
 

 

Supporting Information 

 

27Al NMR chemical shifts in zeolite MFI via 

machine learning acceleration of structure 

sampling and shift prediction 

 

 

Daniel Willimetz,* Andreas Erlebach, Christopher J. Heard and Lukáš Grajciar* 

 

 

Department of Physical and Macromolecular Chemistry, Charles University, 

Hlavova 8, Prague 2, Prague 128 43, Czech Republic 

 

 

*E-mail: daniel.willimetz@natur.cuni.cz, lukas.grajciar@natur.cuni.cz 

  

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024



 

 

S1. Models and molecular dynamics simulation 

The initial structure employed in this study was derived from the siliceous MFI structure 

obtained from the IZA database. Unit cell parameters were systematically scaled by factors of 

0.96, 0.98, 1.00, 1.02, 1.04, and 1.06, followed by a 2 ns molecular dynamics (MD) simulation. 

A cubic polynomial was used to fit the unit cell volume against the system’s average energy. 

For the model with a Si/Al ratio of 95 and 7 water molecules per unit cell, the resulting fit is 

shown in Fig. S1. The unit cell volume of different systems corresponding to the lowest energy, 

as predicted by the polynomial fit, along with the associated energy values, is presented in 

Table S1. 

 

 
 

Fig. S1: Cubic polynomial fit of unit cell volume versus average energy for the MFI structure 

with a Si/Al ratio of 95 and 7 water molecules per unit cell. The lowest energy configuration 

corresponding to an optimal volume of 5300 Å3. 

 

Table S1: Optimal unit cell volumes for different systems. 

Si/Al ratio Water loading Energy [eV] Volume [Å3] 

95 7 -3147.0 5300.8 

95 0 -3034.1 5317.5 

11 17 -3320.3 5300.5 

siliceous 0 -3033.1 5313.6 

 

The unit cell volumes for the different systems containing aluminium atoms are within 3 %, 

indicating minimal structural change across different system configurations. 

 



 

 

The structure obtained from the IZA database was scaled to an optimal unit cell volume of 

5300 Å3  and aluminium atoms and water molecules were added according to the model 

configuration. Geometry optimization was performed until the maximum force on each atom 

converged to less than 10−2 eV/Å. The SchNet Python package was employed to model the 

interaction potential, with a cutoff distance of 6 Å. The interaction potential (SiAlOH1) used 

was a neural network potential from the work of Erlebach et al. [1] To accurately represent 

experimental conditions, simulations were conducted at 350 K using a Nosé-Hoover 

thermostat. The thermostat's coupling parameter was set to 40 fs. Molecular dynamics (MD) 

simulations were carried out with a timestep of 0.5 fs over 2 million steps, and structural 

snapshots were recorded every 100 steps for analysis. Visual MD energy analysis was 

performed to confirm energy equilibration, as shown in Fig. S2, which depicts the time 

evolution of both energy and the KRR-predicted chemical shift. 

 

 

 

Fig. S2: Time evolution of KRR-predicted chemical shift (top) and potential energy (bottom) 

during the molecular dynamics simulation of the MFI structure at 350 K. The yellow line 



 

 

represents the moving average with a window of 5 ps, showing fluctuations around the mean 

value. 

The stability and reliability of the NNP (using ASE as a MD-driver) for MD simulations in water-

loaded protonic aluminosilicate zeolites has been extensively demonstrated previously in the 

work in which these potentials were generated, [1] Nevertheless, to further test the reliability 

of the NNP-driven MD in Atomic simulation environment (ASE), a 5 ps NNP MD and AIMD 

simulations were performed from identical initial structures for the H-FAU(Si/Al=1) model with 

48 H2O in the channel. The AIMD trajectory was taken from Erlebach et. al.[1] The distribution 

of average Al-O-Si angles and Al-O bond lengths is visualized in Figure S3 below. The 

similarity between the structural parameters further illustrate the accuracy of NNP MD 

simulations. 

 
 

 

 
 

Fig. S3: The structural parameters (Al-O-Si angles and Al-O bond lengths) comparison 
between NNP MD (read) and AIMD (blue) of the same length starting from the same initial 
structure for the H-FAU(Si/Al=1) model with 48 H2O in the channel taken from Ref. [1]. 
 
 
It is established that the crucial features for predicting 27Al chemical shifts are the Al-O bond 

lengths, the Al-O-Si angles and the O-Al-O angles. [2] In Figure S4 is an analysis of such 

features from all available MD trajectories of MFI (Si/Al = 95) with different water loading (0, 



 

 

1, 2, 3 and 17 water molecules per unit cell) and different initial conditions (aluminium atom 

positions, BAS configurations etc.), compared to the training database. As illustrated in Figure 

S4, the KRR model does not extrapolate for these parameters, and thus is expected to give 

accurate predictions, which are verified against experiment for MFI in Fig. 8. 

 
 

 
 



 

 

Fig. S4: Comparison of three distributions of structural parameters in all MFI (Si/Al = 95) MD 
trajectories (blue) and the training database (red). 
  



 

 

S2. Database Information 

Most of the MOR and CHA structures utilized in this study were sourced from previous 

research by Lei et al. [2]. Additional CHA models were added to better generalize the KRR 

model, incorporating systems with 1 to 3 Al atoms balanced by Na or H, and water content 

ranging from 0 to 6 molecules. The Born-Oppenheimer ab initio molecular dynamics (AIMD) 

simulations for these models ranged from 75 to 150 ps.  

To further improve the model's predictive accuracy, we added 100 additional MFI (Si/Al = 95) 

structures. These structures were selected using the furthest point sampling (FPS) algorithm 

from a pool of 4 million structures generated through NNP-driven molecular dynamics 

simulations at 350 K with varying initial configurations and different aluminium placement. The 

FPS method ensured the selection of the most diverse structures in terms of geometry. The 

MFI dataset was further categorized based on water loading, ranging from 0 to 17 water 

molecules per unit cell, with an equal representation of 20 structures per water loading 

scenario. This balanced approach ensured adequate representation of various water content. 

The input for the FPS algorithm consisted of SOAP descriptors for the Al atoms, which were 

generated in the same manner as those used for training the KRR model (Section S3). Fig. 

S5 presents the Euclidean distance between the SOAP descriptors of the sampled structures, 

illustrating the diversity captured by the FPS sampling. The convergence of the distance 

suggests effective sampling of the different Al environments in MFI was achieved, thus 

enhancing the model's ability to generalize across water loadings and structural variations. 

 
Fig. S5: Euclidean distance between SOAP descriptors for the first 100 structures in the FPS-

sampled MFI database. 

 

The inclusion of MOR zeolite in the structural database is important due to its variety of ring 

sizes. While the CHA framework only features 4-, 6-, and 8-membered rings, the MOR 

framework includes 4-, 5-, 8-, and 12-membered rings. Zeolites like MFI contain T sites 

within 5-membered rings, making the inclusion of MOR necessary for broader applicability. 

Additionally, 100 MFI structures were incorporated to account for 10-membered rings, 

enhancing the database’s accuracy for this framework. Furthermore, the database includes 

MFI structures that contain intrazeolitic hydrogen bond, which is not well represented in the 



 

 

MOR and CHA database, where this structural motif is not as common. To be more specific, 

the intrazeolitic hydrogen bond is 25/100 MFI structures, 25/1769 CHA structures and 0/260 

MOR structures. This intrazeolitic hydrogen bond is defined as a proton bonded to a 

framework oxygen atom that is within 2 Å of another framework oxygen atom. 

 

 

 

S3. KRR Training 

The Kernel Ridge Regression (KRR) model was trained using SOAP descriptors of Al atoms, 

generated by the DScribe package.[3] The model included species with atomic numbers 

1 (hydrogen), 8 (oxygen), 11 (sodium), 13 (aluminium), and 14 (silicon), with a cutoff radius 

(rcut) of 5.0 Å to define the atomic neighbourhood. Radial basis functions were expanded up 

to a maximum degree (nmax) of 6, and spherical harmonics expansion was set to a maximum 

angular momentum (lmax) of 6. Gaussian smearing with a width (σ) of 0.5 Å was applied, and 

a power spectrum exponent (ζ) of 2 was used to adjust the sensitivity of the SOAP kernel to 

structural variations. 

 

A grid search was performed to find the optimal regularization parameter (λ), ranging from  

10−7 to 10−2. The model with λ = 5.5⋅10−6 achieved the lowest error. Performance metrics for 

this optimal model are provided in Table S2. 

 

Table S2: Performance metrics of the best KRR model. 

 Train Test 

R2 0.9996 0.9966 

MAE [ppm] 0.204 0.510  

RSME [ppm] 0.070 0.554  

 

The model was trained using an 80/20 train-test split to evaluate its predictive accuracy. 

Multiple data splits were tested to ensure robustness, with test errors across different splits 

varying within a narrow margin of 0.1 ppm. This consistency indicates that the model's 

performance is relatively stable across different train-test splits. Detailed results, including the 

random states used and their corresponding train and test errors, are presented in Table S3. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S3: Training and testing errors measured by the MAE metric for various random states 

used in splitting the training dataset into an 80/20 train-test ratio. 

Random state Train MAE [ppm] Test MAE [ppm] 

124513453 0.28 0.49 

2454353 0.23 0.55 

54636554 0.23 0.57 

93457 0.27 0.55 

644474322 0.29 0.54 

7645645 0.31 0.55 

12334253 0.26 0.54 

88460530 0.30 0.54 

240452203 0.26 0.56 

36364042 0.26 0.53 

  



 

 

S4. Benchmarking on MFI Structures 

To evaluate the performance of the KRR model and other predictive models for zeolites with 

MFI topology, we created a benchmark set of MFI structures. The benchmarking process 

involved predicting chemical shifts using the KRR method and then identifying molecular 

dynamics (MD) simulations with the highest and lowest predicted chemical shifts to represent 

the full range of chemical shifts. Initial Brønsted acid sites (BAS) configurations corresponding 

to these extreme chemical shifts are listed in Table S4. Subsequently, 10 structures from the 

MD simulations were randomly selected, and their chemical shifts were recalculated using the 

DFT method. 

These selected structures and their corresponding chemical shifts serve as a reference to 

assess the accuracy and reliability of the KRR model in predicting chemical shifts across 

various conditions. 

Table S4: Selected initial BAS configurations that exhibited the lowest (top) and highest 

(bottom) chemical shifts for each tested water loading scenario (i.e., number of water 

molecules per unit cell). 

Water loading BAS 

0 

T4O4 

T6O10 

1 

T7O18 

T9O15 

2 

T7O17 

T9O15 

3 

T7O17 

T9O15 

17 

T11O16 

T9O15 

 



 

 

S5. Comparison with LASSO Model 

Lei et al. [2] applied a LASSO model to a dataset of 1400 structures from MOR and CHA, 

obtaining a mean absolute error (MAE) of 1.3 ppm. Using the same dataset, the KRR model 

demonstrated a lower test error of 0.4 ppm. For MFI structures, the LASSO model yielded 

MAE values below 2 ppm, whereas the KRR model, evaluated on the same MFI dataset, 

exhibited an error of 1.0 ppm. When trained on a larger dataset comprising over 4,000 distinct 

Al environments (including MFI), the KRR model achieved an MAE of 0.7 ppm for MFI 

structures. 

 

Fig. S6 shows the correlation between predicted chemical shifts and those calculated by DFT 

for the MFI test set across different water loadings. The comparison includes LASSO models 

(5p-LASSO and 2p-LASSO), a KRR model trained on the same database as the LASSO 

models (KRR_dtb), and a KRR model trained on a comprehensive database including CHA, 

MOR, and MFI structures (KRR_MFI). 

 

 
 

Fig. S6: Correlation between predicted chemical shifts and DFT-calculated values for MFI test 

set at various water loadings, comparing LASSO models (5p-LASSO and 2p-LASSO), KRR 

trained on the same database (KRR_dtb), and KRR trained on a combined database of CHA, 

MOR, and MFI structures (KRR_MFI). 



 

 

The KRR model trained on the same database as the LASSO models outperforms LASSO in 

both MAE and R2 scores, indicating superior predictive performance for chemical shifts in MFI 

structures. 

 

S6. Managing Multiple BAS Configurations 

 

In the zeolite framework, each T-site is coordinated by four oxygen atoms, leading to four 

distinct configurations of Brønsted acid sites (BAS) around each aluminium atom. The 

distribution of acidic protons among these configurations follows the Boltzmann probability 

distribution, where more stable configurations are favoured due to their higher Boltzmann 

factors. To derive a single representative value for the chemical shift at each T-site, we 

average the chemical shift values across various initial BAS configurations using normalized 

Boltzmann factors. This Boltzmann averaging helps to mitigate the influence of the initial 

configuration and provides a more stable representation of the chemical shift. 

 

When water molecules are present, BAS configurations can fluctuate during the simulation as 

protons move between framework oxygens through interactions with water molecules. 

Consequently, the energy levels of different BAS configurations become similar, as shown in 

Table S5. For the system with 2 water molecules per unit cell, the energy differences between 

configurations are within 1 kJ/mol, leading to comparable normalized Boltzmann factors. 

 

Table S5: Boltzmann averaging example for T1 across four BAS configurations. The presence 

of water molecules results in similar energy values for different BAS configurations due to 

extensive sampling, irrespective of the initial state. 

T-site BAS 

Energy [eV] Normalized Boltzmann factors 

0w 2w 0w 2w 

T1 

O1 -3031.502 -3064.222 0.26 0.29 

O2 -3031.518 -3064.213 0.45 0.22 

O3 -3031.463 -3064.216 0.07 0.24 

O4 -3031.496 -3064.216 0.22 0.25 

 

 

  



 

 

S7. Structural characteristics in models with different water loadings 

 

Fig. S7 and Table S6 show the average Al-O-Si angle and average Al-O bond length for 

models with various water loadings. Notably, the average Al-O bond length decreases 

consistently as the water loading increases. The most significant reduction occurs between 

1 and 2 water molecules per unit cell, with a decrease of 0.005 Å. This decrease in bond length 

is likely responsible for the observed increase in chemical shift from 1 to 2 water molecules. 

The variations in the average T-O-T angles appear somewhat random between 0 and 2 water 

molecules, but there is a general trend toward an increase in the angle with higher water 

loadings. 

 

 
Fig. S7: Structural parameters (Al-O-Si angle - top and Al-O bond - bottom) at different water 

loadings. 

 

 



 

 

Table S6: Average Al-O bond lengths and Al-O-Si angles in models with different water loading 

 

 

 

 

 

 

 

 

 

 

Table S7 shows that as water loading increases, the solvation percentage and the average 

distance between the oxygen in H₃O⁺ ion and the Al atom both rise. As water loading 

increases, solvation reaches 82.6% with 2 water molecules and is nearly complete (99.5% 

and 99.7%) with higher loadings. Correspondingly, the average distance grows from 3.2 Å 

with 1 water molecule to 12.0 Å with 17 water molecules. The proton is considered to be 

solvated if the oxygen atom of any water molecule is closer to the proton than any oxygen 

atom from the zeolite framework. This is consistent with our prior work, [4] and allows for a 

well-defined boundary to be defined between common scenarios, such as water H-bonded to 

a proton on the framework, and hydronium ions close to a deprotonated framework site. 

 

Table S7: Average solvation percentage and average distance between the oxygen in H3O+ 

and the Al atom. 

Water loading Solvation [%] Average d(H3O+-Al) [Å] 

0 0.0 - 

1 4.0 3.2 

2 82.6 3.4 

3 99.5 3.7 

17 99.7 12.0 

 

 

To better analyze the similarities between the behaviour of different T-sites as a function of 

the water loading, a principal component analysis (PCA) was carried out on vectors composed 

of relative changes in chemical shifts with water loading for each site, and the resulting 

principal components for each T-site were clustered with the K-means algorithm. This resulted 

in separation of the T-sites into three distinct groups (see Fig. S8). The first cluster contains 

T7, T9, T10, and T12 and it corresponds to T-sites located along the sides of the 8 ring, which 

form the sinusoidal channel. The second cluster includes T2, T6, and T8, which are situated 

on the same side of the straight channel. The third cluster contains T1, T4, T5, T11, and T3 

which do not share any structural parameters in the framework. However, T1, T4, T5, and T11 

are situated in the same 6 ring near the intersection. The first principal component explains 77 

% of the variance and is most strongly influenced by the change in chemical shift as the 

number of water molecules increases from 0 to 1. The second principal component, which 

explains 16 % of the variance, is predominantly affected by the change from 1 to 2 water 

Water loading Average d(Al-O) [Å] Average α(T-O-T) [°] 

0 1.751 143.77 

1 1.744 144.24 

2 1.739 143.74 

3 1.737 144.07 

17 1.734 144.82 



 

 

molecules. This indicates that the behavior of chemical shift in water is largely governed by 

the changes in chemical shift at low water concentrations. 

 

 
Fig. S8: A principal component analysis (PCA) carried out on vectors composed of relative 

changes in chemical shifts with water loading for each T-site (processing data shown in Fig. 4), 

followed by K-means-based clustering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

S8. Dynamic sampling and high chemical shift of T9 

To assess the impact of molecular dynamics on the T-O-T angles, we compared three models: 

the initial (siliceous) MFI structure from the IZA database, the same structure after local 

optimization using a neural network potential (NNP), and the average structure from molecular 

dynamics (MD) simulation. Table S8 shows the average T-O-T angles for each model. 

Notably, the T9 site has the smallest average T-O-T angle only in the MD model, indicating 

that dynamic sampling significantly influences this angle. This reduction in angle is associated 

with the high chemical shift observed for the T9 site in the orthorhombic MFI cell. The average 

T-O-T angles are in Table S8 and visualized in Fig. S9. 

Table S8: Average T-O-T angles [in degrees] for different structural models: MFI structure 

from the IZA database, locally optimized (LO) structure, and molecular dynamics (MD) 

simulations of the same structure. 

T-site MFI LO structure MD 

T1 149.3 147.1 147.8 

T2 141.7 142.3 148.4 

T3 147.6 152.1 149.7 

T4 154.6 153.8 152.1 

T5 149.1 150.3 148.0 

T6 151.2 155.4 149.3 

T7 146.8 146.6 147.7 

T8 144.7 147.3 150.7 

T9 147.3 148.1 146.2 

T10 150.0 151.0 146.5 

T11 148.9 152.8 149.9 

T12 145.8 152.7 149.1 

 



 

 

Fig. S9: Average angles in the siliceous MFI unit cell. The red line represents the average 

angles from the locally optimized MFI structure, while the green line shows the average T-O-

Si angles from a 250 ps molecular dynamics simulation. 

S9. Temperature Effects 

To examine how temperature affects chemical shifts, we modelled all Brønsted acid site (BAS) 

configurations for the T5 site and applied Boltzmann averaging to obtain a representative 

chemical shift for each temperature (see Section S6). Table S9 presents the chemical shifts 

for various temperatures and water loadings. Fig. S10 highlights the structural changes that 

correspond to these temperature-dependent shifts. The observed trends in chemical shift align 

with the structural variations seen across different temperatures. 

 

Table S9: Chemical shift values in ppm for every water loading and temperature.  

Temperature [K] 0w 1w 2w 3w 17w 

250 56.3 56.3 57.3 57.4 57.3 

300 56.2 56.3 57.6 57.3 56.7 

350 56.2 56.3 57.4 57.2 56.5 

400 56.9 56.2 57.1 56.8 56.2 

450 57.1 56.3 56.8 56.5 56.0 

500 57.1 56.3 56.5 56.4 55.8 

 



 

 

 
 

Fig. S10: Structural parameters at different temperatures - average Al-O-Si angle (left) and 

average Al-O bond length. 

 

The abrupt changes observed in the T-O-T angle and Al-O bond length are due to shifts in 

BAS configuration. Specifically, when the BAS proton is situated on O14, it forms a strong 

hydrogen bond (intrazeolitic hydrogen bond - IZB) with the framework. Below 350 K, the 

hydrogen bond fraction remains high, ranging from 0.8 to 0.9. However, this fraction decreases 

significantly to around 0.6 to 0.5 at temperatures above 400 K, which correlates with the rise 

in chemical shift. Fig. S11 illustrates this distinctive structural motif and its temperature-

dependent behaviour. 

 



 

 

 
 

Fig. S11: Intrazeolitic hydrogen bond (left) and the fraction of the MD simulation during which 

the IZB is present (right). 

 

Table S10 shows the average distance between oxygen atoms near the aluminium center and 

the closest hydrogen atom. As the water content increases, hydrogen atoms move further 

from the aluminium center. This increased distance allows the framework to relax, leading to 

larger T-O-T angles. This relaxation effect is evident in the structural trends observed with 

higher water loadings, where the greater separation between hydrogen atoms and the 

aluminium center contributes to the observed increase in T-O-T angles. 

 

Table S10: Average distance [in Å] between oxygen atoms near the Al-center and the closest 

hydrogen atom. 

Water loading 250 K 300 K 350 K 400 K 450 K 500 K 

0w 2.61 2.60 2.60 2.60 2.60 2.60 

1w 2.56 2.57 2.57 2.57 2.58 2.59 

2w 2.68 2.57 2.59 2.69 2.76 2.76 

3w 2.57 2.56 2.59 2.66 2.70 2.73 

17w 2.81 3.02 3.18 3.40 4.02 5.12 

 

Table S11 presents the solvation percentages across various water loadings and 

temperatures. As the temperature rises, both the solvation percentage and the average 

distance between the oxygen in H3O+  and the aluminium atoms increase. 

 

  



 

 

Table S11: Solvation and proton dynamics analysis for models with different water loadings 

and different temperatures.  

Water loading Temperature [K] Solvation [%] Distance H3O+-Al [Å] 

1 

250 2.9 3.17 

300 3.1 3.18 

350 3.3 3.18 

400 3.7 3.18 

450 3.6 3.18 

500 3.8 3.20 

2 

250 98.2 3.36 

300 97.4 3.37 

350 93.2 3.36 

400 87.0 3.37 

450 77.6 3.36 

500 70.7 3.38 

3 

250 100.0 3.76 

300 100.0 3.71 

350 99.9 3.70 

400 99.1 3.69 

450 97.8 3.66 

500 96.6 3.70 

17 

250 100.0 9.09 

300 99.2 9.76 

350 100.0 11.57 

400 100.0 12.05 

450 99.9 19.78 

500 100.0 26.56 

 



 

 

 

 

  



 

 

S10. Aluminium pairs 

A total of 20 aluminium pairs were modelled, ensuring that at least one of the aluminium atoms 

(BAS 1) was T12O8. The dynamically averaged structural parameters for these models are 

summarized in Table S12. In the hydrated model with isolated Al atom in the T12 position, the 

chemical shift is 55.3 ppm, the average T-O-T angle is 145.39 degrees, and the average Al-O 

bond length is 1.733 Å. 

 

Table S12: Details regarding the paired models with BAS configurations, including the 

chemical shift of each Al atom and other structural parameters, are provided. The structural 

parameters are provided for fully hydrated models (17 water molecules per unit cell). 

BAS 1 BAS2 Al-Al Shift 1 Shift 2 T-O-T 1 T-O-T 2 Al-O 1 Al-O 2 

T12O8 T6O15 4.77 55.6 56.0 146.01 146.22 1.735 1.73 

T12O8 T4O9 4.85 56.3 52.8 144.64 147.73 1.736 1.736 

T12O8 T2O5 5.49 57.7 57.3 142.69 143.07 1.736 1.732 

T12O8 T5O13 5.03 56.2 57.4 144.07 141.61 1.736 1.739 

T12O8 T7O17 5.75 55.4 55.0 145.28 144.31 1.734 1.736 

T12O8 T10O24 4.37 55.3 56.0 145.52 142.24 1.736 1.739 

T12O8 T3O10 5.81 55.2 56.5 145.26 143.26 1.734 1.734 

T12O8 T11O14 5.06 56.0 53.6 144.61 145.92 1.735 1.737 

T12O8 T8O17 5.03 56.2 53.3 144.69 146.32 1.736 1.743 

T12O8 T2O5 5.2 55.8 57.6 144.41 142.61 1.739 1.733 

T12O8 T7O17 4.56 56.4 55.6 144.05 144.15 1.736 1.738 

T12O8 T9O15 4.65 55.1 58.9 145.27 140.68 1.736 1.736 

T12O8 T1O1 7.44 55.1 56.1 144.99 144.41 1.734 1.735 

T12O8 T8O6 7.75 55.8 53.6 144.51 147.71 1.735 1.732 

T12O8 T7O17 6.53 54.8 54.4 145.81 144.56 1.734 1.738 

T12O8 T1O1 7.06 56.4 56.7 143.90 143.58 1.735 1.736 

T12O8 T8O6 7.65 55.2 55.9 145.50 143.94 1.734 1.734 

T12O8 T9O15 7.2 55.3 57.8 145.27 141.60 1.734 1.735 

T12O8 T4O9 6.45 55.8 52.5 144.59 147.78 1.735 1.736 

T12O8 T3O10 6.71 56.0 56.7 144.61 143.07 1.735 1.735 

 

 

To validate the accuracy of the KRR model for description of aluminium pairs, the lowest-

energy structures from the NNP-driven MD trajectories of the hydrated (17 water molecules) 

MFI models were locally optimized using NNPs and then re-optimized with DFT with PBE 

functional. For these structures, the chemical shieldings predicted by DFT and KRR are 



 

 

compared (Figure S12). The overall MAE of the KRR prediction is 0.8 ppm, which is consistent 

with the MAE of KRR prediction for MFI models with a single aluminium per unit cell. This 

finding verifies the predictive consistency of the KRR method with NNP data against the DFT 

reference.  

 

 
Fig. S12: The comparison between chemical shift predicted by the DFT (left) and KRR (right) 

method for aluminium paris with the hydrated MFI model (17 waters per unit cell). 

 

  



 

 

S11. Higher aluminium content 

A total of 45 models featuring multiple aluminium atoms were generated. The positions of the 

aluminium atoms were randomly assigned, and structures containing Al-O-Al motifs were 

excluded following Löwenstein's rule. This resulted in three distinct sets of models: 15 samples 

with 4 aluminium atoms (Si/Al = 22), and 15 samples with 5 aluminium atoms (Si/Al=17), 15 

samples with 6 aluminium atoms (Si/Al ratio of 14). Table S13 presents the chemical shift 

values of these models for every T-site, specifically for the fully hydrated case with 17 water 

molecules per unit cell. 

Table S13: T-sites in each model of higher Al content and their corresponding chemical shifts. 

The table is organized into three sections based on Si/Al ratios, with different models 

separated by thicker borders. 

Si/Al = 23 

T-site Shift [ppm] T-site Shift [ppm] T-site Shift [ppm] 

T10 62.0 T12 61.6 T7 60.2 

T10 61.9 T7 60.8 T8 61.9 

T5 61.5 T10 61.9 T12 61.6 

T11 62.3 T5 63.8 T1 61.3 

T8 62.0 T9 64.3 T10 62.1 

T5 63.4 T8 62.8 T6 63.4 

T12 62.2 T4 61.8 T5 63.8 

T12 62.7 T12 61.5 T7 60.4 

T5 64.1 T7 60.6 T9 64.7 

T9 64.4 T10 61.3 T6 61.7 

T5 62.8 T12 61.4 T12 61.4 

T12 62.8 T5 66.0 T5 63.7 

T8 62.6 T7 61.7 T12 62.9 

T9 65.3 T1 62.0 T1 62.6 

T12 60.2 T9 64.1 T5 63.4 

T10 63.0 T7 61.1 T3 62.0 

T6 63.9 T11 60.5 T7 61.0 

T12 61.4 T4 61.3 T6 61.1 

T4 61.2 T9 63.6 T1 64.0 

T10 61.8 T4 60.7 T12 60.9 

 

 



 

 

 

Si/Al = 18 

T-site Shift [ppm] T-site Shift [ppm] T-site Shift [ppm] 

T5 62.3 T7 60.3 T9 64.4 

T4 59.9 T2 62.2 T9 64.0 

T7 61.6 T6 62.7 T7 64.1 

T12 63.1 T3 62.1 T11 61.9 

T11 60.4 T11 60.9 T5 61.8 

T9 64.2 T10 63.6 T7 61.0 

T12 61.9 T6 62.1 T3 61.0 

T5 61.9 T6 63.0 T6 61.4 

T10 62.4 T7 60.0 T9 64.6 

T6 62.9 T9 65.0 T10 61.9 

T7 62.2 T10 61.2 T12 61.8 

T12 63.3 T9 65.2 T5 63.2 

T9 63.5 T11 62.9 T7 62.4 

T7 61.4 T9 66.1 T1 61.8 

T6 62.9 T12 62.6 T7 62.3 

T12 63.0 T6 61.8 T10 62.4 

T1 61.6 T7 61.5 T12 61.5 

T7 59.5 T9 65.8 T9 63.5 

T10 61.5 T6 62.0 T4 60.5 

T6 62.8 T1 62.9 T5 62.7 

T10 62.4 T7 61.0 T3 61.0 

T10 63.6 T9 64.5 T5 64.2 

T5 62.8 T9 64.4 T7 60.3 

T9 64.6 T9 63.3 T6 62.1 

T9 63.9 T7 60.8 T12 62.9 

 

 

 

 

 



 

 

 

 

 

 

Si/Al = 15 

T-site Shift [ppm] T-site Shift [ppm] T-site Shift [ppm] 

T9 66.5 T6 61.3 T12 61.6 

T9 65.0 T5 62.0 T9 63.1 

T10 59.5 T6 61.7 T7 61.9 

T6 61.7 T9 65.6 T12 61.6 

T12 63.6 T1 62.5 T7 61.7 

T1 63.4 T5 62.3 T7 63.2 

T9 63.8 T12 62.9 T7 60.9 

T7 61.0 T1 61.8 T2 61.6 

T1 64.4 T9 65.5 T11 60.1 

T12 58.9 T3 63.1 T7 61.6 

T7 59.6 T7 60.8 T11 62.7 

T9 64.5 T10 60.9 T10 63.4 

T9 64.5 T10 60.9 T6 62.4 

T7 64.5 T8 62.3 T1 62.9 

T10 62.3 T10 62.4 T11 61.1 

T9 63.7 T5 61.3 T12 62.2 

T2 62.0 T10 62.9 T4 59.4 

T9 63.5 T4 60.7 T9 65.3 

T7 59.6 T9 64.8 T7 62.1 

T10 61.9 T9 66.4 T9 64.5 

T11 62.9 T11 60.3 T12 60.8 

T9 65.4 T6 61.3 T10 64.0 

T12 64.8 T12 63.0 T12 61.6 

T9 64.9 T1 62.9 T3 63.7 

T3 58.8 T3 64.5 T2 63.3 

T6 61.9 T9 64.2 T7 61.0 

T7 57.0 T10 62.1 T1 62.8 



 

 

T1 61.6 T8 62.3 T11 65.0 

T12 61.4 T7 62.1 T12 61.5 

T11 61.2 T12 63.0 T7 61.2 

 

 

  



 

 

S12. Modelling experimental spectra 

 

To compare our chemical shift KRR predictions with experimental spectra, we need to 

determine the parameters CQ and η. For consistency with Holzinger et al., [5] we utilized their 

reported experimental CQ values, selecting the CQ corresponding to the experimental 

resonance closest to each predicted chemical shift. We further assumed the η to be zero to 

isolate the pure chemical shift component. The resulting simulated spectrum using SIMPSON 

[6] for a 950 MHz NMR spectrometer is shown in Fig. S13. 

 

 
 

Fig. S13: NMR spectrum predicted by Kernel Ridge Regression (KRR) for a 950 MHz 

spectrometer, using CQ values from Holzinger et al. and assuming η = 0. 

 

We have also computed theoretical NMR spectra using a single representative structure, 

which was the locally optimized most stable structure obtained from the MD simulations. The 

theoretical DFT-calculated values (CQ and η)  were used to predict the signal shape, and the 

chemical shift was adjusted to the value obtained by MD and KRR approach. The resulting 

spectrum is shown in Figure S14a. This spectrum displayed considerable broadening, 

attributed to the use of a single structure. To refine this, we selected the narrowest peak (T7 - 

CQ(T7) = 3 MHz) and replicated the chemical shifts with the same peak shape. The resulting 

spectrum is presented in Figure S14b. 
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Fig. S14: Theoretical spectra using a) a single representative structure and b) selecting the 

narrowest peak for every T-site (CQ(T7) = 3 MHz). 

 



 

 

All of the modeled experimental NMR spectra exhibit significant signal overlap, complicating 

the assignment process when relying solely on chemical shifts.  

The experimentally observed 27Al NMR parameters from Holzinger et. al. [5] are in Table S14. 

 

Table S14: Experimentally observed 27Al NMR parameters taken from Ref. [5] 

 

 

Resonance Shift [ppm] CQ [MHz] 

1 52.0 2.06 

2 52.8 1.95 

3 53.4 1.83 

4 54.1 1.81 

5 54.8 1.74 

6 55.4 1.63 

7 56.1 1.77 

8 56.7 1.6 

9 57.4 1.29 

10 58.4 1.59 

  



 

 

S13. Other zeolites - MTT, TON, MOR, CHA 

 

To extend the discussion of generality, and test the general application of the KRR model, we 

have included four additional zeolites which represent a stern, potentially out-of-domain 

challenge to the model: TON, MTT, CHA and MOR. For smaller unit cell dimensions, a 

supercell was created to minimize aluminium pairing. The model specifications are listed in 

Table S14. Molecular dynamics simulations were carried out following the protocol detailed in 

S1. 

 

Table S15: Si/Al ratios, number of water molecules per aluminium atom for each zeolite 

framework, and supercell parameters 

 

Zeolite Si/Al water/Al Supercell 

TON 47 4 1 × 1 × 2 

MTT 71 5 3 × 1 × 1 

MOR 95 15 1 × 1 × 2 

CHA 35 10 1 × 1 × 1 

 

Both TON and MTT have high TOT angles, which are not represented in the training database, 

as illustrated in Figure S15. This lack of coverage leads to the KRR model extrapolation, which 

in turn results in unrealistically low chemical shifts (see Table S15). Thus, we cannot conclude 

that the model in its current form can predict the shifts in such zeolites. To make a more 

general KRR model, one would have to include these structures to the training database, 

which is a straightforward extension for any user of the model presented in this work.  

 

Table S16: Chemical shift values for MTT and TON 

 

MTT T site Shift [ppm] 

T1 45.4 

T2 49.0 

T3 47.7 

T4 46.4 

T5 50.3 

T6 43.7 

T7 48.2 

 

TON T site Shift [ppm] 

T1 50.1 

T2 47.5 

T3 50.8 



 

 

T4 46.0 

 

 
Figure S15: The distribution of average Al-O-Si angles in MTT (top) and TON (bottom) 

zeolites from NNP-driven MD at 350 K. 

 

For MOR and CHA zeolites, the training database covers the range of bond angles adequately 

(Figure S16), and thus the KRR model does not have to extrapolate. It therefore predicts 

reasonable chemical shift values for both zeolites. The Al-O-Si angles distribution is in Figure 

S16. The chemical shifts for CHA and MOR are in Table S14. The average MOR chemical 

shift is 54.6 ppm, and the chemical shift of one T site for CHA is 57.6 ppm. Both of these 

results are 1-2 ppm lower than experimental data, [7,8] which is consistent with the results for 

ZSM-5. 

 

Table S17: Chemical shift values for MOR and CHA 
 

MOR T site Shift [ppm] 

T1 56.1 

T2 54.0 

T3 54.5 

T4 57.8 

 



 

 

CHA T site Shift [ppm] 

T1 57.6 

 

 
Figure S16: The distribution of average Al-O-Si angles in MOR (top) and CHA (bottom) 
zeolites from NNP-driven MD at 350 K. 
  



 

 

 

S14. Training 29Si KRR model 

 

The KRR model was also trained on 29Si chemical shifts utilizing the existing reference DFT 

data for H-MFI (Si/Al=95) (see Section S2). Each MFI unit cell contains 95 Si atoms and one 

Al atom, providing nearly 10 000 data points (29Si shieldings) for the KRR training. The training 

and testing error of the 29Sl KRR model were 0.2 ppm and 0.3 ppm, respectively. This KRR 

model was then applied to structures sampled from molecular dynamics simulation of the 

purely siliceous MFI, with the shielding-to-shift conversion assumed as a simple linear 

correlation taking the lowest experimental chemical shift (T9 - see Table S18) as a reference 

to which we pinned the lowest KRR predicted value. The experimental 29Si data was sourced 

from Fyfe et. al. [9] The resulting chemical shifts are in Table S18 below. The MAE is 0.7 ppm, 

with a correlation coefficient of 0.87. The minor discrepancy is not surprising as the dataset is 

not diverse, and is not focused on siliceous systems with the training set made up from 

structures with aluminium and water molecules. The additional refinement of the database to 

improve the KRR accuracy is necessary to accurately predict 29Si chemical shifts. 

 

Table S18: The comparison between 29Si KRR model and experimental values from Ref. [9]. 
 

T site 29Si exp. [ppm] 29Si KRR [ppm] Error [ppm] 

T1 -113.2 -113.3 -0.1 

T2 -114.3 -115.9 -1.6 

T3 -114.3 -115.7 -1.4 

T4 -117.3 -116.6 0.7 

T5 -113.6 -114.1 -0.5 

T6 -114.8 -114.0 0.8 

T7 -114.1 -113.2 0.9 

T8 -116.3 -117.1 -0.8 

T9 -112.2 -112.2 0.0 

T10 -112.7 -112.4 0.3 

T11 -115.2 -115.7 -0.5 

T12 -114.4 -114.0 0.4 
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