Supplementary Information

The Formation Reason of Intermolecular Charge Transfer bands: A

series of Polyoxomolybdates as a Case Study

Xiao-Yue Zhang, Jin-Ai Fan, Zhe-Hong Chen, Cai Sun * and Shou-Tian Zheng *

Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China

E-mails: csun@fzu.edu.cn (C. Sun); stzheng@fzu.edu.cn (S.-T. Zheng)

Index

Experimental section2
Supplementary Tables
Table S1. List of main excited states for 2
Table S2. List of main excited states for 3.
Supplementary Figures
Fig. S1. PXRD patterns of 1 , 2 , and 3 4
Fig. S2. UV-Vis absorption spectra of opda (a), mpda (b), and ppda (c) aq. (10^{-4} M)5
Fig. S3. UV-Vis absorption spectra of Hopda ⁺ (a), H_2 opda ²⁺ (b), and compare opda, Hopda ⁺ and H_2 opda ²⁺ (c) aq. (10 ⁻⁴ M)6
Fig. S4. Shortest distance between aniline and Mo_8 , 1 (a), 2 (b), and 3 (c)7
Fig. S5. Structure (a) of 1, HOMO, LUMO +1 (b) and CDD (c) map for excited state S_0 - S_2 of 18
Fig. S6. Structure (a) of 2 , HOMO, LUMO +3 (b) and CDD (c) map for excited state S_0 - S_{12} of 2 9
Fig. S7. Structure (a) of 3 , HOMO, LUMO (b) and CDD (c) map for excited state S_0 - S_1 of 3 10
Fig. S8. Hole (a) and electron (b) map for excited state S_0 - S_2 of 1 11
Fig. S9. Hole (a) and electron (b) map for excited state S_0 - S_{12} of 2 11
Fig. S10. Hole (a) and electron (b) map for excited state S_0 - S_1 of 3 11
Appendix12
References

Experimental section

Materials. Other chemicals were used as purchased without further purification. Water was deionized and distilled before use.

Measurements. Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku DMAX 2500 diffractometer with CuK α radiation (λ = 1.54056 Å). Simulated PXRD pattern was derived from the Mercury Version 4.3.0 software using the X-ray single crystal diffraction data. UV-vis spectra were performed on a SHIMADZU UV-2600 UV-visible spectrophotometer by using the BaSO₄, and water as the blank, for solid and liquid sample, respectively.

Synthesis of $(Hopda)_4[\beta-Mo_8O_{26}]\cdot 2H_2O$ (1, opda = o-phenylenediamine).

 $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (617.5 mg, 0.5 mmol) and opda (162 mg, 1.5 mmol) in 20 mL water were stirred at room temperature. The pH was adjusted to 2.3-2.5 with 20% HCl solution. and the orange-red powder will soon be obtained. The powder was washed with H₂O, EtOH, and Et₂O. The yield of **1** based on the tetraethylammonium was 81%.

Synthesis of $(H_2mpda)_2[\beta-Mo_8O_{26}]\cdot 4H_2O$ (2, mpda = m-phenylenediamine).

 $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (617.5 mg, 0.5 mmol) and mpda (162 mg, 1.5 mmol) in 80 mL water were stirred at room temperature. The pH was adjusted to 2.3-2.5 with 20% HCl solution. and the white powder will soon be obtained. The powder was washed with H₂O, EtOH, and Et₂O. The yield of **2** based on the tetraethylammonium was 75%.

Synthesis of $(H_2ppda)_2[\beta-Mo_8O_{26}]\cdot 6H_2O$ (3, ppda = p-phenylenediamine).

 $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (617.5 mg, 0.5 mmol) and ppda (162 mg, 1.5 mmol) in 20 mL water were stirred at room temperature. The pH was adjusted to 2.3-2.5 with 20% HCl solution. and the white powder will soon be obtained. The powder was washed with H₂O, EtOH, and Et₂O. The yield of **2** based on the tetraethylammonium was 82%.

Computational approaches

The structures of **1-3** were obtained from CCDC database. The crystal structure of POMo **1–3** were applied to build calculation models. Because the positions of H atoms are difficult to be accurately determined by the method of single crystal X-ray diffraction, the geometry optimizations of **1–3**, where the position of H atoms were optimized and other atoms were freezing, were performed with PBE/6-31g* level in the CP2K software.¹

The absorption spectra have been simulated by using the CP2K software at PBE function with basis set and pseudopotential being DZVP-MOLOPT-SR-GTH. Only Γ point has been considered for Brillouin zone sampling in the reciprocal space. The hole-electron analysis were derived using the Multiwfn software.² The hole-electron excitation properties of excited states are described by *S*_r:

 $S_r(r) = \sqrt{\rho^{hole}(r)\rho^{ele}(r)}$

where ρ is the hole or electron density, and S_r (with value range of [0, 1]) is the overlap function between hole and electron distribution.

The Frontier molecular orbital for Hopda⁺, Hopda²⁺, H_2 mpda²⁺ and H_2 ppda²⁺ were done in Gaussian 09 D01 version³ at B3LYP/def2-TZVP level.

Supplementary Tables.

Excited state	Wavelength (nm)	Oscillator strength	Electronic transition (%)	Assignment
S ₀ -S ₁₂	415.32	0.00782	HOMO→LUMO+3 (85.6%), HOMO-4→LUMO (12.1%)	H₂mpda→Mo ₈
S ₀ -S ₇₇	363.47	0.02069	HOMO-11→LUMO+1 (67.9%), HOMO-10→LUMO (24.5%)	Mo ₈

Table S1. List of main excited states for 2.	

Table S2. List of main excited states for 3.

Excited state	Wavelength (nm)	Oscillator strength	Electronic transition (%)	Assignment
S ₀ -S ₁	419.75	0.00256	HOMO→LUMO+1 (99.1%)	
S ₀ -S ₄₃	374.97	0.01161	HOMO-2→LUMO+4 (91.8%)	H₂ppda→Mo ₈
S ₀ -S ₁₆₄	344.14	0.02717	HOMO-3→LUMO+18 (99.2%)	

Supplementary Figures.

Fig. S1. PXRD patterns of 1, 2, and 3. Experimental (Exp) and simulated (Simu) PXRD patterns of 1, 2, and 3.

Fig. S2. UV-Vis absorption spectra of opda (a), mpda (b), and ppda (c) aq. (10⁻⁴ M).Aqueous solutions of opda, mpda and ppda were prepared separately and diluted to 10⁻⁴ mol/L. The tests were performed using water as a reference, subtract the solvent background. The test range was 200-1200 nm.

Fig. S3. UV-Vis absorption spectra of Hopda⁺ (a), H₂opda²⁺ (b), and compare opda, Hopda⁺ and H₂opda²⁺ (c) aq. (10⁻⁴ M).Hopda⁺ and H₂opda²⁺ are synthesized through the reaction of hydrochloric acid and opda in amount of substance ratios of 1:1 and 2:1, respectively.

Fig. S4. Shortest distance between aniline and Mo_8 , 1 (a), 2 (b), and 3 (c).

Fig. S5. For 1. Structure (a), HOMO(b), LUMO +1 (c) and CDD (d) map for excited state S₀-S₂. Crystal axis: a, red; b, green; c, blue.

Fig. S6. For 2. Structure (a), HOMO(b), LUMO +3 (c) and CDD (d) map for excited state S_0 - S_{12} . Crystal axis: a, red; b, green; c, blue.

Fig. S7. For 3. Structure (a), HOMO(b), LUMO (c) and CDD (d) map for excited state S_0 - S_1 of 3. Crystal axis: a, red; b, green; c, blue.

Fig. S8. Hole (a) and electron (b) map for excited state $S_{0}\mathchar`-S_2$ of 1.

Fig. S9. Hole (a) and electron (b) map for excited state S_{0} - S_{12} of 2.

Fig. S10. Hole (a) and electron (b) map for excited state S_0 - S_1 of 3.

Appendix

Hole, electron and CDD map of **1**, **2** and **3**. Yellow and blue colors represent charge accumulation and depletion after electron transfer, respectively, with an iso-surface value of 0.001 e·Å⁻³.

The excited state of POMo 1: $\underline{S_0-S_{1092}}, \underline{S_0-S_{143}}, \underline{S_0-S_{1932}}, \underline{S_0-S_{2482}}, \underline{S_0-S_{451}}, \underline{S_0-S_{617}}, \underline{S_0-S_{620}}, \underline{S_0-S_{6722}}, \underline{S_0-S_{759}}, \underline{S_0-S_{7855}}, \underline{S_0-S_{7855}}, \underline{S_0-S_{7855}}, \underline{S_0-S_{1932}}, \underline{S_0-S_{1932}$

The excited state of POMo **2**: S_0-S_{77}

The excited state of POMo **3**: $\underline{S_0-S_{43}} \underline{S_0-S_{164}}$

References

(1) Kuehne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schutt, O.; Schiffmann, F.; et al. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. *J. Chem. Phys.* **2020**, *152*, 194103.

(2) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33*, 580-592.

(3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

electron

CDD

S-2 1

