
SUPPORTING INFORMATION FOR
DATA EFFICIENCY OF CLASSIFICATION STRATEGIES FOR

CHEMICAL AND MATERIALS DESIGN

Quinn M. Gallagher
Chemical and Biological Engineering

Princeton University
Princeton, NJ 08544

qg1361@princeton.edu

Michael A. Webb
Chemical and Biological Engineering

Princeton University
Princeton, NJ 08544

mawebb@princeton.edu

Contents

S1 Model Implementation and Hyperparameter Tuning SI-2

S2 Sensitivity of Top Algorithms to Chosen Tasks and Number of Points SI-3

S3 Sensitivity of Active Learning vs. Space-Filling to Chosen Tasks SI-8

S4 Survey of Ensemble Strategies SI-10

S5 Top-Performing Algorithms for Each Task SI-11

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024



DATA-EFFICIENT CLASSIFICATION

S1 Model Implementation and Hyperparameter Tuning

Random forests were implemented using the RandomForestClassifier class from the scikit-learn Python
package. Features were kept unscaled when training. Uncertainties were calculating by taking the entropy (i.e.,
−
∑

i pi ln pi) of the class distribution produced by the predict_proba method. Extreme gradient-boosted decision
trees (XGBs) were implemented using the XGBClassifier method from the xgboost Python package. Features
were kept unscaled when training. Uncertainties were calculating by computing the standard deviation in predictions
produced by training 10 models on 70% subsamples of the training set. Neural networks were implemented using
the MLPClassifier class from the scikit-learn Python package. Features were scaled using a MinMaxScaler
before training. Uncertainties were calculated by taking the standard deviation in predictions produced by training 10
models on 70% subsamples of the training set. Support vector classifiers were implemented using the SVC class from
scikit-learn. Features were scaled using a MinMaxScaler before training. Uncertainties were calculated using the
entropy of the probability distribution computed by the predict_proba method. LP models were implemented using
the LabelPropagation class from scikit-learn, features were scaled using a MinMaxScaler before training, and
uncertainties were calculated using 1 − pmax, where pmax is the probability of the most likely class predicted by the
predict_proba method.

For all models implemented using scikit-learn or xgboost, hyperparameters were tuned using the BayesSearchCV
method from the scikit-optimizer Python package, which uses a sequential, GP-based Bayesian optimization
protocol for hyperparameter selection. For a set of hyperparameters, performance was gauged using the Macro
F1 score computed by 5-fold cross-validation. A maximimum of 100 iterations was conducted, but if the Macro
F1 score did not improve by 0.03 in 10 iterations, hyperparameter tuning was terminated. For each model, the
hyperparameters chosen for tuning and their available ranges are available for inspection in the GitHub available at
https://github.com/webbtheosim/classification-suite.git.

All Gaussian processes (GPs) were implemented in the gpytorch Python package. Gaussian process regressors (GPRs)
were implemented using GaussianLikelihoods with a MarginalLogLikelihood loss function, and Gaussian
process classifiers (GPCs) were implemented using BernoulliLikelihoods with a VariationalELBO loss function.
Isotropic GPs used radial basis function kernels with a single lengthscale, while anisotropic GPs used radial basis
functions with d lengthscales, where d is the dimensionality of the task. Features were scaled using a MinMaxScaler
prior to training. Hyperparameters, including lengthscales, were fit using the Adam optimizer until loss functions
converged within 1e-6.

The Bayesian kernel density estimation (BKDE) model was adapted from the Gryffin GitHub available at https:
//github.com/aspuru-guzik-group/gryffin.git. Kernel density estimation remained unchanged from the
official implementation. The Bayesian autoencoder used for the BKDE model was kept at a fixed architecture of three
hidden layers with 24 hidden dimensions, consistent with its use in Ref. [1]. Features are scaled internally by BKDE
prior to the training of the Bayesian autoencoder. Predictions are made on a point x by finding the sum of kernel
densities at x for each label. That is, if {x0} denotes the set of points labeled 0, {x1} denotes the set of points labeled
1, ϕ(xi) denotes BKDE’s kernel density estimate of point i, and X denotes the entire domain, the probability of a
new point x∗ being labeled l is pl(x∗) =

∑
xi∈{xl} ϕi(x

∗)/
∑

xi∈X ϕi(x
∗). The class with the highest probability is

chosen as the predicted label. Uncertainties are computed using the entropy of the probability distribution across all
labels.

SI-2

https://github.com/webbtheosim/classification-suite.git
https://github.com/aspuru-guzik-group/gryffin.git
https://github.com/aspuru-guzik-group/gryffin.git


DATA-EFFICIENT CLASSIFICATION

S2 Sensitivity of Top Algorithms to Chosen Tasks and Number of Points

Figure 3 shows the performances of top-performing algorithms for the maximum number of points measured on every
task. In this section, we consider how the top-performing algorithms change when different tasks or number of points
are considered. Below, we display the performances of top-performing algorithms for different subsets of tasks based
on their dimensionality, d.

Figure S1 shows the performances of top algorithms for tasks where d ≤ 8. The results in Figure S1 differ from those
in Figure 3. SV-based active learning algorithms are more represented among the top-performers in Figure S1 than in
Figure 3A, while XGB-based active learning algorithms are no longer top performers for this set of tasks. NN-based
algorithms continue to perform well; even NN-based space-filling algorithms are represented among the top performers.
Figure S1B shows that NN-based active learning algorithms are still top performers when measuring performance by ξ,
while RF-based active learning algorithms perform less well relative to GP-based active learning algorithms.

Figure S2 shows the performances of top algorithms for tasks where d > 8. Here, RF- and XGB-based active learning
algorithms show increased performance relative to other strategies. When considering the results of both S1 and S2,
it seems that the relative performance of tree-based algorithms is highly dependent on the dimensionality of the task.
While NN-based algorithms perform well across all dimensions studied here, tree-based methods (i.e., RFs and XGBs)
seem to improve with more dimensions, while kernel-based methods (i.e., GPs and SVs) seem to improve with lower
dimensions.

We also consider how top-performing algorithms differ when using three, five, and seven rounds of active learning.
Here, we consider all tasks. Figure S3 shows that, for few rounds of active learning, there are space-filling algorithms
that perform just as well as active learning algorithms. It also seems that RF-based algorithms are less clearly the second
best option compared to GPs or SVs. For the results of five and seven rounds of active learning (shown in Figures S4
and S5, respectively), space-filling algorithms decline in their relative performance and the results converge to those
shown in Figure 3. These results indicate that NN-based active learning algorithms are still the top performers even
when data is scarce.

Figure S1: Summary of performances of the top-20 algorithms on tasks with dimensionality d where d ≤ 8. Algorithm
performance is measured by averaging the (A) relative Macro F1 score and (B) relative ξ of each algorithm across all
tasks, where “relative” denotes normalizing the metric by the performance of the top-performing algorithm on that task.
Results are colored according to the model used by the specified algorithm. Error bars show the standard error.

SI-3



DATA-EFFICIENT CLASSIFICATION

Figure S2: Summary of performances of the top-20 algorithms on tasks with dimensionality d where d > 8. Algorithm
performance is measured by averaging the (A) relative Macro F1 score and (B) relative ξ of each algorithm across all
tasks, where “relative” denotes normalizing the metric by the performance of the top-performing algorithm on that task.
Results are colored according to the model used by the specified algorithm. Error bars show the standard error.

SI-4



DATA-EFFICIENT CLASSIFICATION

Figure S3: Summary of performances of the top-20 algorithms after three rounds of active learning on all tasks.
Algorithm performance is measured by averaging the (A) relative Macro F1 score and (B) relative ξ of each algorithm
across all tasks, where “relative” denotes normalizing the metric by the performance of the top-performing algorithm
on that task. Results are colored according to the model used by the specified algorithm. Error bars show the standard
error.

SI-5



DATA-EFFICIENT CLASSIFICATION

Figure S4: Summary of performances of the top-20 algorithms after five rounds of active learning on all tasks. Algorithm
performance is measured by averaging the (A) relative Macro F1 score and (B) relative ξ of each algorithm across all
tasks, where “relative” denotes normalizing the metric by the performance of the top-performing algorithm on that task.
Results are colored according to the model used by the specified algorithm. Error bars show the standard error.

SI-6



DATA-EFFICIENT CLASSIFICATION

Figure S5: Summary of performances of the top-20 algorithms after seven rounds of active learning on all tasks.
Algorithm performance is measured by averaging the (A) relative Macro F1 score and (B) relative ξ of each algorithm
across all tasks, where “relative” denotes normalizing the metric by the performance of the top-performing algorithm
on that task. Results are colored according to the model used by the specified algorithm. Error bars show the standard
error.

SI-7



DATA-EFFICIENT CLASSIFICATION

S3 Sensitivity of Active Learning vs. Space-Filling to Chosen Tasks

Figure 5 shows the frequency at which active learning algorithms out-perform space-filling algorithms with the same
sampler, model, and seed for all tasks. In this section, we show the results for tasks which deviate from the trends
shown in Figure 5. Specifically, we show the results for princeton, tox21, and electro tasks in Figures S6, S7, and
S8, respectively.

Figure S6 shows that space-filling algorithms out-perform active learning algorithms on the princeton task. This is
likely the case because of the complicated classification boundary present in the princeton task. Models that span the
task domain are able to better characterize this complicated boundary, as opposed to active learning methods which
tend to refine already discovered boundaries. Figures S7 and S8 show two tasks where there is not a monotonic increase
in the frequency at which active learning algorithms out-perform space-filling algorithms with more rounds of active
learning. We attribute this to the fact that the tox21 and electro tasks are two of the most difficult classification tasks
considered. When a task is very difficult, it is likely that both active learning and space-filling algorithms are struggling
to accurately characterize the dataset. Therefore, the frequency at which active learning algorithms out-perform
space-filling algorithms for these tasks is insignificant for identifying which scheme is more effective for accurately
classifying points in the domain.

Figure S6: Fraction of sampler, model, and seed choices for which the active learning (AL) algorithm outperforms the
equivalent space-filling (SF) algorithm based on the number of rounds of active learning. The fractions considering all
sampler, model, and seed choices are shown in blue. The fractions considering only the top-20 sampler, model, and
seed choices in Figure 3B include the blue and orange bars. Only resuts from the princeton task are shown.

SI-8



DATA-EFFICIENT CLASSIFICATION

Figure S7: Fraction of sampler, model, and seed choices for which the active learning (AL) algorithm outperforms the
equivalent space-filling (SF) algorithm based on the number of rounds of active learning. The fractions considering all
sampler, model, and seed choices are shown in blue. The fractions considering only the top-20 sampler, model, and
seed choices in Figure 3B include the blue and orange bars. Only resuts from the tox21 task are shown.

Figure S8: Fraction of sampler, model, and seed choices for which the active learning (AL) algorithm outperforms the
equivalent space-filling (SF) algorithm based on the number of rounds of active learning. The fractions considering all
sampler, model, and seed choices are shown in blue. The fractions considering only the top-20 sampler, model, and
seed choices in Figure 3B include the blue and orange bars. Only resuts from the electro task are shown.

SI-9



DATA-EFFICIENT CLASSIFICATION

S4 Survey of Ensemble Strategies

We considered four approaches to combining the predictions and uncertainties of multiple models for developing
data-efficient classification algorithms, inspired by those reported in Ref. [2]. First, we treated model choice as a
hyperparameter. Here, the model with the highest cross-validation accuracy on the training set was the model selected
to make predictions and compute uncertainties for the next round of active learning. Second, we considered simple
averaging, where all considered models were trained on the training set and the combination of models whose average
predictions obtained the highest cross-validation accuracy was used to compute uncertainties. Uncertainties were
calculated by averaging the scaled uncertainties of the chosen models. Third, we considered stacking, which involves
a linear model that takes as input individual model predictions and outputs a final prediction. In this way, stacking
ensembles make predictions using learnable weights applied to the predictions of its component models. Uncertainties
are calculated using a weighted sum of scaled uncertainties for each model. Finally, we consider ensembles built using
arbitration, where predictions using separate models for each point. The model chosen for a given point is the one that
is most certain in its prediction for that point, as judged by the lowest value of its scaled uncertainty. The uncertainty
of that model for the specified point is taken to be the uncertainty of the ensemble at that point. Only random forests,
neural networks, and anisotropic GPCs are considered by the ensemble scheme—these were shown to outperform
ensembles built from random forests, neural networks, XGBs, and isotropic and anisotropic GPCs and GPRs.

Given the relatively poor performance of space-filling algorithms, only active learning algorithms were studied using
ensemble schemes. Figure S9 shows the performances of ensemble-based active learning algorithms on all tasks. It is
clear that ensemble-based algorithms which treat model choice as a hyperparameter are the top-performing algorithms.
Interestingly, the maximin and medoids versions of the remaining ensemble methods perform better than those using
alternative samplers. When considering only maximin and medoids samplers, it appears that ensemble-based algorithms
which use averaging and stacking also perform well, but not as well as the methods which treat model choice as a
hyperparameter.

Figure S9: Summary of performances of the all ensemble-based active learning algorithms. Algorithm performance is
measured by averaging the (A) relative Macro F1 score and (B) relative ξ of each algorithm across all tasks, where
“relative” denotes normalizing the metric by the performance of the top-performing algorithm on that task. Results are
colored according to the ensemble scheme employed. Error bars show the standard error.

SI-10



DATA-EFFICIENT CLASSIFICATION

Table S1: Top-performing algorithms for each task. For “Type”, AL denotes active learning and SF denotes space-
filling. ⟨ξ⟩/N is the average number of points measured by a naive algorithm to achieve the same performance as
the top-performing algorithm (⟨ξ⟩), divided by the number of points measured by the top-performing algorithm (N ).
This metric reflects how many more points must be measured by a naive approach to achieve the same accuracy as the
specified strategy. For molecular datasets, the molecular representation of the top-performing algorithm is included
with the model. Here, M(10), M(20), M(100), and M(All) refer to 10, 20, 100, and all available Mordred descriptors,
respectively. FP refers to Morgan fingerprints of size 1024.

Task Type Sampler Model Macro F1 ⟨ξ⟩/N
bace AL Random RF-M(100) 0.774± 0.004 3.54
bear AL Max Entropy NN 0.793± 0.006 2.79
clintox AL Maximin RF-M(20) 0.791± 0.004 6.31
diblock AL Vendi XGB 0.853± 0.004 2.97
electro AL Maximin NN 0.960± 0.018 2.16
esol AL Medoids RF-M(20) 0.908± 0.001 5.81
free SF Medoids GPC-M(100) 0.912± 0.001 4.29
glotzer_pf AL Max Entropy NN 0.999± 0.000 78.31
glotzer_xa AL Random NN 0.998± 0.000 49.81
hiv SF Medoids GPC-FP 0.694± 0.003 11.55
hplc AL Max Entropy RF 0.849± 0.001 5.75
lipo SF Medoids GPC (ARD)-M(20) 0.742± 0.006 5.03
muv SF Medoids NN-M(100) 0.575± 0.004 3.577
oer AL Max Entropy NN 0.871± 0.003 6.05
oxidation AL Maximin NN 0.982± 0.002 8.43
perovskite AL Medoids XGB 0.745± 0.008 4.17
polygel AL Max Entropy RF 0.860± 0.002 19.48
polysol AL Medoids RF 0.928± 0.003 7.34
princeton AL Maximin GPR 0.942± 0.004 3.36
qm9_cv AL Random SV-M(20) 0.936± 0.001 26.49
qm9_gap AL Maximin NN-M(100) 0.804± 0.005 15.40
qm9_r2 AL Vendi RF-M(100) 0.925± 0.002 28.29
qm9_u0 AL Random RF-M(20) 0.999± 0.000 66.95
qm9_zpve AL Medoids GPC (ARD)-M(20) 0.993± 0.000 55.89
robeson AL Maximin SV-M(20) 0.920± 0.005 7.13
shower AL Max Entropy GPC (ARD) 0.984± 0.001 11.55
toporg AL Maximin NN 0.984± 0.001 11.55
tox21 AL Max Entropy RF-M(All) 0.654± 0.003 14.98
vdw AL Maximin NN 0.977± 0.003 3.45
water_hp AL Maximin NN 0.998± 0.001 5.42
water_lp AL Max Entropy NN 0.995± 0.001 5.03

S5 Top-Performing Algorithms for Each Task

Table S1 shows the top-performing algorithm for each task. The vast majority of top-performing algorithms are active
learning algorithms, with exceptions for free, hiv, lipo, and muv tasks. Maximin, medoids, and max entropy samplers
are well-represented, while random and Vendi samplers are less common. In all cases where space-filling algorithms
are top-performers, the medoids sampler is used. Models tend to include NNs, RFs, XGBs, and GPs. There are no
top-performing algorithms based on SV, LP, or BKDE models. The scores of top-performing models vary from task to
task, with some scores as high as 0.999 and some as low as 0.575. Values of ⟨ξ⟩/N , which reflects how many points
must be measured by a naive algorithm to achieve the same accuracy as the top-performing algorithm, can be as high as
78.31. All values are greater than 2.00, indicating that the top-performing strategy is reducing the number of points
measured by 50% for all tasks. For molecular tasks, the optimal choice of molecular representation is often Mordred
descriptor vectors of length 20 or 100. There is only one instance each where including all Mordred descriptors or
Morgan fingerprints is optimal, and these instances occur on the two most difficult classification tasks.

SI-11



DATA-EFFICIENT CLASSIFICATION

References

[1] Florian Häse, Matteo Aldeghi, Riley J. Hickman, Loïc M. Roch, and Alán Aspuru-Guzik. Gryffin: An algorithm
for Bayesian optimization of categorical variables informed by expert knowledge. Applied Physics Reviews,
8(3):031406, July 2021.

[2] Pavel Brazdil, Jan N. Van Rijn, Carlos Soares, and Joaquin Vanschoren. Metalearning: Applications to Automated
Machine Learning and Data Mining. Cognitive Technologies. Springer International Publishing, Cham, 2022.

SI-12


	Model Implementation and Hyperparameter Tuning
	Sensitivity of Top Algorithms to Chosen Tasks and Number of Points
	Sensitivity of Active Learning vs. Space-Filling to Chosen Tasks
	Survey of Ensemble Strategies
	Top-Performing Algorithms for Each Task

