
SMARTpy: A Python Package for the Generation of Cavity Steric

Molecular Descriptors and Applications to Diverse Systems
Beck R. Miller, Ryan C. Cammarota, Matthew S. Sigman*

Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA

Table of Contents

1. Supplemental Figures and Tables S1

2. Computational Details for Analyses S5

2.1. Aligning the Molecular Probe to a Structure S5

2.2. Probe Template Generation and Conformational Searching S7

2.3. Computation of Molecular Descriptors S7

3. SMART API Usage Guide S8

3.1. Defining Binding Vectors S9

3.2. Probe Cavity Ensemble Generation S9

4. Instructions for Custom Probe Generation S10

5. References S10

S1

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2025

1. Supplemental Figures and Tables

Figure S1. Example outlier for VCAVITY. SMART cavity ensembles only have a single conformer.

Figure S2. VCAVITY for BINOL and SPINOL are linearly correlated.

S2

Figure S3. No correlation between distVCAVITY and proxVCAVITY for BINOL scaffolds.

Figure S4. Standard deviation (std) between three runs of SMARTpy using NSTEP=50.

Table S1. Times for Computing SMART Descriptors via Two Different Methods.

Method Backend Total Time (s)* Average Time (s)**

1 PyVista 4.04 0.22

2 Morfeus 215 12.0

*Total time to compute descriptors for 18 structures.

**Average time taken per structure.

S3

Table S2. Probe Structures Used for Analysis

Name Filename*
CycH_8 S_SiF2_8_cyclic.mol2
CycH_10 S_SiF2_10_cyclic.mol2
CycH_12 S_SiF2_12_cyclic.mol2
AcycH_8 S_SiF2_8_acyclic.mol2
AcycH_10 S_SiF2_10_acyclic.mol2
AcycH_12 S_SiF2_12_acyclic.mol2
CycF_12 S_SiF2_12_cyclic.mol2
LinH_6 O_SiH2_6_linear.mol2

*Probe structures used in this manuscript and other general probe structures stored in

https://github.com/SigmanGroup/SMART-molecular-descriptors/tree/main/Probes

Table S3. SMART Molecular Descriptors Supported by Python Workflow

Manuscript

Abbrev.

Feature Description

VCAVITY Cavity volume

ACAVITY Cavity surface area

CSA Contact surface area

ESA Entry surface area (ESA=ACAVITY-CSA)

proxVCAVITY Proximal cavity volume (radius = i)

proxACAVITY Proximal cavity surface area (radius = i)

proxCSA Proximal contact surface area

proxESA Proximal entry surface area (proxESAr=i = proxACAVITY,r=i – proxCSAr=i)

L Sterimol L (height)

B1 Sterimol B1 (min width)

B5 Sterimol B5 (max width)

S4

https://github.com/SigmanGroup/SMART-molecular-descriptors/tree/main/Probes

2. Computational Details for the SMART Python Workflow

2.1. Aligning the Molecular Probe to a Structure

The SMARTpy workflow is initiated by the definition of a binding vector between the

molecular probe and a computed structure of interest. An algorithm aligns two vectors, from the

probe and structure and computes a binding site for the probe. The probe binding vector is defined

by the tether atom and a dummy H atom that is removed after docking (Figure S5a) (See Section

4 for more information on defining probes). Multiple implementations for defining a structure

binding vector are executed for maximal system modularity.

The first method is a linear tail-to-tip vector, defined by the binding atom of the structure

and a reference atom located along the desired binding axis (Figure S5b). The distance (d) between

the structure and probe binding site is specified by the user (default to 2.0 Å). This method reflects

the original implementation on dirhodium(II) cores, where the linear core defined the axial binding

vector. The second method is a cross-product computation method for binding perpendicular to an

angle of reference given a central binding atom and two reference atoms (Figure S5c). This method

was designed for planar complexes with an axial active site, such as Fe-porphyrins. The reference

vector is the cross product of the angle defined between the two reference atoms with respect to

the binding atom. The third method was developed specifically to accommodate metal

coordination geometry that eludes the previous two reference methods, such as tetrahedral and

trigonal planar. A user may define ligand atoms bound to the docking site and a desired geometry,

and the position of the empty coordination site is computed with respect to the defined binding

atoms (Figure S5d). The fourth method places the probe at a defined binding coordinate. This

method was implemented for applications of replacing substructure atoms with a molecular probe

(Figure S5e). This method requires the definition of one or more atoms to calculate a reference

vector position.

Finally, a geometry auto-detection method was implemented for ease of user application.

A user may define the ligand bond type (covalent or dative) that dictates the parameters of the

subsequent search. For covalently bound complexes, the neighbors of the binding atom are

detected using RDKit1 (Figure S5f). For datively bound or mixed complexes, a search radius may

be defined about the binding site (defaulting to the binding atom Van der Waals radius) for

detection of proximity-based neighbors. The same geometry analysis defined previously is

S5

implemented to identify the position of the empty coordination site. In all methods, the probe

coordinates are translated to the calculated binding position and rotated to align with the structure

vector (Figure S5g). The docked probe is assessed for steric clashes with the structure using atomic

Van der Waals radii. The binding atom of the structure is disregarded in the clash detection process.

M

Rh

Rh

tip

tail

d

M

d dref1

ref2

d

b) Linear Reference c) Cross Product Reference

d) Geometry Defined Reference

f) Auto Detection

tip

M MM M

MM
X X

X L
L

L
r

midpoint
centroidmidpoint tail tail

180o 180o 180o

g) Alignment

a) Probe Reference Vector Assignment

Tether
Dummy

tip

tail

d

tip

tip

tail

e) Direct Binding Position

P
O OH

P
remove
atoms

Figure S5: Reference vectors for: a) cyclic and acyclic probes, and (b-f) various structure

reference methods. g) Alignment of two vectors for docking.

S6

2.2. Probe Template Generation and Conformational Searching

Template-based conformer searching methods relied on the matching of specific

substructures to previously generated templates.20 Since the molecular probe is generally small,

the whole molecular probe structure is considered during template generation. Probe conformers

are freely generated using RDKit1 to generate a conformational template. Each conformer is

aligned to the binding axis and binding position on the original structure and assessed for atomic

overlap (steric clashes) with the structure. Electrostatic interactions are not considered in this

approach, allowing for a rapid search method for full cavity exploration. If no such clash is

detected, a copy of the probe conformer is saved, and the original conformer is rotated about the

docking axis by a randomly generated displacement. A user may define how many iterations this

algorithm completes before returning the compiled probe ensemble.

2.3. Computation of Molecular Descriptors

SMART descriptors are computed from the compiled probe conformational ensemble. The

original workflow uses UCSF Chimera2 to compute these properties, but the SMARTpy can

additionally apply three different methods for descriptor calculation, each with unique advantages.

Comparison of the descriptors from each method will be analyzed below.

The first method uses the Python API for PyVista3 to compute a surface enclosing the probe

ensemble. Conformer atoms are regarded as XYZ coordinate vertices in space comprising a 3D

“point cloud”. Triangulation is used to identify and connect the vertices at the outer edges of the

point cloud, generating a representative surface area. This method is directly analogous to the alpha

shape method and allows for rapid computation of SMART descriptors for an irregular 3D shape.

Proximal measurements are also computed via this method by intersecting the point cloud with a

sphere of a defined radius and computing the intersection volume (proxVCAVITY) and intersection

surface area (proxACAVITY). Distal volume is defined as the difference between the full and

proximal measurements.

One limitation to this method is that the radii of the atoms are not considered in

triangulation. As a result, the absolute surface area and volume will be smaller compared to

methods that consider atomic radii. Another limitation arises from the requirement for careful

selection of the parameter alpha, which defines the search radius around each point for connection

S7

on the generated surface (See PyVista documentation for more information). This parameter

determines the resolution of the pocket surface.

The second method utilizes the Python suite Morfeus4 to obtain surface area from solvent

accessible surface area (SASA) and compute volume directly from VBur. SASA is first computed

for each component of the system, the full complex, the probe ensemble, and the structure (Figure

SXa). The contact SASA is defined as the difference between the complex SASA and the sum of

the component SASAs (Figure SXb). A maximum radius is computed between the structure

binding point and the farthest probe conformer atom, generating a sphere encompassing the entire

probe ensemble. VBur is then calculated to describe the absolute VCAVITY occupied by the ensemble

within the maximal sphere. Proximal descriptors can be calculated using this method by decreasing

the radius of the VBur calculation. Maximal and minimal width of the probe ensemble is also

defined using Sterimol descriptors. Quadrant and octant analysis can also be employed through

Morfeus (https://digital-chemistry-laboratory.github.io/morfeus/buried_volume.html), using

atoms identifying the z-axis and xz-plane as defined by Cavallo et. al.5

3. SMART API Usage Guide

***NOTE: This section is meant to serve as a general guide to the order of operation within the

workflow. See the GitHub repository or readthedocs.org (https://smart-molecular-

descriptors.readthedocs.io/en/latest/) for current version syntax and examples of usage.

Python dependencies:

 RDKit1

 numpy

 pandas

 scipy

 morfeus (optional)

 pyvista (optional)

S8

https://digital-chemistry-laboratory.github.io/morfeus/buried_volume.html
https://smart-molecular-descriptors.readthedocs.io/en/latest/
https://smart-molecular-descriptors.readthedocs.io/en/latest/

3.1. Defining Binding Vectors

An input structure file must first be supplied by the user. This file is converted into a

STRUCTURE object using either the function ReadStructure() or ReadMol(), for input files or

RDKit MOL objects respectively. File types of SDF, MOL, MOL2, PDB, and XYZ are

supported. Similarly, a molecular probe is initialized as a PROBE object using the function

Probe(), specified by its direct filename (ex: Probe(“S_SiF2_8_acyclic.mol2”)). Probe

files are required to be in MOL2 format and are stored in and can be read directly from the

package directory Probes/. A path to other probe file locations can also be supplied.

3.2. Probe Cavity Ensemble Generation

Once all inputs and reference vectors are specified, the function run() is called to perform

the docking. This function returns a DOCK class object that can be used directly in the next step.

An optional utility for saving the docked structure as a MOL file is implemented in

ExportDocked() and is available for debugging.

Setting Conformational Search Parameters:

 NSTEP defines the number of steps the algorithm takes to generate conformers.

 MAXROTATION and MINROTATION are used to define the maximum and minimum allowed

rotations in degrees for the search algorithm respectively.

 SEED is available to supply an integer seed to the code for reproducibility.

The first step of the template search algorithm is to generate a conformer “template” for the

desired probe. This is achieved through the RDKit command EmbedMultipleConformers()

with the desired number of conformers set to 200. These templates can also be loaded from

MOL2 files in instead of being autogenerated. The docked probe (if utilized) is removed from

the structure and each conformer of the template ensemble is translated to the docked probe

position, matched by the tether atom, and assessed for steric clashes with the structure. If no

steric clash is detected, the conformation is saved into an ENS object and rotated about the

reference axis by a randomly generated displacement. Else, only rotation occurs. This process

S9

repeats with the full template ensemble for NSTEP. This parameter is recommended to be set

around 20 for template searching, which is the code default. It is recommended to visually inspect

the ensemble generated in a test case, to ensure that NSTEP is set correctly.

**If the pocket is not sufficiently explored or resultant pockets are too sparse, consider

increasing NSTEP**

 See pyvista documentation for a definition of alpha (default = 0).

(https://docs.pyvista.org/version/stable/api/)

 See Morfeus documentation for a description of xz_plane_atoms.

(https://digital-chemistry-laboratory.github.io/morfeus/buried_volume.html)

4. Instructions for Customization Probe Generation

The SMART workflow has been redesigned with broader applications in mind than the

initial dirhodium(II) applications. As a result, users may wish to use more specific probes to match

a target substrate or probes constructed with different atoms. The Python package is distributed

with general Si-core probes in the Probes/ subdirectory. Any customized probes placed in this

folder or identified through an absolute path may be called in the code.

To generate a structure that can be used as a probe technical detail must be considered. The

probe structures must be in MOL2 format, and the first atom listed in the file is designated the

“tether” atom. The last atom in the file should be a dummy H that defines the probe vector to align

to a structure. This atom will be removed before steric clash assessment and from final docked

structures.

5. References

1. RDKit: Open-source cheminformatics. https://www.rdkit.org
2. UCSF Chimera--a visualization system for exploratory research and analysis. Pettersen EF,

Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput
Chem. 2004 Oct;25(13):1605-12.

3. Sullivan et al., (2019). PyVista: 3D plotting and mesh analysis through a streamlined interface
for the Visualization Toolkit (VTK). Journal of Open Source Software, 4(37),
1450, https://doi.org/10.21105/joss.01450

4. https://digital-chemistry-laboratory.github.io/morfeus
5. Laura Falivene, Raffaele Credendino, Albert Poater, Andrea Petta, Luigi Serra, Romina Oliva,

Vittorio Scarano, and Luigi Cavallo. SambVca 2. A web tool for analyzing catalytic pockets
with topographic steric maps. Organometallics, 35(13):2286–2293,
2016. doi:10.1021/acs.organomet.6b00371

S10

https://docs.pyvista.org/version/stable/api/
https://digital-chemistry-laboratory.github.io/morfeus/buried_volume.html
https://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.21105/joss.01450
https://digital-chemistry-laboratory.github.io/morfeus
https://doi.org/10.1021/acs.organomet.6b00371

