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Supplementary Text

Simplified SOAP + lateral interaction ML model

An overview of the simplified lateral interaction model is shown on Fig. S10. The interaction

of the adsorbate with the surface and with other adsorbates are represented by an on-site

descriptor (xi) and adsorbate distances (dij), respectively (Fig. S10a). Such an approach
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isolates the e↵ects of adsorbate-surface and adsorbate-adsorbate interactions when predicting

the binding energies for the systems of interest, and does not rely on learnable descriptors

from graph neural networks (GNNs). Instead, radial basis functions (RBF) are used to map

dij into vectors (rij) that are used along with the on-site descriptors xi, xj as inputs to

a neural network (NN) that predicts the interaction energies between adsorbates (Eij). A

separate neural network using the on-site descriptor is used to predict the adsorbate-surface

interaction energy (Ei) that is independent of the coverage. Finally, the total binding energy

is predicted by combining the two NNs as the sum of these interaction energies (Fig. S10b).

The results regarding this simplified model for the dataset of CO on Cu are summarized

in Fig. 3 and discussed in the main text. To implement this model, we used the Smooth

Overlap of Atomic Positions (SOAP) as descriptor xi for the binding sites. For each binding

site in the structure, the power spectrum was computed using 7 radial basis functions, 6

angular basis functions, smearing of 0.3 Å, and a cuto↵ of 5.0 Å. The descriptors were

computed using the package dscribe and only considered the C-Cu pairs. This led to

vectors xi of length 343 floating point numbers. The distance rij between adsorption sites

was represented using a Gaussian basis function, with 8 trainable basis functions of varying

widths and initially centered at zero. A cuto↵ of 5.0 Å was used for representing rij. The

NNs used to predict Ei and Eij were simple, feedforward NNs with 3 hidden layers of size

800 each. Because Ei is predicted directly from xi, the input size of the first NN was 343. On

the other hand, an input size of 694 was used to predict Eij. The Mish activation function

was used for the NNs. No batch normalization was used.

The code for the model was written in PyTorch, and the model was trained on 4 NVIDIA

V100 GPUs in the Lassen supercomputer, with training and parallelization routines imple-

mented within PyTorch Lightning. The AdamW optimizer with initial learning rate of 10�3

and weight decay of 10�2 was used to minimize the mean squared error between predicted

and true binding energies. A learning rate scheduler was used to decrease the learning rate

by a factor of 0.5 if the validation loss plateaus for 20 consecutive epochs. A stochastic
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weight averaging (SWA) callback was also used after epoch 700, with a starting learning rate

of 3⇥10�4 and cosine annealing function every 10 epochs. The simplified model was trained

for a minimum of 1000 epochs and a maximum of 1200 epochs, and the best chosen model

was the one that minimizes the validation loss. The final prediction of binding energies was

performed using an ensemble of 6 simplified models with di↵erent intialization, but the same

train/validation splits.

Supplementary Figures

111 100 211 331 410 711

Figure S1: Visualization of the six Cu surfaces (111, 100, 211, 331, 410 and 711) considered
in this study.
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Figure S2: Visualization of binding sites from the six Cu surfaces (100, 111, 211, 331, 410
and 711) considered in this study. Binding sites are shown in black, and copper atoms are
shown in orange. Transparency is used to indicate depth, with more opaque atoms closer to
the surface.
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Figure S3: Schematic of the complete simulation workflow performed in this study. The
pipeline was implemented using mkite.
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Figure S4: Distributions of the original dataset energies computed with DFT separated by
facet and coverage. Configurations were sampled randomly (see Methods). The energies
shown in these distributions are for unrelaxed systems, i.e., single-point DFT calculations
on the energies from initial structures
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Figure S5: Distributions of the original (unrelaxed) dataset energies computed with DFT
separated by facet. These distributions are obtained by consolidating the distributions in
Fig. S4.
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Figure S6: Parity plots for the MACE models trained in this study on di↵erent facets. Each
row represents a model trained on a single facet, and each column represents the facet used
for evaluation of that model. The plots are annotated with the (train | test) labels for clarity.
The color depicts the coverage, with higher coverages corresponding to brighter colors. The
black line represents the perfect prediction. For diagonal terms, only points in the test set
are plotted.
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Figure S7: Two-dimensional visualization of unique binding sites in Cu facets, obtained from
the cosine distance between SOAP fingerprints and UMAP. Binding sites for all facets are
shown in grey, and colored dots are binding sites of each facet.
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Figure S8: Parity plots for the MACE models trained on coverages with even number of CO
adsorbates and tested on coverages with odd number of CO adsorbates, on a per-facet basis.
All configurations with a single CO were included in the training set.
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Figure S9: Parity plots for the MACE models trained on lower CO coverages (n < 10 CO)
and tested on higher CO coverages (n � 10 CO) for each facet.
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Figure S10: ML architecture for a simpler lateral interaction model. a. Interactions between
adsorbates and surfaces are represented by an on-site descriptor (adsorption site) and an
adsorbate-adsorbate distance (dij), b. The distance between the adsorbates is mapped into
a vector using a Gaussian basis function and, along with the descriptors, is used to predict
interaction energies. The descriptors alone are also used to predict an on-site interaction
energy that does not depend on the coverage.

Figure S11: Errors for the models in Fig. 3d trained on Cu(711) configurations. The average
RMSE for facets other than Cu(711) corresponds to the “other facets” label in Fig. 3d.

12



Figure S12: (part 1/2) Binding energy profiles for Cu facets (columns) with di↵erent CO
coverage (rows) sampled with simulated annealing method with Metropolis algorithm. For
clarity, only one every 15 sampling trajectories are shown. Colors are chosen randomly for
each trajectory to aid visualization.
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Figure S13: (part 2/2) Binding energy profiles for Cu facets (columns) with di↵erent CO
coverage (rows) sampled with simulated annealing method with Metropolis algorithm. For
clarity, only one every 15 sampling trajectories are shown. Colors are chosen randomly for
each trajectory to aid visualization.
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Figure S14: Distributions of energies of randomly sampled structures (Fig. S4, black) and
lowest energy replicas from the MCMC sampling (orange).
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Figure S15: Correlation between binding energies obtained with DFT from relaxed and
unrelaxed systems of CO on Cu facets from the original dataset. The value r corresponds
to the Spearman’s correlation coe�cient between (relaxed, unrelaxed) energy pairs.

Figure S16: Recall curves of top-N relaxed configurations from unrelaxed binding energies.
A higher recall is obtained from systems with higher rank-correlation between unrelaxed and
relaxed binding energies (Fig. S19). Three scenarios are shown: top-5, top-10, and top-15
recall. The baseline recall curve is shown in dashed lines.
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Figure S17: Distributions of binding energies of DFT-relaxed systems from the original
dataset separated by facet (column) and coverage (row). Configurations were selected ran-
domly among the unrelaxed configurations in the initial dataset. The number on the bottom
right corresponds to the standard deviation (in meV/CO) of each distribution when more
than two data points are available. 17



Figure S18: Distributions of binding energies of DFT-relaxed systems from the original
dataset separated by facet (see also Fig. S17). � corresponds to the standard deviation of
each distribution.

Figure S19: Correlation between the di↵erence between relaxed and unrelaxed binding ener-
gies (�Eb) and unrelaxed binding energies (Eb) for the original dataset of CO on Cu facets.
The near-linear relationship between �Eb and the unrelaxed Eb illustrates that the correla-
tions are dominated by the unrelaxed energies, as they exhibit much higher variance than
relaxed energies (Fig. S17).
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Figure S20: Correlation between relaxation energy di↵erences (�Eb = E(relax)

b � E(unrelax)

b )
and distances between relaxed and unrelaxed structures, as computed by the pointwise dis-
tance distribution (PDD). The structures are from the original dataset of CO on Cu facets.
The strong correlations show that a higher �Eb (and, thus a higher unrelaxed energy, as
shown in Fig. S19) is connected to higher structural changes of the adsorbates and surfaces.
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Figure S21: Dependence between relaxed binding energies and surface coverage of CO on
Cu facets. Blue lines represent relaxed energies in the original dataset. Red lines represent
relaxed energies of systems obtained from ML-accelerated MCMC sampling.
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Figure S22: Side and top view of the lowest energy structures among the sampled dataset for
*CO on Cu(410) for five di↵erent coverages. Carbon, oxygen, and copper atoms are depicted
in black, blue, and orange, respectively.
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Cu(100)

Figure S23: Visualization of lowest-energy structures for Cu(100) among the sampled con-
figurations of *CO coverage. Copper, oxygen, and carbon atoms are depicted with orange,
blue, and black circles. Color fading in copper atoms depict distance, with more opaque
atoms closer to the surface.
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Cu(111)

Figure S24: Visualization of lowest-energy structures for Cu(111) among the sampled con-
figurations of *CO coverage. Copper, oxygen, and carbon atoms are depicted with orange,
blue, and black circles. Color fading in copper atoms depict distance, with more opaque
atoms closer to the surface. As discussed in the main text, sampled low-coverage configura-
tions for Cu(111) do not correspond to the global energy minima for these systems.
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Cu(211)

Figure S25: Visualization of lowest-energy structures for Cu(211) among the sampled con-
figurations of *CO coverage. Copper, oxygen, and carbon atoms are depicted with orange,
blue, and black circles. Color fading in copper atoms depict distance, with more opaque
atoms closer to the surface.
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Cu(331)

Figure S26: Visualization of lowest-energy structures for Cu(331) among the sampled con-
figurations of *CO coverage. Copper, oxygen, and carbon atoms are depicted with orange,
blue, and black circles. Color fading in copper atoms depict distance, with more opaque
atoms closer to the surface.
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Cu(410)

Figure S27: Visualization of lowest-energy structures for Cu(410) among the sampled con-
figurations of *CO coverage. Copper, oxygen, and carbon atoms are depicted with orange,
blue, and black circles. Color fading in copper atoms depict distance, with more opaque
atoms closer to the surface.
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Cu(711)

Figure S28: Visualization of lowest-energy structures for Cu(711) among the sampled con-
figurations of *CO coverage. Copper, oxygen, and carbon atoms are depicted with orange,
blue, and black circles. Color fading in copper atoms depict distance, with more opaque
atoms closer to the surface.
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Figure S29: Relaxed binding energies (red) and fitted integral binding energy curve of CO on
Cu facets. The curves were fitted with a polynomial that is linear at low coverages and cubic
at high coverages. The fits were performed by first taking the Boltzmann average at 298 K
of binding energies for each facet and coverage regime, then fitting the function parameters
using a non-linear least squares.
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Figure S30: Di↵erential binding energy curve of CO on Cu facets. The curves were obtained
by taking the derivative of fitted integral binding energy curves with respect to the coverage,
then combined together to form Fig. 6.
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Figure S31: Example of temperature (top) and binding energy (bottom) profiles during
MCMC sampling of CO configurations on the *CHOH-Rh(111) system. Only one every
15 trajectories is shown for clarity. Colors are chosen randomly to enable visualization of
di↵erent sampling trajectories.
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Rh(111), *CHOH, *CO H C O Rh

Figure S32: Lowest unrelaxed energy configurations of *CHOH (top site) and *CO on
Rh(111) sampled with the ML-accelerated MCMC approach for increasing CO coverages.
Rhodium, carbon, oxygen, and hydrogen atoms are depicted with gray, black, blue, and red
colors, respectively.
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Figure S33: NEB trajectories for all three systems shown in Fig. 7c of the main text.
The trajectories are shown according to equally spaced images (left) and to the distance
between C-O atoms in the CHOH adsorbate (right). In all three cases, the transition state
of CHOH bond scission is found for a C-O bond length around 2.1 Å. Energy di↵erences for
restructuring are further demonstrated with the unchanging distance between C-O atoms in
the CHOH adsorbate (right panel).
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Figure S34: Schematic of NEB trajectories *CHOH bond scission for the three configurations
shown in Fig. 7 of the main text. Rhodium, carbon, oxygen, and hydrogen atoms are
depicted with gray, black, blue, and red colors, respectively.
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Supplementary Tables

Table S1: Statistics on the Cu surface models used in this work. The lateral lattice vectors
a and b are orthogonal to each other (Fig. S1), with magnitudes given in columns a, b. The
surface depth is the cuto↵ value used to label atoms as “surface atoms”. With this cuto↵,
di↵erent number of surface atoms and adsorption sites are found for each facet. Because high-
coverage regimes are of interest, all adsorption sites are reported instead of only considering
unique ones.

Facet a (Å) b (Å) Surface Depth (Å) Num. Surface Atoms Num. Adsorption Sites

100 10.39 10.39 1.0 16 64
111 10.39 9.00 1.0 16 96
211 10.39 12.73 1.4 24 128
331 10.39 11.32 1.6 24 144
410 11.02 15.15 1.2 24 120
711 10.39 9.28 1.8 16 64
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Table S2: Simplified estimates of the number of configurations of n adsorbates on each of
the facets. Each number was obtained by choosing n groups of 4 adsorption sites among all
adsorption sites shown in Table S1. The groups simplify the estimate by assuming that each
adsorption site has roughly 3 nearest neighbors that cannot be simultaneously selected due
to small distances, leading to a p choose n problem, where p is the number of adsorption
sites in Table S1 divided by 4. These estimates do not account for symmetrically equivalent
distributions of adsorbates on the facet given the periodic boundary conditions and surface
geometry.

n 100 111 211 331 410 711

1 16 24 32 36 30 16
2 120 276 496 630 435 120
3 560 2024 4960 7140 4060 560
4 1820 1.06e+04 3.60e+04 5.89e+04 2.74e+04 1820
5 4368 4.25e+04 2.01e+05 3.77e+05 1.43e+05 4368
6 8008 1.35e+05 9.06e+05 1.95e+06 5.94e+05 8008
7 1.14e+04 3.46e+05 3.37e+06 8.35e+06 2.04e+06 1.14e+04
8 1.29e+04 7.35e+05 1.05e+07 3.03e+07 5.85e+06 1.29e+04
9 1.14e+04 1.31e+06 2.80e+07 9.41e+07 1.43e+07 1.14e+04
10 8008 1.96e+06 6.45e+07 2.54e+08 3.00e+07 8008
11 4368 2.50e+06 1.29e+08 6.01e+08 5.46e+07 4368
12 1820 2.70e+06 2.26e+08 1.25e+09 8.65e+07 1820
13 560 2.50e+06 3.47e+08 2.31e+09 1.20e+08 560
14 120 1.96e+06 4.71e+08 3.80e+09 1.45e+08 120
15 16 1.31e+06 5.66e+08 5.57e+09 1.55e+08 16
16 1 7.35e+05 6.01e+08 7.31e+09 1.45e+08 1
17 0 3.46e+05 5.66e+08 8.60e+09 1.20e+08 0
18 0 1.35e+05 4.71e+08 9.08e+09 8.65e+07 0
19 0 4.25e+04 3.47e+08 8.60e+09 5.46e+07 0
20 0 1.06e+04 2.26e+08 7.31e+09 3.00e+07 0
21 0 2024 1.29e+08 5.57e+09 1.43e+07 0
22 0 276 6.45e+07 3.80e+09 5.85e+06 0
23 0 24 2.80e+07 2.31e+09 2.04e+06 0
24 0 1 1.05e+07 1.25e+09 5.94e+05 0
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Table S3: Number of data points sampled on a per-facet, per-coverage basis for the original
dataset of *CO on copper. Binding energies for all these randomly sampled configurations
were computed using single-point DFT calculations. The final number of configurations
depends on the maximum number of structures allowed to be sampled and the symmetry
equivalence between crystal structures.

Facet
nCO 100 111 211 331 410 711

1 3 5 28 15 29 16
2 28 66 95 95 95 87
3 82 99 100 100 100 100
4 95 100 100 100 100 100
5 100 100 100 100 100 100
6 100 100 100 100 100 100
7 100 100 100 100 100 100
8 100 100 100 100 100 100
9 100 100 100 100 100 100
10 50 50 50 50 50 50
11 50 50 50 50 50 50
12 50 50 50 50 50 50
13 50 21 50 50 50 50
14 50 6 50 50 50 50
15 50 1 50 50 50 50
16 50 1 50 12 50 50
17 11 0 26 4 50 12
18 2 0 6 1 50 2

Table S4: Energies of CH-OH bond scission pathways for configurations 1, 2, and 3 shown
in Fig. 7 of the main text. All energies use the energy of initial configuration 1 as reference.
Energies are expressed in eV.

Config. Initial Restructuring Intermediate CH-OH scission Final

1 0.00 0.46 0.27 1.12 0.41
2 0.07 0.55 0.68 1.38 0.28
3 0.29 0.67 0.60 2.58 2.42
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