concerns about their extrapolation capabilities 

persist. Conversely, SVR consistently demonstrated inferior performance compared to the other 

models. It is important to note that this analysis specifically reflects the performance of these 

models on the data used in this study and is not intended to set general performance benchmarks. 
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These results highlight the suitability of GPR for our study, particularly due to its superior 

extrapolation abilities and robust uncertainty quantification, which significantly enhance the active 

learning process. 

 

Figure S9: Performance of different models using mean squared error (MSE) metric. This figure 

illustrates the MSE across various models during the first and second active learning iterations, 

with the plot on the left depicting the first iteration and the plot on the right showing the second 

iteration. 
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Figure S10: Model performance comparison using R2-score. This figure illustrates the R2-scores 

for various models during the first and second active learning iterations, with the plot on the left 

depicting the first iteration and the plot on the right showing the second iteration. 

 


