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S.I. Dataset

A. Link to raw data
 

Raw data used in this study has been deposited in Zenodo DOI: 
https://zenodo.org/doi/10.5281/zenodo.11179874 

B. Visualization of noise in dataset prior and post denoising

Figure S1:  Image pre-processing results. (a-f) For the presented six AFM images, the image on the left 
corresponds to the noisy AFM phase measurement and the image on the right corresponds to the 
denoised image. Image denoising operations are performed by Gwyddion software [1].     

Figure S2: (a-h) Pre-processed AFM phase images after denoising with Gwyddion[1] software; these 
images are shown to demonstrate that even after denoising these images retain some noise (visible 
defects). 

https://zenodo.org/doi/10.5281/zenodo.11179873
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C. Thresholding techniques applied on dataset

Figure S3: OTSU thresholding algorithm applied on (a,c) pre-processed AFM phase images after 
denoising. (b,d) are their respective outputs when OTSU is applied locally on patches of the pre-
processed AFM phase images and the denoised with image morphology operation. Thresholding fails in 
(d) due to the line noise and (b) lacks consistency in predicting continuity. 

S.II. Tiles and Win Factor 

A. How to choose the best win factor

Figure S4: (a-f) Samples of tiles with varying win factor from 0.01 to 0.10 generated from one pre-
processed AFM phase image shown in part (g). To find the best tile size, we increase the win factor 
iteratively and choose the minimum size that can distinguish between light and dark domains in the 
AFM image. We can see that in parts (a) and (b) with low win factors 0.01 and 0.02 one cannot 
distinguish between the two domains. We notice that in part (c) the win factor of 0.03 presents a 
visual difference in light and dark domains. Therefore, we choose this as the best win factor. To 
confirm the details are of domains and not noise, we also generate for the reader the images in parts 
(d-f) with larger win factors.   

B. Pseudo code of generating tiles from input image with given win factor
A raw image is sub-sampled into tiles with the following workflow using steps below:

                                   𝑡𝑖𝑙𝑒_𝑤𝑖𝑑𝑡ℎ =  𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ ∗ 𝑤𝑖𝑛_𝑓𝑎𝑐𝑡𝑜𝑟                                        (1) 
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𝑡𝑖𝑙𝑒_ℎ𝑒𝑖𝑔ℎ𝑡 =   𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑤𝑖𝑛_𝑓𝑎𝑐𝑡𝑜𝑟                                        (2)    

𝑇_𝑖𝑗 = 𝑖𝑛𝑝𝑢𝑡_𝑖𝑚𝑔_𝑖𝑚𝑔[𝑖 ‒
𝑡𝑖𝑙𝑒_𝑤𝑖𝑑𝑡ℎ

2
  :𝑖 +  

𝑡𝑖𝑙𝑒_𝑤𝑖𝑑𝑡ℎ
2

,𝑗 ‒
𝑡𝑖𝑙𝑒_ℎ𝑒𝑖𝑔ℎ𝑡

2
:𝑗 +

𝑡𝑖𝑙𝑒_ℎ𝑒𝑖𝑔ℎ𝑡
2

 ] 

    𝑤ℎ𝑒𝑟𝑒,             

i =  (
𝑡𝑖𝑙𝑒_𝑤𝑖𝑑𝑡ℎ

2
),(

tile_width
2

+ stride), (
tile_width

2
 + 2 * stride), ... , (input_img_height -

tile_width
2

)   

j 

=  (
𝑡𝑖𝑙𝑒_ℎ𝑒𝑖𝑔ℎ𝑡

2
),(

tile_height
2

+ stride), (
tile_height

2
 + 2 * stride), ... , (input_img_height -

tile_height
2

)                                                                                          

(3)

Variables stride and win factor have a direct impact on feature extraction and are also responsible 
for the resolution of domain segmentation output. Stride has values starting at 1. As we increase 
stride, it decreases the resolution in prediction of domain segmentation output. The win factor is 
responsible for the tile size and a large tile size results in more boundary pixels excluded from 
analysis (the latter is described in main manuscript’s section II A).  
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S.III. Discrete Wavelet Transform (DWT)

A. Performance and characteristics of different wavelet types in DWT 
workflow

Figure S5: Parts (a) and (d) are two preprocessed AFM phase images and parts (b, c) and parts (e, f) are 
their domain segmentation outputs, respectively. The DWT workflow’s domain segmentation outputs from 
(b, e) Haar wavelet and (c, f) biorthogonal wavelets are shown. Depending on the convolutional filters 
inherited by the type of wavelet, each has a different characteristic of decomposition. (b, e) Haar wavelets 
focus more on capturing larger gradients whereas (c, f) biorthogonal wavelets capture more continuous 
gradients. As a result, we get to see different domain segmentations in both the cases (b, e) and (c, f).   

B. Extension of DWT workflow on other literature datasets: scope 
and opportunities  

Figure S6: DWT methods applied to other AFM images (parts a and e) adapted with permission from [2, 
3]  Copyright 2001 American Chemical Society. The images in (b, c) and (d, f) are the corresponding Haar 
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and bioorthogonal domain segmentations for parts a and e, respectively. The domain segmentations are 
useful to study fibril like patterns in AFM images where features like length, directionality, and orientation 
of fibrils are of interest.

S.IV.  Radon Transform 

Figure S7: DFT and Radon workflow applied on (a) a pre-processed AFM phase image resulting in (b, c) 
domain segmentations. In parts (b) and (c) the green circles highlight the minor differences in segmentation 
obtained from these two workflows.

S.V. ResNet50: Methods experimented to improve ResNet50 
performance

1. Methods to improve performance on noisy data.  

Figure S8: ResNet50 workflow applied on pre-processed AFM phase images shown on the left in parts (a) 
and (b) without histogram equalization results in the right image in parts (a) and (b). As we can see the 
results are prone to noise in the pre-processed AFM image as ResNet50 is sensitive to scale and outliers in 
the image. Applying histogram equalization to the preprocessed AFM phase images before using the 
ResNet50 workflow shows tremendous improvement in the results as shown in parts (c) and (d).
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2. Methods to address minimum tile size.  

Figure S9: To address the input tile size constraint discussed in the main manuscript’s Section II. B, one 
could increase the overall image size with image interpolation techniques which can increase the scales of 
features in tiles. In parts (a) and (e) we show two histogram equalized pre-processed AFM phase images 
that are sent into the ResNet50 workflow yielding the domain segmented images in parts (b-d) and parts ( 
f-h) when the pre-processed images were interpolated to sizes (c, g) 800 pixels x 800 pixels, (b, f) kept same 
as input 384 pixels x 384 pixels, and (d, h) 1200 pixels x 1200 pixels. We notice that interpolation has 
increased the workflow’s ability to capture highly granular features (light domains inside larger dark 
domains are captured in parts c and d as compared to part b. We note, however, that the interpolation 
method’s computational cost scales exponentially with increase in interpolation size.           

3. Understanding the use of ResNet 50 architecture to extract features

Figure S10: ResNet50 is a deep learning algorithm with multiple layers. For the input histogram equalized 
preprocessed AFM phase images shown in parts (a) and (e), we show the domain segmentation images 
generated by using feature maps from various stages of ResNet50 model shown in part (i). In parts (b) and 
(f) are the results for the two inputs when we used feature maps from stage 1 of the flow in part (i). In parts 
(c) and  (g) are results using stage 2 feature maps and in parts (d) and (h) are results using stage3 features 
maps. With increase in depth, we notice that the workflow becomes more prone to noise [e.g., you can see 
noise in part (h) that we do not see in parts (f) and (g)]; there can also be misclassification in boundary 
regions of domains.  
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S.VI. Domain Size Distribution Calculated Using Porespy Package

Figure S11: Illustration of domain size distribution calculations. (a) Index maps (binary images) 
containing domain segmented into light and dark domains are used to perform domain size distribution 
calculation. Porespy [4] is a python package that performs porosimetry simulations on index maps 
resulting in  2D heat maps as shown in the right side of parts (b) and (c). In these heat maps the color of 
each pixel depicts the radius of the largest circle that could overlap that pixel and the pixels of the non-
observing domain are zero. From the heat maps pixel values, we can then calculate domain size distribution 
in real units using the scale bar present in the metadata associated with the AFM image used in the 
workflow; parts (b) and (c) on the left present these distributions.
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In Figure S12 we present the calculated domain size distributions for representative 15 AFM images from 
the 144 images we had in the dataset. All of these 15 AFM images were segmented using DFT with variance 
as the features. As described before, these AFM images were obtained from supramolecular block 
copolymer with varying PS and POEGMA block lengths. 

 Pre-processed image          Light domain                            Dark domain
a).

b).

c).
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d).

e).

f).
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g).

h).

i).
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j).

k).

l).
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m).

n).

o).

Figure S12. Results of domain size distribution for another 15 representative AFM images. Each panel 
we have two figures – left is the original AFM pre-processed image and on the right is the domain size 
distributions (Probability vs. domain sizes in nm) of dark and light domains.
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Figure S13. Summary of results from domain size distributions for various supramolecular 
polymers in the AFM dataset shown in Figure S12. Here we show the value of the molecular 
weights of the POEGMA-DAT and PS-Thy in the leftmost column and top-most row. In each part 
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on the left we show the representative AFM image for that system. On the right we share the 
average, standard deviation, maximum, and minimum of the domain sizes seen for various 
images collected for each sample with the corresponding molecular weights of the POEGMA-
DAT and PS-Thy.
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