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Appendix A. Additional Formulation

1. Branin Function:

                         (S1)𝑓(𝑋) = 𝑎(𝑥2 ‒ 𝑏𝑥2
1 + 𝑐𝑥1 ‒ 𝑟2) + 𝑠(1 ‒ 𝑡)cos (𝑥1) + 𝑠

Where, 

 
𝑎 = 1;𝑏 =

5.1

4𝜋2
;𝑐 =

5
𝜋

;𝑟 = 6;𝑠 = 10;𝑡 =  
1

8𝜋
; ‒ 5 ≤ 𝑥1,𝑥2 < 15

2. Gaussian Process (GP) Regression:

The general form of the GPM is as follows:

                                                                (S2)     𝑦(𝑥) = 𝑥𝑇𝛽 + 𝑧(𝑥)

where  is the Polynomial Regression model. The polynomial regression model captures the 𝑥𝑇𝛽

global trend of the data.  is a realization of a correlated Gaussian Process with mean  𝑧(𝑥) 𝐸[𝑧(𝑥)]

and covariance  functions defined as follows:𝑐𝑜𝑣(𝑥𝑖,𝑥𝑗)

                                         (S3)𝑧(𝑥)~ 𝐺𝑃(𝐸[𝑧(𝑥)], 𝑐𝑜𝑣(𝑥𝑖,𝑥𝑗)); 

                                      (S4)                                              𝐸[𝑧(𝑥)] = 0, 𝑐𝑜𝑣(𝑥𝑖,𝑥𝑗) = 𝜎2𝑅(𝑥𝑖,𝑥𝑗)

                                  (S5)
𝑅(𝑥𝑖,𝑥𝑗) = exp ( ‒ 0.5 ∗

𝑑

∑
𝑚 = 1

(𝑥 𝑖
𝑚 ‒ 𝑥 𝑗

𝑚)2

𝜃 2
𝑚

); 
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(S6)

        𝜃𝑚 = (𝜃1,𝜃2,….,𝜃𝑑)

where  is the overall variance parameter and is the correlation length scale parameter in 𝜎2 𝜃𝑚

dimension m of d dimension of . These are termed as the hyper-parameters of GP model.  𝑥

 is the spatial correlation function. In this paper, we have considered a Radial Basis 𝑅(𝑥𝑖,𝑥𝑗)
function which is given by eqn. S5 and Matern kernel function as per eqn. S6. The objective is to 

estimate the hyper-parameters which creates the surrogate model that best explains the 𝜎,  𝜃𝑚 

training data  at iteration k. In this paper, we used the Monte Carlo Markov Chain (MCMC) 𝐷𝑘

approach to estimate the hyperparameters.

After the GP model is fitted, the next task of the GP model is to predict at an arbitrary 

(unexplored) location drawn from the parameter space. Assume  is the prior 𝐷𝑘 = {𝑋𝑘, 𝑌(𝑋𝑘)}

information from previous evaluations or experiments from high fidelity models, and  is �̿�𝑘 + 1 ∈ �̿�

a new design within the unexplored locations in the parameter space, . The predictive output �̿�

distribution of , given the posterior GP model, is given by eqn S7. 𝑥𝑘 + 1

               (S7) 𝑃(�̿�𝑘 + 1|𝐷𝑘,�̿�𝑘 + 1,𝜎2
𝑘, 𝜃𝑘) =  𝑁(𝜇(�̿�𝑘 + 1(�̿�𝑘 + 1)), 𝜎2(�̿�𝑘 + 1(�̿�𝑘 + 1)))

where:

                                    (S8)𝜇(�̿�𝑘 + 1(�̿�𝑘 + 1)) = 𝑐𝑜𝑣 𝑇
𝑘 + 1𝐶𝑂𝑉 ‒ 1

𝑘 𝑌𝑘; 

           (S9)              𝜎2(�̿�𝑘 + 1(�̿�𝑘 + 1)) =  𝑐𝑜𝑣(�̿�𝑘 + 1,�̿�𝑘 + 1) ‒ 𝑐𝑜𝑣 𝑇
𝑘 + 1𝐶𝑂𝑉 ‒ 1

𝑘 𝑐𝑜𝑣𝑘 + 1 

 is the kernel matrix of already sampled designs  and  is the covariance function 𝐶𝑂𝑉𝑘 𝑋𝑘 𝑐𝑜𝑣𝑘 + 1

of new design  which is defined as follows:�̿�𝑘 + 1

     
𝐶𝑂𝑉𝑘 =  [𝑐𝑜𝑣(𝑥1,𝑥1) ⋯ 𝑐𝑜𝑣(𝑥1,𝑥𝑘)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑥𝑘,𝑥1) ⋯ 𝑐𝑜𝑣(𝑥𝑘,𝑥𝑘)]
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    𝑐𝑜𝑣𝑘 + 1 = [𝑐𝑜𝑣(�̿�𝑘 + 1, 𝑥1), 𝑐𝑜𝑣(�̿�𝑘 + 1, 𝑥2), .., 𝑐𝑜𝑣(�̿�𝑘 + 1, 𝑥𝑘)]

3. Expected Improvement acquisition function:

𝐸𝐼(�̿�(�̿�│𝑓 = 1)) =

                              
 {(𝜇(�̿�(�̿�)) ‒ 𝑦(𝑥 + ) ‒ 𝜉) × Φ(𝑍,0,1) +  𝜎(�̿�(�̿�)) × 𝜙(𝑍)   𝑖𝑓 𝜎(�̿�(�̿�)) > 0 

0 𝑖𝑓 𝜎(�̿�(�̿�)) = 0 �
(S10)

                                                  (S11)

𝑍 =  {𝜇(�̿�(�̿�)) ‒ 𝑦(𝑥 + ) ‒ 𝜉

𝜎(�̿�(�̿�))
  𝑖𝑓 𝜎(�̿�(�̿�)) > 0

0  𝑖𝑓𝜎(�̿�(�̿�)) = 0 �
where is the current maximum value among all the sampled data until the current stage ; 𝑦(𝑥 + )  

 and  are the predicted mean and standard deviation from GP;  is the cdf;  is the 𝜇(�̿�) 𝜎(�̿�)  Φ(.) 𝜙(.)
pdf;  is a small value which is set as 0.01.𝜉 ≥ 0

Appendix B. Additional Figures
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Figure S1. Second initialization with 10 starting samples randomly selected (denoted by red dots). 
Here, at least one sample is located very near to the optimal regions.

Figure S2. Additional plots of Fig 4c. where ground truth is added with noise scale of 50%, 
randomly generated from normal distribution. Here, during the initialization, due to extreme noise, 
a fake optima location is generated (fig. a), with the best location marked with arrow. Then for the 
next 10 iterations, SANE gained knowledge to move towards the true optima as marked with arrow 
in fig. b.  
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Figure S3. Figs (a), (b) show an example of the prediction of the constraint line after initialization 
and after SANE convergence respectively. We can see after prediction from early assessment the 
good sample is in the infeasible region and with more collection of samples the predicted constraint 
boundary can be tuned better. 
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Figure S4. Figs (a),(b) show an example of the spectral with positive and negative assessment 
respectively. These two samples are among the initial 30 samples generated from LHS approach. 
Fig (c) shows the map of the relaxed gate estimated from the initial data only. Fig (d) shows the 
map of the tight gate estimated after the exploration cost is exhausted. It is to be noted here that 
the gate is tightened dynamically as the SANE exploration continues, however, without human 
intervention. The human assessment is only done for the initial 30 samples. We can see there are 
some samples selected but located in the estimated infeasible region, those were the part of the 
feasible region during the respective stages of the iterations. Thus, tightening the constraint also 
seems to gradually avoid over exploration of a certain region too. However, it can induce the SANE 
to miss a region of interest (refer to Fig. 6c,d), particularly in the later stage of exploration. 
Therefore, tuning the penalty factor,  is another alternative to relax the gate.𝑃
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Figure S5. Additional comparison of different SANE exploration in BEPS data of a PbTiO3 (PTO) 
thin film, Fig(a) is the SANE exploration with relaxed human-intervened gate (ref# fig 6c in main 
text), fig(b) is the SANE exploration with hard human-intervened gate (ref# fig 6c in main text), 
fig(c) is the SANE exploration with standard Expected Improvement acquisition function and 
integration of gate. The color of the explored points indicates the loop area value where red 
indicates the higher values (optimal regions) and blue indicates the lower values. We can see the 
gate also plays a role in better exploration and it is able to locate some good regions (marked with 
arrows in fig c.). However, with standard acquisition function, it fails to exploit, once those regions 
are discovered, unlike in fig. a. Thus, we can see in fig. a, with more exploitation, better and more 
good local solutions are found (marked with arrows in fig. a.). Additionally, the standard 
acquisition function is overly concentrated in one area (marked with circle in fig. c). Therefore, it 
fails to discover another local area of interest which all the SANE with hybrid acquisition function 
able to discover (bottom left corner of the images in fig. a, b as marked with arrows).


