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Fast Spectroscopic Exploration

Histograms of the concentrations of the reagents used to synthesize the silver nanoparticles

are shown. These histograms support the data obtained from the 5d plots in Figure 3.

Figure S1: A histogram of the concentrations of the reagents that were used to synthesize
samples that had a distance below the chosen threshold distance. These samples should have
the characteristics of small, monodisperse, colloidally stable, plate-like nanoparticles.

Figure S2: A histogram of the concentrations of the reagents that were used to synthesize
the samples that had distances above the chosen threshold distance.
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To test the reproducibility of the experiment, it was repeated with the same distance

metric with the same distance threshold. The only difference was the randomly sampled

coordinates from the first iteration. In Figure S3, the results are similar to that of Figure 3

in the main manuscript.

Figure S3: A repeated experiment showing the 5-dimensional plots for the volume fractions of
each of the reagents in each iteration in the Fast Spectroscopic Exploration. This repetition
of the experiment used a newly selected set of randomly sampled compositions for Iteration
0. The experiment shows good agreement with the one in Figure 3 in the main text. In
iteration 0 there are 1/48 samples labeled ”Below Threshold”, 30/48 in iteration 1, 34/48 in
iteration 2, 38/48 in iteration 3, 35/48 in iteration 4, and 35/48 in iteration 5.
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The weight factors that were chosen for each of the terms of the distance metric (i.e.,

amplitude-phase, peak position, area under the curve, and peak intensity) affect the classi-

fication. These weights are adjustable and are a mechanism to tune the distance metric to

bias the selection towards a certain particle structure. In this work, the weights were chosen

to synthesize small, colloidally stable, monodisperse, plate-like particles, but they can be

modified to include more of a sample of a specific characteristic (i.e., increasing the weight

of the area under the curve term would increase the presence of monodisperse particles).To

investigate the effect of each term on the classification, Figure S4 was created. This figure

shows how the classification of the spectra would change if the weight factor of each term

was set to zero. The spectra in gray are the original 137 spectra that had distances below the

selected threshold distance using the weight factors described in the main manuscript. The

spectra that had a distance above the threshold were not plotted because there are too many

curves and plotting all of them in the same color would oversaturate the figure. The spectra

in other colors are the spectra that would have a distance below the threshold if the weight

factor of a term was set to zero. This means that the colored spectra were assigned high

distance scores by the corresponding term of the distance metric. Figure S4 (A) shows that

the amplitude-phase metric assigned high distance scores to spectra that had peaks and high

intensities at low wavelengths. (B) shows that the peak position term filtered out spectra

that had peaks at low wavelengths. (C) shows that the area under the curve term filtered

out spectra that had broad peaks. (D) shows that the intensity below 450 nm term filtered

out spectra that had high intensities in this wavelength range. For example, in Figure S4 C,

the area under the curve term is set to zero, so we expect the colored curves to have large

areas under the curve, which is exactly what is observed. In Figure S4 D, the intensity below

450 nm is set to zero, so we expect the colored curves to have a high intensity below 450

nm, which is what is observed. Therefore, Figure S4 shows that the weight of each term can

be adjusted accordingly to exclude or include the colored spectra from the classification.
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Figure S4: This figure shows the effect of each distance term on the classification of the
spectra. The spectra in gray are the spectra that had distances below the selected threshold
using the distance metric with the original weight factors. The spectra in other colors are
the spectra that would have a distance below the selected threshold if the weight factor of
the (A) amplitude-phase, (B) peak position, (C) the area under the curve, and (D) intensity
below 450 nm, were set to zero.
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Gaussian Process Classifier

A Gaussian process (GP) classifier was used to explore the nanoparticle morphologies in the

experimental design space. A Gaussian process classifier is a supervised, non-parametric,

probabilistic model that can be trained from data and perform classifications. It works

by fitting linear combinations of kernels to data points. Kernels, a hyperparameter of a

GP, are functions (e.g., gaussian, exponential, quadratic) used to measure the covariance or

the similarity between two data points. The kernels are placed in arbitrary points in the

parameter space, and the weighted sum of these kernels makes up an estimation function

which is used to make predictions of the outcomes of the input parameter set. The weight

coefficients are sampled from a Gaussian distribution, which results in a distribution of

different estimator functions called Gaussian Process Priors. A loss function, composed of

the sum of a similarity term and a regularization term, is minimized to obtain the best

estimation function. The similarity term is composed of the difference between the actual

training data points and the estimation function’s predictions of the points the regularization

term accounts for the smoothness of the function which is important to prevent overfitting.

The loss function is minimized by changing the weight coefficients of the kernels and a

parameter that affects the smoothness of the fit, obtaining an estimation function that best

represents the data.1
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Amplitude Phase Distance

The amplitude-phase distance measures the shape-similarity between two one-dimensional

functions that map a domain x to a scalar value f(x). A key component of this distance

measurement is the process of aligning any query function to a target function against

which we want to measure the similarity. The alignment can be performed using a variety

of optimization processes presented in2 and involves finding a domain warping function that

results in the least L2 distance between the query and target function. Figure S5 depicts

the alignment process with the target function selected as a 1D curve with a single peak

(dotted black line). A set of query functions (grey color) are then aligned to the target

function using their respective domain warping function (optimized individually). We can

then compute an L2 distance between aligned query functions to measure the similarity on

the y-scale of a 1D function–which we refer to as the amplitude distance. The alignment

Figure S5: Amplitude-Phase distance measures shape-similarity using two components :
(left) similarity in amplitude when all the functions have been ‘aligned’ such that the only
variation between them is on the intensity scale; (right) phase component measures the
‘distortion’ added into any shape to align it to a reference (shown in dotted black line).
Grey-colored solid lines are representative functions to depict the kind of variations each
distance component would capture.

process itself has removed some of the dis-similarities between the query and target function

that need to be accounted for to provide an accurate distance measure. Figure S6 depicts

distortion imparted on the function shown on the left resulting in a new function (middle)

and the comparison between the no-warping state (solid-blue) of the function with its warped
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Figure S6: Computing distance between domain warping functions : (left) target curve;
(middle) query curve; (right) domain warping functions to align the query and target func-
tions and the distortion measured using the area between the no-warping (solid-blue) and
optimized warping of query function (solid-red). The shaded region depicts the distortion
added to the query function to align it to the target.

state (solid-red) in the right-most panel. To explain the warping conceptually, we identify

each function with five discrete locations shown as grey circles on the x-axis and distort

the left curve in Figure S6 by swapping intensity values with those identified in red font on

the curve in the middle panel of Figure S6. In Figure S6, the left curve was distorted by

the following swaps of the intensity values (2, 3), (3, 4), (4, 6), (6, 2) where each tuple (a, b)

represents the swapping of intensity value at a with that of b. This swapping (or warping

when done continuously) can be represented as a map on a 2D plot as shown on the right-

most panel of Figure S6 where each white circle represents a tuple identifying the swapping

of intensities at those locations. If we do not swap any points, that would correspond to

no-warping that can be represented as a line going through the origin at a 45◦ angle (solid-

blue line in the right-most panel of Figure S6). The amount of distortion (i.e. the phase

distance) added by the warping roughly corresponds to the area between these maps on the

2D plane shown on the right-most panel of Figure S6. Mathematically, the phase distance

is computed using a Riemannian geometric method since the domain warping functions are

optimized to be a class of functions that preserve the norm of original functions giving rise to

a spherical geometry i.e. a curved manifold. We defer the readers interested in the detailed

mathematical derivations of amplitude-phase distance to2 and.3
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SAXS Structural Exploration

Figure S7: The SHAP summary plot of the effect of the reagents on plate thickness. The
order of the reagents, from top to bottom, indicates the importance of them on the plate
thickness.

Figure S8: The SHAP summary plot of the effect of the reagents on plate radius. The order
of the reagents, from top to bottom, indicates the importance of them on the plate radius.
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Figure S9: The SHAP summary plot of the effect of the reagents on polydispersity, which
was determined by the model used to fit the SAXS data. The order of the reagents, from
top to bottom, indicates the importance of them on the polydispersity.

Figure S10: The SHAP summary plot of the effect of the reagents on the concentration of the
particles, which was determined by the scale parameter of the model used to fit the SAXS
data. The order of the reagents, from top to bottom, indicates the importance of them on
the concentration.
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TEM

Additional TEM images of the sample that was classified as “below threshold” are shown.

Figure S11: Additional image of the sample that was classified as “below threshold”.
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Figure S12: Additional image of the sample that was classified as “below threshold”.

Figure S13: Additional image of the sample that was classified as “below threshold”.
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Figure S14: Additional image of the sample that was classified as “below threshold”.

Figure S15: Additional image of the sample that was classified as “below threshold”.
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Figure S16: Additional image of the sample that was classified as “below threshold”.

Figure S17: Additional image of the sample that was classified as “below threshold”.
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Figure S18: Additional image of the sample that was classified as “below threshold”.
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Effect of Organic Compounds on the Refractive Index

It was hypothesized that the presence of organic compounds such as PVP could affect the

refractive index of the solution, which then affects the observed UV-Vis spectroscopy curve.

To investigate this, nanoDDSCAT simulations of a silver nanoplate of 7 nm in thickness

and 20 nm in diameter were performed in solution refractive indexes of 1.33 (water) and

1.55 (PVP).4 We expect the refractive index of the solution surrounding the particle to be

between 1.33 and 1.55, since it was hypothesized that PVP gets adsorbed onto the surface

of the nanoparticles.

Figure S19: Effect of the solution’s refractive index on the nanoDDSCAT simulation of a
silver nanoplate of 7 nm in thickness and 20 nm in diameter.

Effect of Reagent Order and Time of Addition

An experiment was performed to determine the effect of different orders of addition and times

of addition of the reagents on the synthesis of silver nanoparticles. Using code from (https:

//github.com/pozzo-research-group/otto), the volumes, order, and times of addition of

each reagent could be varied. The compositions of five randomly selected samples that were

classified as ”Below Threshold” were used for the experiment. Four different orders of adding

the reagents were tested, and four different delay times of adding a reagent were tested.
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Table 1: Concentrations (mM) of the five randomly selected ”Below Threshold” samples
that were tested for different orders of addition and times of addition.

Sample PVP Tannic Acid Ascorbic Acid Silver Nitrate Silver Seeds
A 0.26 0.36 0.024 0.34 0.0043
B 0.13 0.35 0.012 0.11 0.0043
C 0.14 0.36 0.012 0.35 0.0042
D 0.11 0.12 0.049 0.23 0.0037
E 0.18 0.28 0.049 0.15 0.0037

The following orders were tested. Reagents in bold indicate the reagent where a time

delay of 1, 2, 8, and 15 minutes was performed before adding the reagent.

• Order 1: PVP, Water, Tannic Acid, Ascorbic Acid, Silver Nitrate, Seeds

• Order 2: Water, Silver Nitrate, Seeds, PVP, Ascorbic Acid, Tannic Acid

• Order 3: Water, Silver Nitrate, Seeds, Ascorbic Acid, Tannic Acid, PVP

• Order 4: Water, Silver Nitrate, Seeds, Tannic Acid, PVP, Ascorbic Acid

Order 1 was the same order used for all the experiments in the main manuscript. A

delay time was added before Silver Seeds to test the hypothesis that adding reducing agents

before silver nitrate could lead to a large number of nuclei and the possibility of clumping

of nanoclusters. This mechanism results in polydisperse particles. Orders 2, 3, and 4 were

chosen to determine the effect of adding a reducing agent immediately after Silver Seeds.

The results from the experiment, in fig. S20, show that the order in which the reagents are

added affects the final structure. Order 1, which is the first column, is the original order used

for all the experiments in the main manuscript. The spectra from the samples made using

this order have a single peak, which is expected of samples with plate-like characteristics.

In addition, the time delay of silver seeds does not affect the structure of the nanoparticle.

This refutes the hypothesis that adding reducing agents before silver nitrate could lead to

a large number of nuclei clusters which result in polydispersity. A more likely explanation

is that a large number of nuclei are formed, but do not start assembling into clusters until

silver seeds are added.
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Figure S20: Effect of the order and time of addition of the reagents on the UV-Vis spec-
troscopy curves of the silver nanoparticles. Spectroscopy curves are normalized from 0 to 1.
Five samples of different concentrations (A-E) were created with different orders (1-4) and
delay times (blue, orange, green, red).

Order 2, the second column of fig. S20, tests the effect of adding PVP immediately after

silver nitrate and silver seeds. The spectra of all the samples have peaks at low wavelengths

which suggests the presence of small particles. An explanation could be that PVP stabilizes

the small particles, preventing them from growing into larger nanoparticles. The effect of

the time delay of ascorbic acid does not seem to affect the structure since the particles are

already stabilized.
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Order 3, the third column of fig. S20, tests the effect of adding ascorbic acid after silver

nitrate and silver seeds. PVP is then added with a variable time delay. This order is

interesting because the time delay seems to affect the nanoparticle’s structure seen in A3, B3,

and C3 in fig. S20. The addition of tannic acid at different times results in high absorbance

at high wavelengths, which is a sign of large particles or aggregation. Since ascorbic acid is

the strongest reducing agent, a high concentration of silver atoms is expected to be produced.

The addition of tannic acid at different delay times acts as a reaction quencher, which results

in different nanoparticle structures.

Finally, Order 4, the fourth column of fig. S20, tests the effect of adding tannic acid after

silver nitrate and silver seeds. PVP is added with a variable time delay. The time delay does

not seem to affect the structure of the nanoparticles. However, most of the spectra have

peaks at high wavelengths which indicates the presence of large nanoparticles. This could

be attributed to the addition of tannic acid immediately after silver seeds, which acts as a

reducing agent as well as a stabilizer.

In summary, this experiment showed that the order in which the reagents are added, as

well as the time of addition of the reagents, affect the final nanoparticle structure. Depending

on the desired nanoparticle shape and size, a specific order can be used to achieve it. For

example, if large nanoparticles are desired, Order 4 can be used, which adds tannic acid after

the silver seeds. If small nanoparticles are desired, Order 2 can be used which adds PVP after

the silver seeds. There are many orders and times of addition that can be used to synthesize

nanoparticles. In our manuscript, it was decided that the order and time of addition would

remain constant since the design space was already very large. Other experiments could

use our high-throughput setup to explore different orders and times of addition. We would

like to emphasize how experiments on the order or time of reagent addition are something

that can be easily tested and explored using robotic systems like the one we used but are

challenging to explore manually due to the manual labor involved. This means that the

data-driven workflow that we used can be applied to other systems where time affects the
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final material structure.

Effect of Mixing on the Synthesis

To test if the mixing in our protocol was adequate, a few samples were resynthesized manually

using a magnetic stir bar at 900 rpm to mix the sample. The UV-Vis spectra was compared

to the samples that were synthesized using the OT2. The results show good agreement

between the samples using the two methods.

Figure S21: The UV-Vis spectra of three samples that were synthesized using the OT2
with a volume of 325 µL and synthesized manually with a volume of 10 mL. The sample
synthesized using the OT2 was mixed by aspirating and dispensing 100 µL of solution 3
times. The sample synthesized manually was mixed using a magnetic stir bar at 900 rpm
for 4 hours. The UV-Vis Spectra of all samples were taken 24 hours after synthesis.
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UV-Vis Spectroscopy as a Proxy for Particle Size

Figure S22: The effect of PVP on the size measured by UV-Vis spectroscopy and by SAXS.

Figure S23: The effect of tannic acid on the size measured by UV-Vis spectroscopy and by
SAXS.
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Figure S24: The effect of ascorbic acid on the size measured by UV-Vis spectroscopy and by
SAXS.

Figure S25: The effect of silver nitrate on the size measured by UV-Vis spectroscopy and by
SAXS.
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Figure S26: The effect of silver seeds on the size measured by UV-Vis spectroscopy and by
SAXS.
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SEM

Scanning electron microscopy (SEM) was used to determine differences in the samples clas-

sified as “above threshold” and “below threshold”. Three samples of each classification were

synthesized and SEM images were obtained for each sample. Two images for each sample

are shown here. The full set of images can be found in the online repository. The sizes of the

particles in the images shown below were measured by ImageJ and the mean and standard

deviation of the measurements are shown in the caption of the images. The first three figures

(fig. S27, fig. S28, fig. S29) are from the samples labeled “below threshold” and the figures

(fig. S30, fig. S31, fig. S32) are from the samples labeled “above threshold”.

From the SEM images, the particles from the samples labeled “below threshold” resemble

plate-like particles, are small (25-30 nm), and are monodisperse, which was the objective of

the Gaussian process classifier in the Fast Spectroscopic Exploration section of this work.

On the other hand, the particles from the samples labeled “above threshold” are large (≥

85 nm) and polydisperse.

Figure S27: Images of the first sample classified as “below threshold”. The mean size of all
the particles in these images is 30.25 nm with a standard deviation of 6.20 nm.
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Figure S28: Images of the second sample classified as “below threshold”. The mean size of
all the particles in these images is 26.46 nm with a standard deviation of 4.75 nm.

Figure S29: Images of the third sample classified as “below threshold”. The mean size of all
the particles in these images is 25.14 nm with a standard deviation of 3.14 nm.

Figure S30: Images of the first sample classified as “above threshold”. The mean size of all
the particles in these images is 112.19 nm with a standard deviation of 13.46 nm.
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Figure S31: Images of the second sample classified as “above threshold”. The mean size of
all the particles in all the images taken of this sample is 173.64 nm with a standard deviation
of 27.60 nm. This sample has a low concentration of particles in the images. The mean size
was calculated using all the particles taken from all the images of this sample, which can be
found in the online repository.

Figure S32: Images of the third sample classified as “above threshold”. It was observed that
this sample has a bimodal distribution of particles. The mean size of all the large particles
in these images is 89.03 nm with a standard deviation of 10.38 nm. The mean size of all the
small particles is 27.96 nm with a standard deviation of 3.03 nm.
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Figure S33: The UV-Vis Spectra of the samples that were analyzed with SEM. The samples
labeled “Below” refer to the ones classified as “Below Threshold” and the ones labeled
“Above” refer to the ones classified as “Above Threshold”.

Figure S34: An image of the six samples that were analyzed using SEM. From left: “Below
Threshold 1, 2, 3, “Above Threshold” 1, 2, 3.
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