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Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,

Switzerland

‡Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and
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Table S1: Glossary of abbreviations

An Aniline
Be Benzamide
BO Bayesian optimization
BTTP 2-Methyl-N-(tri(pyrrolidin-1-

yl)phosphoranylidene)propan-2-amine
CC Cross-coupling
CIBO Cost-informed Bayesian optimization
DA Direct Arylation
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
ECPF2 Extended connectivity fingerprint
GPR Gaussian process regression
HTE High-throughput experimentation
ML Machine learning
Mo Morpholine
Pd Catalyst Palladium catalyst
Ph Phenethylamine
qNEI Batch noisy expected improvement
tBuBrettPhos Di-tert-butyl(2’,4’,6’-triisopropyl-3,6-dimethoxy-

biphenyl)phosphine
tBuXPhos 2-Di-tert-butylphosphino-biphenyl

S1 Data, surrogate models and acquisition functions

The data for the directed arylation (DA) and the cross-coupling reactions (CC) were taken

from the EDBO Github and supplementary information respectively. The DA dataset de-

scribes the full grid over 12 ligands, 4 bases, 4 solvents, 3 concentrations, and 3 temperatures

for a total of 1728 experiments. The CC dataset is less exhaustive and does not always use

the same resources (i.e., ligands) for the four nucleophiles.

Our implementation of CIBO is based on BoTorch.S1 We use Gaussian process regression

(GPR) as our model architecture and batch noisy expected improvement (qNEI) as our

default acquisition function.S1

qNEI (x;D) = E
[
(max g(ξ)−max g(ξobs))+ |D

]
. (S1)



In this equation, E denotes the expectation over the distribution of possible objective

function values g(ξ) conditioned on the current data D. The term max g(ξobs) represents the

maximum observed function value in the dataset, while max g(ξ) represents the maximum

function value in a batch of candidate points ξ. The positive part function (x)+ = max(x, 0)

ensures that only positive improvements are considered.

GPR is a commonly used surrogate model in Bayesian optimization, which predicts both

the output of the objective function and its uncertainty. It is especially powerful owing

to its non-parametric nature and ability to model complex, non-linear relationships with a

measure of uncertainty. Here, the surrogate models use a Jaccard-Tanimoto kernel as defined

in GAUCHE.S2 The accuracy of the initial GPR models is shown in Figure S1 and S2, noting

that their quality improves as the optimization advances by retraining with more data at

each iteration.

Figure S1: Scatter plots showing yield predictions versus experimental values with N = 150
random training points using Gaussian process regression (GPR) with the Jaccard-Tanimoto
kernel.S2 All predictions on the DA datasetS3 are out-of-sample.

Batch noisy expected improvement (qNEI) computes the average expected improve-

mentS4,S5 over previously observed points by using samples from the joint posterior over

the suggested experiments and those previously observed. Note that our approach is not
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Figure S2: Scatter plots of Gaussian process regression predictions for the CC dataset with
a fixed training set size of 30 random reaction conditions for fixed nucleophiles (Aniline,
Morpholine, Phenethylamine, Benzamide). Predictions (with error bars indicating the un-
certainty) are shown on the y-axis, and reference values are shown on the x-axis. The R2

value and mean absolute error (MAE) are shown on each panel.

restricted to qNEI. Similar expressions could be applied for different acquisition function

types, e.g., GIBBON.S6 Furthermore, the choice of the scaling function S may generally

depend on the type of acquisition function. An additional scaling factor could be introduced

to guide the optimization toward more or less cost efficiency.

Acquisition functions that account for the exploration–exploitation trade-off can only take

non-negative utility values. In other words, adding new data “never hurts”, α ≥ 0.S7 The

modified acquisition function α̃ with costs may take negative values providing a canonical

stopping criterion if all remaining experiments have negative utility α̃ < 0. Otherwise, the
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Figure S3: Gaussian process regression predictions with varying training set sizes for the
Direct Arylation reaction dataset. Scatter plots show yield predictions versus experimental
values for different training set sizes (N = 50, 100, 200, 1000) random training points using
Gaussian process regression (GPR) with the Jaccard-Tanimoto kernel. Each plot includes
the R2 score and mean absolute error (MAE) to assess the model performance.

optimization can be halted when a target yield has been obtained.

In this next experiment, we look at how the model improves yield prediction by increasing

the amount of training data. As shown in the scatter plots for the DA dataset (Figure S3)

the model improves with larger training set sizes, starting with an R2 = 0.37 for N = 50

training points and reaching R2 = 0.87 for N = 1000. For a more systematic analysis, the

mean absolute error (MAE) for yield prediction is given as a function of training set size

(see Figure S4) on a double logarithmic scale. The results confirm that the error decreases

systematically with increasing N .
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Figure S4: Learning curve, mean absolute error of the yield prediction from the Gaussian
process regression model as a function of training set size, using a non-intersecting set of
random points from the direct arylation dataset as training and test set.

S2 Reaction representations

To represent a chemical compound x, we use extended connectivity fingerprintsS8 of radius

two (ECFP2) with 512 features per molecule. The input X for our models includes these

ECFP2 descriptors along with reaction conditions such as temperature T and concentra-

tion c when available, forming a concatenated representation vector. For instance, a single

experiment of the DA dataset is represented as

X = [xligand,xsolvent,xbase, T, c], (S2)

and an experiment of the CC dataset – as

X = [xligand,xsolvent,xbase, cbase, eq.base, T, t], (S3)

where eq. are equivalents, and t is the time.
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S3 Price sources

The cost of chemicals was previously reported for the DA dataset.S9Prices, for the CC

dataset, were taken from various Swiss providers (look-up date: Jan, 9th 2024). Exact

sources and prices are listed on the code repository. Samples closest or equal to 1 g were

used as a reference and were converted to dollars per gram ($/g) for consistency. Realistically,

the full sample price should be taken. Moreover, depending on the molecular weight and

stoichiometry of chemicals, dollars per mole may be a more appropriate measure in some

cases. For simplicity, we also convert CHF to USD with a conversion rate of 1. The process

of obtaining prices could be automatized by using recently developed tools.S10,S11

S4 Weight factor for including costs

In Figure S5, we compare the effect of choosing different weighting factors λ to include the

cost consideration into the yield optimization of CIBO for theDA dataset. The initialization

and surrogate model are the same type as in the main text. A large λ means putting more

weight on lowering the cost of acquiring new compounds, a smaller value means the opposite.

In general, the choice of λ depends on user preferences. We find that simply setting λ = 1

worked well for the five retrospective studies considered here. For prospective studies, we

recommend comparing the suggestions given by both BO and CIBO and eventually adapting

λ.

As expected, using λ = 2.0, twice the default value, for the cost weights yields much

smaller cumulative costs. However, while the costs are less than a fourth of a random search,

in this case, the best yield found is not much better than random. λ = 1.0 is equivalent to

the result shown in the manuscript.
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Figure S5: Comparison of cost-informed Bayesian optimization with weighting factor (Equa-
tion 4 in paper) λ = 1.0 (CIBO, orange). CIBO results for λ = 0.5 and λ = 2.0 are shown
with red and blue circles, respectively. Standard BO (blue triangles) for the DA dataset and
Random Search (RS) (red line) are also shown. Average curves over five runs are presented.
The best-obtained yield in each batch iteration is shown in the top panel, and the total cost
to acquire the ligands is shown in the bottom panel.

S5 Other initializations

To further investigate and compare the performance of CIBO and BO, several additional

initialization experiments were conducted. The results of these experiments, using different

initialization strategies, are shown in this section.

In Figure S6 we analyzed how starting from different ligands alters the optimization for

the DA dataset. For each of the 100 optimization runs, one of the 12 ligands was randomly

chosen and the 144 experiments using that ligand were used to initialize the surrogate model.

Overall, no significant changes are observed compared to Figure 3 (main text) apart from

S8



0 2 4 6 8 10 12 14 16 18 20

70

80

90

100

Yi
el

d 
[%

]
CIBO
BO
RS

0 2 4 6 8 10 12 14 16 18 20
Iteration

0

500

1000

1500

2000

co
st

[$
]

Figure S6: Comparison of CIBO (orange), standard BO (blue), and random sampling (RS,
red) for the DA dataset, averaged over 100 runs and batch size of q = 5. Each optimization
was initialized with one of the 12 ligands chosen randomly and its 144 corresponding exper-
iments.

random sampling performing worse. Given that each initialization starts with a different

ligand, the cost curve in Figure S6 is initiated at $0 and only the cost of the following newly

acquired compound is then added to the total cost.

As shown in Figure 3, random sampling consistently underperforms compared to BO, yet

high yield values are obtained due to the multiple combinations leading to high yields in the

DA dataset. In Figure S6 where different ligands are chosen initially, random sampling per-

forms even worse on average. The performance starts around 80% yield, which corresponds

to the average of all data points for DA.
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Figure S7: Comparison of CIBO (orange), standard BO (blue), and random sampling (RS,
red) for the DA dataset, averaged over 100 runs. Each optimization was initialized using
10 random experiments with the worst ligand (i.e., the ligand which given all other reaction
conditions has the lowest yield) and a batch size of q = 5.

Figure S7 shows runs initialized with the worst ligand from DA. In comparison to Fig-

ure 3 (main text), only 10 experiments are chosen randomly instead of the previous 144.

This reflects a more realistic scenario, where less experiments are available at the onset of

optimization. Both BO and CIBO take more experiments to reach yields of 99% but CIBO

manages to spend even less than when starting with 144 experiments.
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Figure S8: Comparison of CIBO versus BO for different batch sizes q = 1, 5, 10 using the
worst ligand initialization as in the main text. The maximal yield as well as the budget
spent for the discovery campaign are shown in the top and bottom panel respectively.

We also explore the effect of different batch sizes q (shown Figure S8) Since more data

is added at each iteration to train the reference model, increasing the batch sizes from 5

to 10 results in faster convergence of both BO and CIBO. CIBO appears to become more

“greedy” if the batch size is decreased and tends to fully explore all “cost-free” dimensions.

This behavior however can be adjusted by changing the weighting factor λ (see SI section S4).
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Figure S9: Yield optimization for the CC dataset with four different nucleophiles (An, Mo,
Ph, Be) starting with the cheapest available ligand. We compare cost-informed Bayesian
optimization (CIBO, orange), Bayesian optimization (BO, blue), and random sampling (RS,
red). Average curves over 100 runs are shown. Error bars are shown but not visible because
the optimization is completely determined by the initialization. The top row shows the best
yield found as a function of the batch iteration, and the bottom row displays the cumulative
costs.

Figure S9 and S10 show both initializations used for Figure 5 (main text). Starting with

the cheapest ligand for Aniline leads to a perfect yield even prior to optimization.
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Figure S10: Yield optimization for the CC dataset with four different nucleophiles (An, Mo,
Ph, Be). Runs are initialized with the worst ligand. We compare cost-informed Bayesian
optimization (CIBO, orange), Bayesian optimization (BO, blue), and random sampling (RS,
red). Average curves over 100 runs are shown. Error bars are shown but not visible because
the optimization is completely determined by the initialization. The top row shows the best
yield found as a function of the batch iteration, and the bottom row displays the cumulative
costs.
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