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Details of the DFT descriptors

The atomic charges used here are Hirshfeld partial charge as it has a small dependency
on basis sets, and are able to reproduce the electrostatic potential, which are important to
reactivity and molecular properties. 2

The Fukui index were used to estimate the most electrophilic or nucleophilic sites of a
molecule.?* Charge distribution among a molecule in each atoms is changed when a netural
molecule accept or losing an electron. The electrophilicity (susceptibility of an nucleophilic

attack) of an atom in a molecule with N electrons is described as:

felec - pN—l—l(T) - pN(T) (1)

, and the nucleophilicity (susceptibility of an electrophilic attack) of an atom in a molecule

with N electrons is described as:

fnuclei - PN(T) - PN—l(T) (2)

The NMR chemical shift is the third atomic descriptors, which indicates the local atomic
environment by encoding informaiton about attached or adjacent atoms.® The NMR shift

will be presented as shielding constants and calculated using the Gauge-Independent Atomic

Orbital (GTAO) method.®



Comparison of gqmdesc and Fgmdesc

We first apply qmdesc model introduced by ml-QM-GNN7 to predicting Hirshfeld partial
charge, and Fukui index of reactants in metal-catalyzed cross-coupling reactions (MCCCRs).
The predictions made by qmdesc is compared with DFT calculated results, as shown in Figure
S1 a to c. The electrophilicity of an atom, labeled as f..., and the nucleophilicity of an atom,
labeled as f,ucei, can not be correctly predicted via qmdesc. Considering gmdesc model is
trained on 137k molecules curated from PubChem and Pistachio, specific atoms or functional
groups of reactant molecules in MCCCRs may barely involved in qmdesc’s training set. We
treat the gqmdesc model as a pre-trained model and use the calculated DFT descriptors as
new data to update the weights in qmdesc, resulting in a fintuned qmdesc model (Fqmdesc).
The predictions made by Fqmdesc is also compared with DFT calculated results, as shown
in Figure S1 d to f. Predictions made by Fqmdesc are closer to DT calculated results than

those made by qmdesc.
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Figure S1: Prediction of target descriptors using qmdesc and Fqmdesc compared to DFT
calculated results (Ground Truth) on test set. (a) Hirshfeld partial charge predicted by
gmdesc versus DET calculated. (b) frucei predicted by qmdesc versus DFT calculated. (c)
fetec predicted by qmdesc versus DFT calculated. (d) Hirshfeld partial charge predicted by
Fqmdesc versus DFT calculated. (e) fhuce: predicted by Fgmdesc versus DFT calculated.
(f) feee predicted by Fqmdesc versus DFT calculated.



Statistics of Metal Elements used as Catalyst in CAS

Content Collection data

Table S1: Statistics of Metal Element used as Catalyst in CAS Content Collection data

Reaction Type Pd Ni Co Fe
Heck 405 6 4 3
Hiyama 46 1 0 0
Kumada 77 47 21 25
Negishi 74 53 ) 0
Reaction Type Cu Ru Mn Au
Heck 0 5 0 3
Hiyama 12 0 0 1
Kumada 3 0 4 0
Negishi 13 0 0 0
Reaction Type Rh Pb In
Heck 0 1 1
Hiyama 0 0 0
Kumada 0 0 0
Negishi 1 0 0



Details for the alternating reactant example

The yield of the original reaction for an industrial process is 89 %% as reported by
Karlsson et al.. The hetero-substituted starting material, with chlorine and iodine groups,
can be replaced by homo-substituted starting material, with two chlorine groups, without
shifting the regioselectivity site. Regioselectivity for the homo-substituted starting material
can be verified by reaction as shown in Figure S2 and the yield of this reaction is 64 %° as
reported by Shah et al.. Considering the prices of starting material and reaction yields, the
homo-substituted starting material would be a good substitution for the original starting

material with different halogen groups.

O o PAPPh, NH,
F H,N cl  14-dioxane, H,0 F Nx —
F 90°C, 16h F cl

Figure S2: Regioselectivity result of the alternative reactant with the homo-substituted
group in Figure 1 (e) for a Suzuki-Miyaura reaction.?



Input Features

Table S2: Extracted Atom and Bond Features for Molecule Graph

Atom Features one-hot values
Atom Symbol yes C, N, O, F, etc
Atom Degree yes 0,1,2,3,4,5
Explicit Valence yes 1,2,3,4,5,6
Implicit Valence yes 0,1,2,3,4,5
Aromatic no 0,1
Bond Features one-hot values
Bond Type yes Single, Double, Triple, Aromatic
Conjugated Bond no 0,1
Bond in Ring no 0,1



Details for implementation of other models

Except for Regio-MPNN and random guess, Extended-Connectivity Fingerprints (ECFPs)
based, chemical descriptors based, and sequence based multilayer perceptron (MLP) models
are also used to accomplish the regioselectivity prediction task. Detailed implementation of
these models is as follows.

For ECFPs based MLP model, ECFPs for reactants and product in a reaction are
computed with a length of 2,048 and a radius of 2. ECFPs for reactions are calculated by
the subtraction of reactants fingerprints and product fingerprints. Then, concatenation of
reactants fingerprints and reaction fingerprints are fed into a fully-connected neural network
to generate the predicted "score” for candidates.

For chemical descriptors based MLP model, Hirshfeld partial charges, Fukui index,
and NMR chemical shifts of reacting center atoms are used as model inputs. Reacting
center atoms are atoms whose neighbor atoms or bonds connected to neighbor atoms are
different between reactants and products. Then, these chemical descriptors are fed into a
fully connected neural network to generate the predicted ”score” for candidates.

For sequence based model + MLP, the Simplified Molecular Input Line Entry System
(SMILES) of a reaction is vectorized by the encoder of rxnfp generation with a length of
256.10 Concatenation of this generated vector and chemical descriptors of reacting center
atoms, as shown in the aforementioned chemical descriptors based model, is used as model
inputs. Then, the input vectors are fed into a fully connected neural network to generate

the predicted ”score” for candidates.



Experiment on under-sampling training set

To achieve a more balanced training set on the Pistachio, we decrease the number of
data points for the majority reaction type in the Pistachio training set. The total number of
the remaining training data is 3,271 and reaction type distribution for this under-sampled
training set is shown in Figure S3 a. The overall accuracy on the test set using MPNN
+ Fqmdesc is 87.98% and the percentage of incorrect prediction for each type is shown in
Figure S3 b. The results indicate that applying under-sampling strategy on our unbalanced

training set reduces the ability of generalization of the MPNN+Fqgmdesc model.
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Figure S3: (a) Reaction Type Distribution for Metal-Catalyzed Cross-Coupling Reactions
in under-sampled Pistachio training data. (b) The Percentage of Incorrect Predictions in
Different Cross-Coupling Types in Test Set by Regio-MPNN with Fgmdesc trained by under-
sampled training set.



Regioselectivity sites for different reaction types
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Figure S4: (a) Pistachio + CAS Content Collection Buchwald-Hartwig reaction competing
sites summary and (b) The posterior probability of Buchwald-Hartwig reactions for different
competing site pairs.
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Figure S5: (a) Pistachio + CAS Content Collection Heck reaction competing sites summary
and (b) The posterior probability of Heck reactions for different competing site pairs.
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Figure S6: (a) Pistachio + CAS Content Collection Hiyama reaction competing sites sum-
mary and (b) The posterior probability of Hiyama reactions for different competing site
pairs.
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Figure S7: (a) Pistachio + CAS Content Collection Negishi reaction competing sites sum-
mary and (b) The posterior probability of Negishi reactions for different competing site pairs.
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Figure S8: (a) Pistachio + CAS Content Collection Sonogashira reaction competing sites
summary and (b) The posterior probability of Sonogashira reactions for different competing
site pairs.
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Figure S9: (a) Pistachio + CAS Content Collection Stille reaction competing sites summary
and (b) The posterior probability of Stille reactions for different competing site pairs.
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Figure S10: (a) Pistachio + CAS Content Collection Suzuki-Miyaura reaction competing
sites summary and (b) The posterior probability of Suzuki-Miyaura reactions for different
competing site pairs.
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Human Chemist Test and Results

We randomly picked 100 reactions with regioselectivity issue from test set and invited
six senior chemists to identify the main product for these reactions independently. The
amount of reactions for each reaction type kept the same percentage as they are in the
whole database. Namely, 10 entries are Buchwald-Hartwig reaction, 4 for Heck reaction,
2 for Hiyama reaction, 3 for Kumada reaction, 2 for Negishi reaction, 10 for Sonogashira
reaction, 10 for Stille reaction, 58 for Suzuki-Miyaura reaction. Among these 8 reaction
types, Kumada, Sonogashira, and Stille reactions have Fluorine bonded carbon as possible
reacting site. Accuracy of predictions made by the chemists varies from 73.7 % to 93.9%,
while accuracy of predictions made by model is 100 %. Reactants with regioselectivity
issue for reactions on which at least one human made incorrect predictions are shown from
Figure S11 to S15 for all the above mentioned reaction types. These reactants share similar
substructures of hetero-aromatic rings with substitution halogen atoms. Full reactions can

be found from the original patents indicated on the figures.
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Figure S11: Reactants in regioselective reactions on which at least one human made incorrect
predictions for Buchwald-Hartwig reaction type.
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Figure S12: Reactants in regioselective reactions on which at least one human chemist made
incorrect predictions. (a) Hiyama reaction; (b) Negishi reaction; (¢) Kumada reaction.
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Figure S13: Reactants in regioselective reactions on which at least one human made incorrect
predictions for Sonogashira reaction type.
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Figure S14: Reactants in regioselective reactions on which at least one human made incorrect
predictions for Stille reaction type.
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Figure S15: Reactants in regioselective reactions on which at least one human made incorrect
predictions for Suzuki-Miyaura reaction type.
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