Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting information

Role of the auxiliary ligand in determining the genotoxicity and mode of cell death of Pd(II) complexes with thiosemicarbazone

Ahmed M. Mansour, *^{a1} Rabaa M. Khaled, ^{b1} Krzysztof Radacki, ^c Mona A. M. Abo-Zeid, ^{d,e} Ola R

Shehab,^b Gamal A. E. Mostafa,^f Essam A. Ali,^f and Mahmoud T. Abo-Elfadl,^{d,e}

¹ equal contribution.

^{a.} Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates. <u>Mansour am@uaeu.ac.ae; inorganic am@yahoo.com</u>

^{b.} Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.

^{c.} Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.

^{d.} Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt

^{e.} Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.

^{f.} Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.

Fig. S1	¹ H NMR spectrum of thiosemicarbazone ligand a) whole spectrum and b)	S3
	zoomed spectrum.	
Fig. S2	IR spectra of the Pd(II) complexes a) 3, b) 4, c) 5, and d) 6.	S4
Fig. S3	¹ H NMR spectrum of 3 .	S6
Fig. S4	¹ H NMR spectrum of 4 .	S7
Fig. S5	¹ H NMR spectrum of 5 .	S8
Fig. S6	¹ H NMR spectrum of 6 .	S9
Fig. S7	¹³ C NMR spectrum of 3 .	S10
Fig. S8	¹³ C NMR spectrum of 6 .	S11
Fig. S9	IR spectrum of 7 .	S12
Fig. S10	NMR spectra of 7 a) ¹ H and b) ¹³ C.	S13
Fig. S11	IR spectrum of 8 .	S14
Fig. S12	¹ H NMR spectrum of 8 .	S15
Fig. S13	¹³ C NMR spectrum of 8 .	S16
Fig. S14	The local minimum structures of 3–8 calculated at B3LYP/LANL2DZ level of theory. (Hydrogen-atoms were omitted for the clarity).	S17
Fig. S15	Electronic absorption spectra of 3–8 in DMF.	S18
Fig. S16	Selective frontiers molecular orbitals of 3–8 .	S20
Fig. S17	TDDFT spectra of S- and N1 isomers of 8 .	S21
Fig. S18	The dose response curves of 2–8 on five different cell lines.	S22

Fig. S1 ¹H NMR spectrum of thiosemicarbazone ligand a) whole spectrum and b) zoomed spectrum.

Fig. S2 IR spectra of the Pd(II) complexes a) 3, b) 4, c) 5, and d) 6.

Fig. S3. ¹H NMR spectrum of 3.

Fig. S4. ¹H NMR spectrum of **4**.

Fig. S5. ¹H NMR spectrum of 5.

Fig. S6. ¹H NMR spectrum of 6.

Fig. S7. ¹³C NMR spectrum of **3**.

Fig. S8. ¹³C NMR spectrum of 6.

Fig. S10. NMR spectra of **7** a) 1 H and b) 13 C.

Fig. S11 IR spectrum of 8.

Fig. S12. ¹H NMR spectrum of 8.

Fig. S13. ¹³C NMR spectrum of 8.

Fig. S14. The local minimum structures of **3–8** calculated at B3LYP/LANL2DZ level of theory. (Hydrogen-atoms were omitted for the clarity).

Fig. S15 Electronic absorption spectra of 3–8 in DMF.

Fig. S16 Selective frontiers molecular orbitals of 3–8.

Fig. S17 TDDFT spectra of S- and N1 isomers of 8.

Fig. S18 The dose response curves of 2–8 on five different cell lines.