Supplementary Information: Hybrid-LLM-GNN: Integrating Large Language Models and Graph Neural Networks for Enhanced Materials Property Prediction

Youjia Li¹, Vishu Gupta^{1,2,3}, Muhammed Nur Talha Kilic⁴, Kamal Choudhary⁵, Daniel

Wines⁵, Wei-keng Liao¹, Alok Choudhary¹, Ankit Agrawal¹

¹Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.

²Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.

³Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.

⁴Department of Computer Science, Northwestern University, Evanston, IL, USA.

⁵Material Measurement Laboratory, National Institute of Standards and Technology, 100

Bureau Dr, Gaithersburg, MD, USA.

Table 1: Dataset size and baseline test MAE using mean of combined train and validation sets as the prediction on the test set for evaluated material properties

Property	Train set size	Validation set size	Test set size	Baseline MAE
Formation Energy (eV/atom)	60639	7580	7580	0.8546
Ehull $(eV/atom)$	59939	7494	7493	0.2618
Magout (μ_B)	59370	7422	7422	2.1585
$Bandgap_{mBJ}$ (eV)	15642	1957	1957	1.6565
Spillage	9041	1131	1131	0.5055
SLME $(\%)$	7810	977	977	10.7721
Tc _supercon (K) (eV)	842	106	106	3.2085

Figure 1: Violin plot for the distribution of DFT-calculated properties; Displayed material properties include: Formation Energy, Ehull, Magout, Bandgap_{mBJ}, Spillage, SLME and Tc_supercon

Figure 2: Loss curves for the predictor model of ALIGNN-MatBERT TL approach. Earlystopping is applied in model training, which decides the number of epoches. Displayed material properties include: Formation Energy, Ehull, Magout, Bandgap_{mBJ}, Spillage, SLME and Tc supercon

Figure 3: Parity plot of the original ALIGNN model (1st col), ALIGNN-based feature extraction transfer learning (2nd col), and the proposed hybrid transfer learning approach based on ChemNLP (3rd col) and Robocystallographer (4th col). Displayed material properties include: Formation Energy, Ehull, and Magout

Figure 4: Parity plot of the original ALIGNN model (1st col), ALIGNN-based feature extraction transfer learning (2nd col), and the proposed hybrid transfer learning approach based on ChemNLP (3rd col) and Robocystallographer (4th col). Displayed material properties include: Spillage, SLME and Tc supercon

Figure 5: Percentage MAE change for ALIGNN-MatBERT-based TL approach after removal of tagged content from text representation across tested material properties (top: Robocrytallographer; bottom: ChemNLP)