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Details on the initial ab initio MD simulations for the SN2

reaction

The �rst step consisted on the preparation of the initial datasets by generating reactant

structures, by ab initio MD simulations. In order to perform the MD simulations, we have

to construct an initial structure of the system. A 15Å
3
cubic box was constructed with pack-

mol,1 containing one bromide ion, one chloromethane molecule and 38 acetonitrile molecules.

An energy minimization of the system was then performed using the Amber22 software. The

AMBER's built in General Force�eld (GAFF)2 parameters were used for the chloromethane,

the acetonitrile and the bromide ion, with the AM1-BCC charge model was used to generate

atomic charges Next, the system was heated to a temperature of 300K in the NVT ensemble

for 20 ps, and then equilibrated in the NPT ensemble for 200 ps and at a pressure of 1 bar

and a temperature of 300K, both with a timestep of 2 fs. From this equilibration, 20 snap-

shots were extracted, with ten of them having their bromine and chlorine atoms swapped

(to generate the product structures). With these initial structures, ab initio MD simulations

were performed with the CP2K software3 at the BLYP4,5 level of theory and with the D3

dispersion correction.6 The DZVP-MOLOPT-SR7,8 basis set was used in conjunction with

the GTH pseudopotentials.9�11 Each run was performed within the NVT ensemble at 300K

with a timestep of 0.5 fs for 2 ps. The temperature control was enabled by the use of a CSVR

thermostat12 with a time constant of 0.1 ps−1.
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Timings of the ArcaNN training

Table S1: Summary of Timings for the initial aiMD, the training, exploration, and labeling
Phases for the SN2 reaction

Phase Hardware Used Average Time per Cycle Total Time
Initial aiMD AMD EPYC 7H12 - 26897.4 core.hours
Training Nvidia V100 SXM2 14.67 gpu.hours 190.76 gpu.hours

Exploration Nvidia V100 SXM2 59.04 gpu.hours 767.57 gpu.hours
Labeling Intel Cascade Lake 6248 1836.79 core.hours 23878.21 core.hours

Table S2: Summary of Timings for the initial aiMD, the training, exploration, and labeling
Phases for the Diels-Alder reaction

Phase Hardware Used Average Time per Cycle Total Time
Initial aiMD Cascade Lake 6248 - 1928.72 core.hours
Training Nvidia A100 SXM4 3.58 gpu.hours 32.24 gpu.hours

Exploration Nvidia V100 SXM2 27.81 gpu.hours 250.33 gpu.hours
Labeling Intel Cascade Lake 6248 297.56 core.hours 2380.45 core.hours
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User-provided tree folder structure

.
├── data/
│   └── init_1/
│       ├── set.000/
│       │   ├── box.npy
│       │   ├── coord.npy
│       │   ├── energy.npy
│       │   ├── force.npy
│       │   └── virial.npy
│       └── type.raw
└── user_files/
    ├── dptrain_2.1.json
    ├── machine.json
    ├── SYSTEM1.lmp
    ├── SYSTEM1.in
    ├── SYSTEM2.lmp
    ├── SYSTEM2.in
    ├── plumed-SYSTEM2.dat
    ├── job_CP2K_label_cpu_myHPCkeyword1.sh
    ├── job_deepmd_compress_gpu_myHPCkeyword1.sh
    ├── job_deepmd_freeze_gpu_myHPCkeyword1.sh
    ├── job_deepmd_train_gpu_myHPCkeyword1.sh
    ├── job_lammps-deepmd_explore_gpu_myHPCkeyword1.sh
    ├── job-array_CP2K_label_cpu_myHPCkeyword1.sh
    └── job-array_lammps-deepmd_explore_gpu_myHPCkeyword1.sh

Figure S1: Example of the tree folder structure used by ArcaNN.
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Machine JSON user �le used by ArcaNN

Figure S2: Example of a machine.json �le for con�guring HPC resources in ArcaNN.

S6



JSON control �les written by ArcaNN

Figure S3: A pruned control training JSON �le.
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Figure S4: A pruned control exploration JSON �le.
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Figure S5: A pruned control labeling JSON �le.
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Figure S6: A pruned control testing JSON �le.
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Evolution of the candidate and rejected structures with

exploration time per reactive exploration iteration for the

SN2 reaction
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Figure S7: Percentage of candidate structures (solid blue line), rejected structures (solid
orange line), and total exploration time (dashed green line) for each reactive exploration
step, with the associated training dataset name in parentheses.
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Validation of the R5 (production) NNP for the SN2 reac-

tion

In Figure S8, we report the component-wise force RMSE and the maximum component-wise

force error along δd on the test dataset.
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Figure S8: For three generation of NNPs, aiMD (blue), NR7 (orange) and R5 (green): (A)
the component-wise force RMSE along δd on the test dataset. (B) the maximum component-
wise force error along δd on the test dataset.

In Figure S9, we report the probability density of the component-wise force errors and the

probability density of the magnitude per atom force errors on the training and test datasets

for the last (R5) reactive cycle. The RMSE on component-wise forces for training dataset is

equal to 0.028 eV · Å−1
and for test dataset is equal to 0.026 eV · Å−1

, while the RMSE on

the magnitude per atom force errors for training dataset is equal to 0.048 eV · Å−1
and for

test dataset is equal to 0.045 eV · Å−1
.
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Figure S9: (A) Probability density of the magnitude of per-atom force errors on the training
dataset and the test dataset. (B) Probability density of the component-wise force errors on
the training dataset and the test dataset.
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Free energy pro�les and CV for the NR2 and NR3 NNPs

for the SN2 reaction
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Figure S10: Free energy surface obtained from the Umbrella Sampling simulations (black)
and the average value of the collective variables (as well as the 95% con�dence interval in
shaded color); (A) with the NNP trained on the NR2 dataset. (B) with the NNP trained
on the NR3 dataset.
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Validation of the R8 (production) NNP for the Diels-Alder

reaction

In Figure S11, we report the probability density of the magnitude per atom force errors on

the training and test datasets for the last (R8) reactive cycle. The RMSE on component-

wise forces for training dataset is equal to 0.070 eV · Å−1
and for test dataset is equal to

0.071 eV ·Å−1
(see Figure 7C), while the RMSE on the magnitude per atom force errors for

training dataset is equal to 0.122 eV · Å−1
and for test dataset is equal to 0.123 eV · Å−1

.
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Figure S11: Probability density of the magnitude of per-atom force errors on the training
dataset and the test dataset.

In Figure S12, we report the component-wise force RMSE and the maximum component-

wise force error along d̄ on the test dataset.
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Figure S12: (A) the component-wise force RMSE along δd on the test dataset for the R8
NNP. (B) the maximum component-wise force error along δd on the test dataset for the R8
NNP.
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Joint density distribution of the two main distances for

the Diels-Alder reaction
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Figure S13: Joint density distribution of the distance d1 and the distance d2, with the dotted
line representing d1 = d2, in the Umbrella Sampling simulations.
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Joint density distribution of the two main distances in each

important training dataset for the SN2 reaction
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Figure S14: Joint density distribution of the distance dC−Cl and the distance dC−Br, with
the dotted line representing δd = 0Å of the structures; (A) in the aiMD dataset. (B) in the
NR7 dataset. (C) in the R5 dataset. (D) in the test dataset.
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OPES 1D free energy pro�le and CV from the R5 NNP

for the SN2 reaction
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Figure S15: Free energy surface obtained from the OPES simulation (with the NNP trainined
on the R5 dataset) (black) and the average value of the collective variables (as well as the
95% con�dence interval in shaded color)
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