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A. Solar-cell corpora 

It was considered important for this work to create corpora that have rich knowledge related 
to the scientific domain of interest, exhibit high quality, and are large enough to train a 
language model. After considering the accessibility, diversity, and size of different information 
sources, scientific journals from different publishers were selected as the main source for the 
language model to gain specialized knowledge. 
      The process of building each corpus for this work consisted of four main steps (Figure A-1). 
Firstly, keywords, time range, and maximum number of papers were used as a query to search 
for papers through the application programming interface (API) provided by the publisher. 
Secondly, the responses that contain the contents of the papers were obtained from the 
server. Thirdly, the papers were downloaded as eXtended Markup Language (XML) or Hyper-
Text Markup Language (HTML) files. Finally, the plain texts in these XML or HTML files were 
extracted using ChemDataExtractor and used to create corpora. Due to the intrinsic 
limitations of the data-extraction capabilities of ChemDataExtractor, four types of special 
characters were left in the texts, including newline characters \\n, \n, spaces \xa0, and \u202f. 
All of these characters were removed from the texts and UTF-8 was used in all encoding and 
decoding processes. 
 

 
Figure A-1. Process for creating corpora. 
 
      Each solar-cell corpus contains solar-cell-specific papers from journals published by 
Elsevier, the RSC, and/or Springer. All papers were obtained by a search, using the keyword, 
“solar cell”. The API for downloading RSC and Elsevier papers is open to the public, while the 
API for accessing Springer papers is licensed through the Molecular Engineering group of the 
Cavendish Laboratory, University of Cambridge, UK. The total number of solar-cell-related 
papers from the three publishers for each year from 2000 to 2023 is shown in Figure A-2. The 
total trend is increasing over the last twenty years and Springer has published the highest 
number of solar-cell-related papers each year. In addition, some papers published before 
2000 were downloaded, albeit these are not shown in Figure A-2. 
 

 
Figure A-2. Numbers of solar-cell-related papers published by Elsevier, RSC, and Springer 
between 2000 to 2023. 
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B. Solar-cell QA dataset 

The maximum number of words in the contexts (split by spaces) for both first- and second-
turn QA pairs is 282. 

 

B.1 First-turn QA pairs 

      Based on the perovskite- and dye-sensitized solar-cell device databases and papers, the 
first-turn QA pairs in the Solar-cell QA dataset was created by a transformation algorithm and 
its statistical parameters are shown in Table B-1. There are 42,882 QA pairs in total. After 
shuffling by the random() function with a seed value of 50, these QA pairs were split into the 
train and test sets (0.8:0.2). Among the 16 properties in the QA dataset, eight properties have 
more than one thousand QA pairs and the power-conversion efficiency (PCE) performance 
characteristic has the largest number of QA pairs (16,081; 37.50%), followed by the open-
circuit voltage (20.00%). According to Figure B-1, it can be known that most answers in the QA 
dataset are short and have a length of around five characters; this is because they are mainly 
the values of the properties and are combinations of numbers and units, while the contexts 
are much longer and have an average length of 240 characters. 
 
Table B-1. Statistical parameters for the first-turn QA pairs in the Solar-cell QA dataset. 

Parameter Value 

The number of:  

    Properties 16 

    Total QA pairs 42,882 

    QA pairs in the train set 34,305 

    QA pairs in the test set 8,577 

The number of QA pairs for:  

    Power-conversion efficiency 16,081 

    Open-circuit voltage 8,619 

    Short-circuit current density 3,405 

    Fill factor 2,148 

    Active area 2,048 

    Solar simulator and irradiance 1,738 

    Counter electrode 1,431 

    Substrate 1,195 

    Other 6,217 

The average length of:   

    Context /characters 240 

    Answer /characters 6 

 

 
Figure B-1. (a) Distribution of answer character-lengths, and (b) distribution of context 
character-lengths for the first-turn QA pairs in the Solar-cell QA dataset. 
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    To test the quality of the first-turn QA pairs in the Solar-cell QA dataset, an evaluation set 
was created for which parameters are shown in Table B-2. According to the proportions of 
properties present in the Solar-cell QA dataset, 1,000 QA pairs were randomly selected from 
the first-turn QA pairs therein. The answer for each QA pair was manually provided by the 
human and was compared to the answer generated by the algorithm. 
 
Table B-2. Evaluation set for testing the quality of the first-turn QA pairs in the Solar-cell QA 
dataset. 

Type of properties Number of QA pairs 

Power-conversion efficiency 380 

Open-circuit voltage 200 

Short-circuit current density 80 

Fill factor 50 

Active area 50 

Solar simulator and irradiance 40 

Counter electrode 30 

Substrate 30 

Other 140 

      For the first-turn QA pairs in the Solar-cell QA database, there are nine sources of error 
shown in Table B-3. Among these, 28.34% come from “not the whole value”, i.e., the answer 
is only a part of the value and could miss some numbers. “Not the higher value” means that 
the answer is not the largest of multiple-value options for the property, after using a new 
material or making any other improvement for the solar cell, which is the second most 
dominant error source (18.58%). The third largest error is “not a range” which means that the 
correct answer pertains to a range of values, albeit that the generated answer covers only one 
value. Except for “do not have units”, all the other errors pertain to intrinsic limitations of the 
data-extraction capabilities of ChemDataExtractor. These results prove that the transformation 
algorithm for creating the Solar-cell QA database achieves high performance and has avoided 
nearly all possible problems. 
 
Table B-3. Error sources for the Solar-cell QA dataset (first-turn). 

Error 
source (%) 

Power-
conversion 
efficiency 

Open-
circuit 

voltage 

Short-
circuit 

current 
density 

Fill 
factor 

Active 
area 

Solar 
simulator 

and 
irradiance 

Counter 
electrode 

Substrate Other All 
(weighted 
average) 

Not the 
whole 
number 

37.14 11.11 33.33 0.00 100.00 0.00 41.67 100.00 3.95 28.34 

Not a range 11.43 33.33 0.00 33.33 0.00 0.00 8.33 0.00 0.00 12.93 

Does not 
have units 

14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.84 7.07 

Not the 
higher value 

25.71 44.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.58 

Not a group 
of data 

5.71 11.11 66.67 0.00 0.00 0.00 8.33 0.00 0.00 9.95 

Not the 
correct 
value 

2.86 0.00 0.00 33.33 0.00 100.00 8.33 0.00 17.11 9.55 

Not whole 
context 

2.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.07 

Does not 
contain the 
answer 

0.00 0.00 0.00 33.33 0.00 0.00 33.33 0.00 5.26 3.55 

Specifier 
problem 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61.84 8.96 

Weight 37.50 20.10 7.94 5.01 4.78 4.05 3.34 2.79 14.49  

 

B.2 Second-turn QA pairs 

    The statistical details for the second-turn QA pairs in the Solar-cell QA dataset are shown in 
Table B-4. Among the ten properties in the second-turn QA pairs, seven properties have more 
than 100 QA pairs. The PCE has the largest proportion (42.32%), which is: 1.54 times that of 
the open-circuit voltage, 4.03 times that of the short-circuit current density, and 7.83 times 
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that of the active area. According to Figure B-2, most answers have a length of around two or 
four characters; this is because they tend to be abbreviations of materials or batch names, 
while contexts have much greater character lengths than the answers (~200 characters). 
Compared to first-turn QA pairs, second-turn QA pairs have six fewer properties and the 
average length of the answer is two fewer characters, albeit the average context length has 
five more characters. 
 
Table B-4. Statistical parameters for the second-turn QA pairs in the Solar-cell QA dataset. 

Parameter Value 

The number of:  

    Properties 10 

    Total QA pairs 4,386 

    QA pairs in the train set 3,508 

    QA pairs in the test set 878 

The number of QA pairs for:  

    Power-conversion efficiency 1,856 

    Open-circuit voltage 1,207 

    Short-circuit current density 460 

    Active area 237 

    Fill factor 236 

    Solar simulator and irradiance 201 

    Charge-transfer resistance 110 

    Other 79 

The average length of:   

    Answer /characters 4 

    Context /characters 245 

 

 
Figure B-2. (a) Distribution of character-lengths for answers, and (b) distribution of character-
lengths for the context pertaining to the second-turn QA pairs in the Solar-cell QA dataset. 
 
      Table B-5 shows an evaluation set of 100 QA pairs that were randomly chosen from second-
turn QA pairs according to the proportion of each property in the Solar-cell QA dataset. All the 
generated answers were compared to the standard answers that had been manually provided 
by the human, reaching an exact match of 72%. There are four sources of error in Table B-6. 
The most dominant error source is “not a material”, which includes more than half of the errors, 
i.e., the answer could be a number wrongly extracted as a material. “No answer” is the second 
largest error source, which shows that there is no material in the context. However, these two 
errors can be resolved by deleting the second-turn QA pairs with purely numerical answers, 
which will significantly improve the accuracy. All four error sources arise from intrinsic 
limitations of the data-extraction capabilities of ChemDataExtractor, which demonstrates the 
high quality of the improved transformation algorithm. 

(a) (b) 
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Table B-5. Evaluation set for the second-turn QA pairs in the Solar-cell QA dataset. 
Type of properties Number of QA pairs 

Power-conversion efficiency 42 

Open-circuit voltage 28 

Short-circuit current density 10 

Active area 5 

Fill factor 5 

Solar simulator and irradiance 5 

Charge-transfer resistance 3 

Other 2 

 

Table B-6. Error sources for the second-turn QA pairs in the Solar-cell QA dataset. 
Error sources Count Proportion 

Wrong material 4 14.29% 

No answer 5 17.86% 

Not a material 16 57.14% 

Not whole materials 3 10.71% 

Total 28 100% 

 

C Further Pretraining 

The hyperparameters are: learning_rate: 2e-5; seed: 50; pad_to_max_length: False; 
validation_split_percentage: 5; warmup_ratio: 0.2; weight_decay: 0.01. 

 

C.1 Further pretraining on Solar-cell Corpus Small 

The originally formulated BERT-base models were further pretrained on the Solar-cell Corpus 
Small (scsmall). For the BERT-base-cased model shown in Figure C-1 (a), the initial training and 
evaluation losses are between 3 and 3.5. After these losses decrease with a constant speed 
over 20 epochs of refinement, the evaluation loss converges to 1.1, which is smaller than the 
training loss of 1.2. For the BERT-base-uncased model shown in Figure C-1 (b), the initial 
training and evaluation losses are in the range of 2.0-2.5, which are smaller than those of the 
BERT-base-cased model. The losses reduce with decreasing speed and converge to 1.4 and 1.3, 
respectively for training and validation after the fifteenth epoch of refinement. Compared to 
the BERT-base-cased model, the losses of the BERT-base-uncased model have lower initial loss 
values and higher speeds of decreasing loss, albeit their final values are higher as well. The 
evaluation losses for the BERT-base-cased and BERT-base-uncased models are lower than their 
training losses and both two models achieved good convergence. 

  
Figure C-1. Convergence profiles of model refinements that further pretrain the originally 
formulated (a) BERT-base-cased and (b) BERT-base-uncased models when incorporating Solar-
cell Corpus Small. 

(a) (b) 
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      Figure C-2 shows the process of further pretraining BERT-large models when incorporating 
Solar-cell Corpus Small. The initial values of the training and evaluation losses are in the range 
of 2.75-3.25 for the BERT-large-cased model, which are higher than those of the BERT-large-
uncased model (1.75-2.0). There are two obvious stages when pretraining the BERT-large-
cased model: a first stage where the model refines with a convergence rate that initially 
decreases and then plateaus (epochs 0-13) before the second stage onsets with a constant 
decreasing speed over epochs 14-25. The losses of the BERT-large-cased model finally reach 
values between 0.8 and 1.0, which are lower than those of the BERT-large-uncased model (1.0-
1.1) by epoch 35. Both the initial and final losses of the BERT-large models are smaller than 
those of the BERT-base models, albeit the large models require more time to converge. This 
result shows that the accuracy of a BERT model increases with the size of the model, albeit 
that the time required for further pretraining increases commensurately.   

  
Figure C-2. Convergence profiles of model refinements that further pretrain the originally 
formulated (a) BERT-large-cased and (b) BERT-large-uncased models when incorporating Solar-
cell Corpus Small. 
 
C.2 Further pretraining on Solar-cell Corpus Medium 

As shown in Figure C-3, BERT-base models were further pretrained while incorporating Solar-
cell Corpus Medium (scmedium). The BERT-base-cased model has initial training and 
evaluation losses of 2.75-3.0, which are higher than those of the BERT-base-uncased model 
(1.75-2.0). After ten epochs, both BERT-base-cased and BERT-base-uncased models converge, 
with final losses being in the ranges of 1.0-1.2 and 1.1-1.3, respectively. The changing rate of 
convergence for the BERT-base-cased model is higher than that of the BERT-base-uncased 
model during the first five epochs of model refinement while their convergence profiles are 
similar over the next five epochs. There is a gap between the training and evaluation losses for 
both models and the evaluation loss has lower values overall. Compared with the BERT-base 
models that were further pretrained on Solar-cell Corpus Small, the BERT-base models that 
were further pretrained on Solar-cell Corpus Medium exhibit lower initial losses and higher 
convergence speeds, which shows that the increase of the corpus size may not lead to an 
increase in training time. 

(a) (b) 
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Figure C-3. Convergence profiles of model refinements that further pretrain the originally 
formulated (a) BERT-base-cased and (b) BERT-base-uncased models when incorporating Solar-
cell Corpus Medium. 
 
      BERT-large models were also further pretrained when incorporating Solar-cell Corpus 
Medium. For the BERT-large-cased model, Figure C-4 (a) shows that the initial values of training 
and evaluation losses (2.5-2.75) decrease to 2.3 during the five epochs of model refinement 
and rapidly decrease to approximately 0.9 over the next five epochs of refinement. For the 
BERT-large-uncased model, Figure C-4 (b) shows that the initial training and evaluation losses 
(1.5-1.75) decrease to around 1.0 after ten epochs of model refinement; these losses have 
lower initial values and higher final values than those of the BERT-large-uncased model. Both 
models converge after ten epochs of model refinement and their evaluation losses are lower 
than their training losses. Compared to BERT-base models that were further pretrained while 
incorporating Solar-cell Corpus Medium, the BERT-large models that were further pretrained 
on the same corpus afford lower initial and final losses and need the same number of epochs 
to achieve sufficient convergence to produce stable models. Compared to BERT-large models 
that were further pretrained on Solar-cell Corpus Small, the same models further pretrained 
on Solar-cell Corpus Medium exhibit lower initial losses, similar final losses, and higher 
convergence speeds. 
 

  
Figure C-4. Convergence profiles of model refinements that further pretrain the originally 
formulated (a) BERT-large-cased and (b) BERT-large-uncased models while incorporating Solar-
cell Corpus Medium. 
 
 
 
 

(a) (b) 

(a) (b) 
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C.3 Further pretraining on Solar-cell Corpus Large 

BERT-base models were further pretrained while incorporating Solar-cell Corpus Large 
(sclarge). Figure C-5 shows that the training loss of its BERT-base-cased model variant 
decreases substantially during the first two epochs from 2.4 to 1.5, before gradually reducing 
to 1.2 after the tenth epoch, whereby the evaluation loss starts from a lower value (1.7) and 
slowly decreases to 1.5. Note that the training loss is higher than the evaluation loss during 
epochs 0-2, but decreases at a higher rate such that it becomes lower than the evaluation loss 
from epoch 3 and continues to decrease at a more rapid pace. This means that the BERT-base-
cased model overfits the training set after the second epoch of model refinement. Given that 
the evaluation loss does not increase, and the corpus is large enough, this overfit is acceptable. 
For the BERT-base-uncased model, both training and evaluation losses start from a similar 
value (1.75) and reduce to about 1.6 after one epoch of model refinement. After the tenth 
epoch, the evaluation loss has decreased to 1.5, while the training loss becomes lower than 
the evaluation loss and reaches 1.3. The final losses of the BERT-base-cased model are lower 
than that of the BERT-base-uncased model and overfitting appears in both models. 

  
Figure C-5. Convergence profiles of model refinements that further pretrain the originally 
formulated (a) BERT-base-cased (b) BERT-base-uncased models while incorporating sclarge. 
 
      BERT-large models were further pretrained while incorporating Solar-cell Corpus Large. The 
shapes of the convergence profiles shown in Figure C-6 are similar to the curves in Figure C-5, 
albeit the losses of the BERT-large models are smaller than those of the BERT-base models. For 
the BERT-large-cased model, Figure C-6 (a) shows that its training and evaluation losses 
converge to 1.0 and 1.3, respectively, which are lower than those for the analogous BERT-base-
cased model (1.2 and 1.5, respectively). 

  
Figure C-6. Convergence profiles of model refinements that further pretrain the originally 
formulated (a) BERT-large-cased (b) BERT-large-uncased models while incorporating sclarge. 
 

(a) (b) 

(a) (b) 
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D Finetuning 

The hyperparameters for finetuning are: learning_rate: 3e-5; max_seq_length: 512; 
doc_stride: 128; seed: 50. 

 

D.1 Finetuning on the SQuAD dataset 

The originally formulated and further pretrained BERT models were each finetuned on the 
training set of SQuAD and tested on the validation set of the Solar-cell QA dataset (first-turn); 
the corresponding results are shown in Table D-1. The performance of a BERT model increases 
as its F1 score and exact match increase. In more realistic applications, the ability of a BERT 
model to extract part of the correct answer is also meaningful; accordingly, the F1 score is 
mainly used instead of the exact match scoring metric for comparing different BERT models. 
The F1 scores of cased models are higher than those of uncased models except for BERT-base 
and BERT-large models that were further pretrained on Solar-cell Corpus Large. The difference 
between the cased and uncased BERT-base models decreases as the incorporated solar-cell 
corpus becomes larger, to the extent that the F1 score of the BERT-base-uncased-sclarge 
model finally exceeds that of BERT-base-cased-sclarge. By comparison, the difference between 
the cased and uncased BERT-large models increases initially, before it decreases, albeit that 
BERT-large-uncased-sclarge exceeds BERT-large-cased-sclarge as well. For BERT-base models, 
the F1 scores of the models that were further pretrained while incorporating Solar-cell Corpus 
Large are the highest and are larger than those of the originally formulated models and the 
models further pretrained while incorporating smaller corpora. For BERT-large models that 
were further pretrained while incorporating solar-cell corpora, the trends are similar. The F1 
scores of all BERT-base models are smaller than those of their analogous BERT-large models. 
 
Table D-1. F1 scores and exact match scoring metrics for the BERT models finetuned on SQuAD 
(the maximum value per group is given in bold). 

Model F1 score Exact-match 

Base   

bert-base-cased-squad 60.932 52.443 

bert-base-uncased-squad 57.874 49.096 

bert-base-cased-scsmall-squad 62.433 55.264 

bert-base-uncased-scsmall-squad 60.731 52.035 

bert-base-cased-scmedium-squad 63.486 57.234 

bert-base-uncased-scmedium-squad 62.363 54.518 

bert-base-cased-sclarge-squad 63.684 56.243 

bert-base-uncased-sclarge-squad 63.909 56.313 

Large   

bert-large-cased-squad 62.0602 55.194 

bert-large-uncased-squad 62.038 52.431 

bert-large-cased-scsmall-squad 64.057 55.078 

bert-large-uncased-scsmall-squad 63.269 54.693 

bert-large-cased-scmedium-squad 65.092 57.911 

bert-large-uncased-scmedium-squad 64.821 57.619 

bert-large-cased-sclarge-squad 65.526 57.736 

bert-large-uncased-sclarge-squad 65.708 60.126 

 

D.2 Finetuning on the combined SQuAD and Solar-cell QA dataset (first-turn) 

The originally formulated BERT models and the BERT models that had been further pretrained 
on solar-cell corpora were finetuned on both SQuAD and the Solar-cell QA dataset (first-turn) 
(Table D-2). Here, the training set is the combination of the training set in SQuAD and the 
training set in the Solar-cell QA dataset (first-turn), while the test set is the validation set of 
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the Solar-cell QA dataset (first-turn). All models have F1 scores of ~76% and the differences 
among these are small. The bert-large-uncased-sclarge-squadscqa1 model has the highest F1 
score (77.106%), while the bert-base-uncased-sclarge-squadscqa1 model has the lowest F1 
score (76.14%), noting that the entire range of F1 scores differs by only 0.966%.  
 
Table D-2. F1 scores and exact match scoring metrics for the BERT models finetuned on the 
combined SQuAD and Solar-cell QA dataset (first-turn) (maximum value per group is in bold). 

Model F1 Score Exact-match 

Base   

bert-base-cased-squadscqa1 76.201 71.459 

bert-base-uncased-squadscqa1 76.349 72.415 

bert-base-cased-scsmall-squadscqa1 76.726 73.079 

bert-base-uncased-scsmall-squadscqa1 76.452 73.452 

bert-base-cased-scmedium-squadscqa1 76.609 73.068 

bert-base-uncased-scmedium-squadscqa1 76.423 72.636 

bert-base-cased-sclarge-squadscqa1 76.816 73.301 

bert-base-uncased-sclarge-squadscqa1 76.14 72.659 

Large   

bert-large-cased-squadscqa1 76.322 72.916 

bert-large-uncased-squadscqa1 76.491 72.823 

bert-large-cased-scsmall-squadscqa1 76.836 74.082 

bert-large-uncased-scsmall-squadscqa1 76.997 73.907 

bert-large-cased-scmedium-squadscqa1 76.605 73.662 

bert-large-uncased-scmedium-squadscqa1 76.876 73.779 

bert-large-cased-sclarge-squadscqa1 76.499 73.452 

bert-large-uncased-sclarge-squadscqa1 77.106 74.467 

 

D.3 Finetuning on the Solar-cell QA dataset (first-turn) 

The importance of domain-specific knowledge was analysed further by finetuning BERT 
models using only the Solar-cell QA dataset (first-turn). Without the 87,599 QA items from the 
SQuAD that were derived from general English text, there are only 34,305 QA items from the 
Solar-cell QA dataset (first-turn) in the training set. When the SQuAD was used to train the 
BERT models for QA tasks and the Solar-cell QA dataset (first-turn) improves their ability to 
extract solar-cell properties, both the SQuAD and Solar-cell QA dataset (first-turn) are 
necessary for finetuning BERT models. However, if a small QA dataset with rich domain 
knowledge is enough to train the models for property extraction, the SQuAD may not be 
necessary and the Solar-cell QA dataset (first-turn) could be enough in of itself. In this case, 
the use of computing resources could be minimized. 
      This hypothesis was tested by finetuning BERT models using only the Solar-cell QA dataset 
(first-turn). Results are shown in Table D-3. The training set comprises only the training set of 
the Solar-cell QA dataset (first-turn) without the SQuAD and the test set is the validation set 
of the Solar-cell QA dataset (first-turn) exclusively. The F1 scores for the BERT models range 
from 75.952% to 76.929% and have an average value of 76.46%; i.e., they are all similar to 
each other (their entire range spans 0.977%). No model exhibits any apparent outstanding 
performance or obvious weakness.  
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Table D-3. F1 scores and exact match scoring metrics for the BERT models finetuned on the 
Solar-cell QA dataset (first-turn) (the maximum value per group are given in bold). 

Model F1 score Exact-match 

Base   

bert-base-cased-scqa1 76.726 73.685 

bert-base-uncased-scqa1 75.952 72.729 

bert-base-cased-scsmall-scqa1 76.479 72.403 

bert-base-uncased-scsmall-scqa1 76.01 72.589 

bert-base-cased-scmedium-scqa1 76.154 72.624 

bert-base-uncased-scmedium-scqa1 76.029 72.508 

bert-base-cased-sclarge-scqa1 76.431 72.578 

bert-base-uncased-sclarge-scqa1 76.482 72.764 

Large   

bert-large-cased-scqa1 76.449 73.137 

bert-large-uncased-scqa1 76.361 73.557 

bert-large-cased-scsmall-scqa1 76.18 72.555 

bert-large-uncased-scsmall-scqa1 76.415 73.137 

bert-large-cased-scmedium-scqa1 76.893 73.872 

bert-large-uncased-scmedium-scqa1 76.91 74.047 

bert-large-cased-sclarge-scqa1 76.929 74.245 

bert-large-uncased-sclarge-scqa1 76.897 74.094 

       

 

 

 
 

 

 

 

 


