Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

## **Supplementary**

# Structural features and antiproliferative activity of Pd(II) complexes with halogenated ligands: A comparative study between Schiff base and reduced Schiff base complexes

Kimia Forooghi<sup>a</sup>, Hadi Amiri Rudbari<sup>a,\*</sup>, Claudio Stagno<sup>b</sup>, Nunzio Iraci<sup>b</sup>, José V. Cuevas-Vicario<sup>c</sup>, Nazanin

Kordestani<sup>d</sup>, Tanja Schirmeister<sup>e</sup>, Thomas Efferth<sup>f</sup>, Ejlal A. Omer<sup>f</sup>, Nakisa Moini<sup>g</sup>, Mahnaz Aryaeifar<sup>a</sup>, Olivier

Blacque<sup>h</sup>, Reza Azadbakht<sup>i</sup>, Nicola Micale<sup>b,\*</sup>

<sup>a</sup> Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.

<sup>b</sup> Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.

<sup>c</sup> Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.

<sup>d</sup> Área de Química Inorgánica-CIESOL Facultad de Ciencias, Universidad de Almería, Carr. Sacramento, s/n, 04120 La Cañada, Almería, Spain.

<sup>e</sup> Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, staudinger Weg 5, 55128 mainz, Germany.

<sup>f</sup> Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, staudinger Weg 5, 55128 mainz, Germany.

<sup>g</sup> Department of Chemistry, Faculty of Physics and Chemistry Alzahra University, P.O. Box 1993891176, Vanak Tehran, Iran.

<sup>h</sup> Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.

<sup>*i*</sup> Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.

\* Corresponding authors.

E-mail addresses: <u>h.a.rudbari@sci.ui.ac.ir</u>, <u>hamiri1358@gmail.com</u> (H. Amiri Rudbari), <u>nmicale@unime.it</u> (N. Micale).







2. Br<sub>2</sub>PyPd

![](_page_2_Figure_0.jpeg)

![](_page_2_Figure_1.jpeg)

![](_page_2_Figure_2.jpeg)

4. I<sub>2</sub>PicPd

![](_page_3_Figure_0.jpeg)

![](_page_3_Figure_1.jpeg)

![](_page_3_Figure_2.jpeg)

![](_page_3_Figure_3.jpeg)

![](_page_4_Figure_0.jpeg)

![](_page_4_Figure_1.jpeg)

![](_page_4_Figure_2.jpeg)

8. I<sub>2</sub>Py(R)Pd

![](_page_5_Figure_0.jpeg)

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

![](_page_5_Figure_3.jpeg)

![](_page_6_Figure_0.jpeg)

![](_page_6_Figure_1.jpeg)

Fig. S1 IR spectra of Pd complexes (1-11).

![](_page_6_Figure_3.jpeg)

![](_page_7_Figure_0.jpeg)

![](_page_8_Figure_0.jpeg)

Fig. S2 The overall view (a,b) and a closer view of  ${}^{1}H - {}^{1}H-2D \text{ COSY NMR}$  spectra (c,d), along with the assignment of hydrogens in aromatic region for complex  $\mathbf{Br_2PyPd}$ ; (a,c,d:  $\mathbf{Br_2PyPd}$ , b:  $\mathbf{Br_2Pic(R)Pd}$ ,).

#### Intra- and Intermolecular Interactions in crystal structure of Br<sub>2</sub>PyPd

In the solid state structure, each  $Br_2PyPd$  molecule is aligned so that it is in close contact with all the seven surrounding molecules, developing the strength of the crystal lattice. The crystal packing shows seven different H-bonds with various strength, due to the diverse contact lengths and angles that the involving atoms bear: Chlorine ligand is connected to the hydrogen atom of pyridine ring through the intramolecular C(14)-H(14)...Cl(1) hydrogen bond, making a S(5) ring (Fig. S3a).

The intermolecular C(7)-H(7)...Cl(1) and C(12)-H(12)...Br(2) hydrogen bonds connect the neighboring molecules into one-dimensional extended chains along the *ac* and *c*-axis, respectively (Fig. S3b,c). Here, the chlorine atom is actually a trifurcated accepter, accepting H-bonds from three donors; intermolecular H(14)...Cl(1) H-bond is also one of them, which makes head-to-tail dimers in crystal lattice of the complex (Fig. S3d).

Fig. S3e presents a situation where multiple intermolecular interactions link two adjacent head-to-tail fashion molecules into a one-dimension chain along the *b*-axis: **1**) an array of hydrogen bond donors and acceptors, in which O(1) is a bifurcated acceptor (C(8)-H(8B)...O(1)...H(9B)-C(9)), and C(8) is a bifurcated donor (Pd-O(1)...H(8B)...Cl(1)-Pd), making S(4) and S(6) rings, respectively; **2**) a  $n \rightarrow \pi^*$  interaction (Cl $\rightarrow$   $_{iminic}C(7)=N(2)$ , 3.38 Å), where lone pair electrons of Cl ligand (n) is donated into the empty  $\pi^*$  orbital of the nearby imine group (C=N), and leading to an attractive interaction that is shorter than the sum of the van der Waals radii of Cl and C [ $\Sigma r_{vdW} = 3.45$  Å]. It is noteworthy that the lone pair electrons of Cl atom are participated simultaneously as the donor of hydrogen bond (C(8)-H(8B)...Cl), and the donor of  $n \rightarrow \pi^*$  interaction; **3**) and also an CH... $\pi$  interaction, ( $_{aliphatic}C(9)$ -H(9B)...C(1) $_{aromatic}$ ), where one hydrogen atom from a sp<sup>3</sup> carbon points towards the C1=C6 bond of the arene ring; **4**) The last one is a face-to-face  $\pi$ ... $\pi$  interaction, whereby nearly parallel rings (pyridine and arene ring), separated by ca. 3.7 Å (3.74, 3.78 Å), are offset and the center of one ring interacts with the corner of another (Fig. S3f).

![](_page_10_Figure_0.jpeg)

![](_page_11_Figure_0.jpeg)

Fig. S3 Parts of the crystal packing of **Br<sub>2</sub>PyPd**, showing different aggregation patterns made by various intra- and intermolecular interactions. Intra- (a) and intermolecular hydrogen bonds (b-e), and also mutual  $n \rightarrow \pi^*$ , CH... $\pi$  (e) and  $\pi$ ... $\pi$  stacking interactions (f) between **Br<sub>2</sub>PyPd** dimers are shown.

#### Intra- and Intermolecular Interactions in crystal structure of Cl<sub>2</sub>Py(R)Pd

The distance of N(2)-C(8), [1.4888(19) and 1.491(2) Å for Cl<sub>2</sub>Py(R)Pd and ClBrPy(R)Pd respectively], confirm the single-bond character of this bonding, which enables the molecule to rotate over this bond and adopt the most stable conformation in the solid state, that contains two intramolecular CH... $\pi$  interactions, prompting the arene ring to point directly toward the hydrogen atoms of C(7) and creating a S(4) ring [aliphaticC(7)-H<sub>2</sub>...C(9)<sub>aromatic</sub>] (Fig. S 4, Fig. S 5 a).

In their lattice structures, each molecule is aligned somehow that it is in close contact with all the ten surrounding molecules, increasing the strength of the solid state structure. The two Cl ligands interacted with nearby aliphatic and aromatic hydrogens in a way that made a butterfly shape of the involving atoms with the Pd atom at the center. These two interactions, together with two other intramolecular H-bonding, could somehow lock the molecules and lead to a fixed position of the corresponding atoms within the intramolecular space of the complex (Fig. S 4, Fig. S 5 b).

Fig. S 4 c, e and f represent three non-linear intermolecular hydrogen bonds [H(1)...Cl(3), H(4)...Cl(1) and H(6A)...Cl(4)], which connect the  $Cl_2Py(R)Pd$  molecules along *c*, *a* and *b*-axis, forming a three-dimensional network. Also Fig. S 4 d and g, show several intermolecular hydrogen bondings whereby two neighboring head-to-tail molecules are connecting through them, forming individual dimers and leading to a zero-dimensional aggregation in the lattice structure of  $Cl_2Py(R)Pd$ .

As for the **CIBrPy(R)Pd** complex, other than those described (above), the packing of the crystal shows several intermolecular interactions, including: **I**) halogen bonds which link the bromine substitution of the arene ring and one of the Cl ligands of the adjacent molecule, with a Cl...Br distance of 3.509 Å, that is shorter than the sum of the conventional vdW radii [ $\Sigma r_{vdW}$  = 3.60 Å], and together with H(1)...Br H-bonds, lead to an infinite one-dimensional aggregation along the *bc*-axis (Fig. S 5 e); **II**) a number of C-H... $\pi$  short contacts (aliphaticH(8B)...C(12)<sub>aromatic</sub>) that occur between aliphatic CH groups and  $\pi$ -clouds of the arene rings, joining two adjacent molecules to form head-to-tail arranged dimers (Fig. S 5 g); **III**) and also  $\pi$ ... $\pi$  stacking interactions, whereby two parallel-displaced pyridine rings with a C(2)...C(2) distance of 3.393 Å, and centroid to centroid distance of 4.483 Å are in short contact (Fig. S 5 h); **IV**) moreover, as it is being shown in Fig. S 5 with more details, this structure is further interconnected by some other Moderate-strength hydrogen bonds that are formed between neutral donor or acceptor groups.

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

Fig. S4 Parts of the crystal packing of  $Cl_2Py(R)Pd$ , showing different aggregation patterns made by various intra- and intermolecular interactions. Intermolecular CH... $\pi$  interactions (a), and various Intra- (b) and intermolecular hydrogen bonds (c-g), are represented.

### Intra- and Intermolecular Interactions in crystal structure of ClBrPy(R)Pd

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_19_Figure_0.jpeg)

Fig. S5 Parts of the crystal packing of **CIBrPy(R)Pd**, showing different aggregation patterns made by various intra- and intermolecular interactions. Intra- (a) and intermolecular CH... $\pi$  interactions (g), various intra- (b) and intermolecular hydrogen bonds (c-f, h), halogen bonds (e), and also  $\pi$ ... $\pi$  stacking interactions (h) are exhibited.

![](_page_20_Figure_0.jpeg)

Fig. S6 Energy levels and isosurface contour plots for complex I<sub>2</sub>PicPd.

![](_page_20_Figure_2.jpeg)

Fig. S7 Energy levels and isosurface contour plots for complex  $Br_2Py(R)Pd$ .

![](_page_21_Figure_0.jpeg)

Fig. S8 Energy levels and isosurface contour plots for complex  $I_2Py(R)Pd$ .

![](_page_21_Figure_2.jpeg)

Fig. S9 Energy levels and isosurface contour plots for complex ClBrPy(R)Pd.

![](_page_22_Figure_0.jpeg)

Fig. S10 Energy levels and isosurface contour plots for complex Br<sub>2</sub>Pic(R)Pd.

![](_page_22_Figure_2.jpeg)

Fig. S11 Energy levels and isosurface contour plots for complex I<sub>2</sub>Pic(R)Pd.

![](_page_23_Figure_0.jpeg)

Fig. S12 Energy levels and isosurface contour plots for complex  $Cl_2Py(R)Pd$ .

![](_page_23_Figure_2.jpeg)

Fig. S13 Energy levels and isosurface contour plots for complex ClBrPyPd.

![](_page_24_Figure_0.jpeg)

Fig. S14 Energy levels and isosurface contour plots for complex Cl<sub>2</sub>PyPd.

![](_page_24_Figure_2.jpeg)

Fig. S15 Energy levels and isosurface contour plots for complex  $Br_2PyPd$ .

![](_page_25_Figure_0.jpeg)

Fig. S16 Energy levels and isosurface contour plots for complex ClBrPicPd.

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_0.jpeg)

Fig. S17 Experimental absorption spectrum of complexes ClBrPyPd (a),  $I_2PicPd$  (b),  $Cl_2Py(R)Pd$  (c),  $Br_2Py(R)Pd$  (d),  $I_2Py(R)Pd$  (e), ClBrPy(R)Pd (f),  $Br_2Pic(R)Pd$  (g) and  $I_2Pic(R)Pd$  (h) in acetonitrile at 10  $\mu$ M (blue line) and TD-DFT calculated singlet states (red lines).

Table S1 Lowest Singlet Excited States Calculated at the TDDFT B3LYP/(6-31G(d,p)+LANL2DZ) Level for Complex  $I_2PicPd$  in acetonitrile Solution<sup>a</sup>

| Complex              | Estate                | Energy<br>(eV) | $\lambda$ (nm) | f.osc. | Monoexcitacions                | Nature                                                                                                                                                           | Description                                                                |
|----------------------|-----------------------|----------------|----------------|--------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                      | $S_1$                 | 2.5863         | 479.39         | 0.0000 | HOMO $\rightarrow$ LUMO (90)   | $\pi_{sal} \rightarrow \sigma^*{}_{Pd-Cl} + \sigma^*{}_{Pd-}$ $N^+ \sigma^*{}_{Pd-O}$                                                                            | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC                      |
|                      |                       |                |                |        | HOMO-4 $\rightarrow$ LUMO (27) | $\frac{d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd-}}{c_{l} + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-O}}$                                                      | <sup>1</sup> MLCT/ <sup>1</sup> MC/ <sup>1</sup> LLCT/ <sup>1</sup> L<br>C |
|                      | $S_2$                 | 3.0492         | 406.62         | 0.0306 | HOMO-2 $\rightarrow$ LUMO (31) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} + \pi_{I} \rightarrow \\ \sigma^{*}_{Pd\text{-}Cl} + \sigma^{*}_{Pd\text{-}N} + \end{array}$                            | <sup>1</sup> MLCT/ <sup>1</sup> MC/ <sup>1</sup> LLCT/ <sup>1</sup> L      |
|                      |                       |                |                |        | HOMO $\rightarrow$ LUMO+1 (35) | $\sigma^*_{Pd-O} \ \pi_{sal} \rightarrow \pi^*_{sal}$                                                                                                            | <sup>1</sup> LC                                                            |
|                      | _                     |                |                |        | HOMO-3 $\rightarrow$ LUMO (17) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}{}_{Pd\text{-}} \\ {}_{Cl} + \sigma^{*}{}_{Pd\text{-}N} + \sigma^{*}{}_{Pd\text{-}O} \end{array}$ | <sup>1</sup> MLCT/ <sup>1</sup> MC/ <sup>1</sup> LLCT/ <sup>1</sup> L<br>C |
| I <sub>2</sub> PicPd | <b>S</b> <sub>3</sub> | 3.1881         | 388.90         | 0.0001 | HOMO-1 $\rightarrow$ LUMO (67) | $d_{\pi}(Pd) + \pi_{Cl} + \pi_{I} \rightarrow \sigma^{*}_{Pd-Cl} + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-N}$                                                        | <sup>1</sup> MLCT/ <sup>1</sup> MC/ <sup>1</sup> LLCT/ <sup>1</sup> L<br>C |
|                      | S.                    | 3.2979         | 375.95         | 0.0298 | HOMO-4 $\rightarrow$ LUMO (39) | $d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd}$                                                                                                             | <sup>1</sup> MLCT/ <sup>1</sup> MC/ <sup>1</sup> LLCT/ <sup>1</sup> L<br>C |
|                      | 54                    |                |                |        | HOMO $\rightarrow$ LUMO+1 (55) | $\pi_{\rm sal} \rightarrow \pi^*_{\rm sal}$                                                                                                                      | <sup>1</sup> LC                                                            |
|                      | S5                    | 2 2719         | 367 70         | 0.0418 | HOMO-4 $\rightarrow$ LUMO (27) | $d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd-}$ $Cl + \sigma^*_{Pd-N} + \sigma^*_{Pd-O}$ $d_{\pi}(Pd) + \pi_{Cl} + \pi_{I} \rightarrow \sigma^*_{Pd-O}$      | <sup>1</sup> MLCT/ <sup>1</sup> MC/ <sup>1</sup> LLCT/ <sup>1</sup> L<br>C |
|                      | .,,                   |                |                |        | HOMO-2 $\rightarrow$ LUMO (44) | $\sigma^*_{Pd-Cl} + \sigma^*_{Pd-N} + \sigma^*_{Pd-O}$                                                                                                           | <sup>1</sup> MLCT/ <sup>1</sup> MC/ <sup>1</sup> LLCT/ <sup>1</sup> L<br>C |
|                      | S <sub>13</sub>       | 4.3328         | 286.15         | 0.1325 | HOMO-5 $\rightarrow$ LUMO (76) | $\frac{d_{\pi}(Pd) + \pi_{CI} + \pi_{I} \rightarrow}{\sigma^{*}_{Pd-CI} + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-O}}$                                                | <sup>1</sup> MLCT/ <sup>1</sup> MC/ <sup>1</sup> LLCT/ <sup>1</sup> L<br>C |

Table S2 Lowest Singlet Excited States Calculated at the TDDFT B3LYP/(6-31G(d,p)+LANL2DZ) Level for Complex  $Cl_2Py(R)Pd$  in acetonitrile Solution<sup>a</sup>

| Complex                | Estate                | Energy<br>(eV) | $\lambda$ (nm) | f.osc. | Monoexcitacions                | Nature                                                                                                                                         | Description                                           |
|------------------------|-----------------------|----------------|----------------|--------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                        | G                     | 2 (2(4         | 470.27         | 0.0020 | HOMO-2 $\rightarrow$ LUMO (62) | $d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd-}$ $Cl + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-O}$                                             | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | 51                    | 2.0304         |                |        | HOMO-1 $\rightarrow$ LUMO (38) | $d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd-}$ $c_{l} + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-O}$                                          | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | $S_2$                 | 2 7929         | 445.27         | 0.0000 | HOMO-2 $\rightarrow$ LUMO (36) | $\frac{d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd-}}{_{Cl} + \sigma^*_{Pd-N} + \sigma^*_{Pd-O}}$                                          | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        |                       | 2.7838         | 443.37         | 0.0009 | HOMO-1 $\rightarrow$ LUMO (56) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}{}_{Pd-} \\ {}_{Cl} + \sigma^{*}{}_{Pd-N} + \sigma^{*}{}_{Pd-O} \end{array}$    | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | <b>S</b> <sub>3</sub> | 2.8780         | 430.80         | 0.0019 | HOMO-4 $\rightarrow$ LUMO (32) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd-} \\ {}_{Cl} + \sigma^*_{Pd-N} + \sigma^*_{Pd-O} \end{array}$                | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
| Cl <sub>2</sub> Py(R)P |                       |                |                | 0.0010 | HOMO-3 $\rightarrow$ LUMO (52) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd-} \\ {}_{Cl} + \sigma^*_{Pd-N} + \sigma^*_{Pd-O} \end{array}$                | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
| u                      | S.                    | 2.9533         | 419.81         | 0.0021 | HOMO-4 $\rightarrow$ LUMO (65) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}{}_{Pd-} \\ {}_{Cl} + \sigma^{*}{}_{Pd-N} + \sigma^{*}{}_{Pd-O} \end{array}$    | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | 54                    |                |                |        | HOMO-3 $\rightarrow$ LUMO (23) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd-} \\ \\ Cl + \sigma^*_{Pd-N} + \sigma^*_{Pd-O} \end{array}$                  | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | <b>S</b> <sub>5</sub> | 3.2027         | 387.13         | 0.0227 | HOMO $\rightarrow$ LUMO (100)  | $\pi_{\text{Cl2PhOH}} \rightarrow \sigma^*_{\text{Pd-Cl}} + \sigma^*_{\text{Pd-N}} + \sigma^*_{\text{Pd-O}}$                                   | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        |                       |                |                |        | HOMO-9 $\rightarrow$ LUMO (15) | $\begin{array}{c} \pi_{\rm Cl} + \pi_{\rm py} \rightarrow \sigma^*_{\rm Pd-Cl} + \\ \sigma^*_{\rm Pd-N} + \sigma^*_{\rm Pd-O} \end{array}$     | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | S <sub>18</sub>       | 5.1216         | 242.08         | 0.3243 | HOMO-8 $\rightarrow$ LUMO (47) | $\begin{vmatrix} d_{\pi}(Pd) + \pi_{Cl} + \pi_{py} \rightarrow \\ \sigma^{*}_{Pd-Cl} + \sigma^{*}_{Pd-N} + \\ \sigma^{*}_{Pd-Q} \end{vmatrix}$ | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |

Table S3 Lowest Singlet Excited States Calculated at the TDDFT B3LYP/(6-31G(d,p)+LANL2DZ) Level for Complex **Br<sub>2</sub>Py(R)Pd** in acetonitrile Solution<sup>a</sup>

| Complex                 | Estate                | Energy (eV) | $\lambda$ (nm) | f.osc. | Monoexcitacions                 | Nature                                                                                                                                                         | Description                                           |
|-------------------------|-----------------------|-------------|----------------|--------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                         | G                     | 2.6424      | 469.20         | 0.0020 | HOMO-2 $\rightarrow$ LUMO (66)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | 31                    |             |                |        | HOMO-1 $\rightarrow$ LUMO (34)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | G                     | 2 7896      | 111 62         | 0.0010 | HOMO-2 $\rightarrow$ LUMO (32)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | <b>S</b> <sub>2</sub> | 2.7880      | 444.02         | 0.0010 | HOMO-1 $\rightarrow$ LUMO (58)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | S                     | 2 9795      | 120 72         | 0.0010 | HOMO-5 $\rightarrow$ LUMO (31)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | 53                    | 2.0785      | +30.75         | 0.0017 | HOMO-3 $\rightarrow$ LUMO (51)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
| Br <sub>2</sub> Py(R)Pd | $S_4$                 | 2.9584      | 419.09         | 0.0018 | HOMO-5 $\rightarrow$ LUMO (64)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         |                       |             |                |        | HOMO-3 $\rightarrow$ LUMO (21)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd\text{-}Cl} \\ + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}O} \end{array}$           | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | $S_5$                 | 3.1430      | 394.48         | 0.0191 | HOMO $\rightarrow$ LUMO (100)   | $\pi_{\text{Br2PhOH}} \rightarrow \sigma^*_{\text{Pd-Cl}} + \sigma^*_{\text{Pd-N}} \sigma^*_{\text{Pd-O}}$                                                     | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         |                       |             |                |        | HOMO-17 $\rightarrow$ LUMO (21) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} + \pi_{py} \rightarrow \\ \sigma^{*}_{Pd\text{-}Cl} + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}} \end{array}$ | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | S <sub>30</sub>       | 5.4606      | 227.05         | 0.2835 | HOMO-14 $\rightarrow$ LUMO (23) | $d_{\pi}(Pd) + \pi_{Cl} + \pi_{py} \rightarrow$                                                                                                                | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         |                       |             |                |        | HOMO $\rightarrow$ LUMO+5 (38)  | $\sigma^{*}_{Pd-Cl} + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-}$ $\sigma$ $\pi_{Br2PhOH} \rightarrow \pi^{*}_{Br2PhOH}$                                             | <sup>1</sup> LC                                       |

Table S4 Lowest Singlet Excited States Calculated at the TDDFT B3LYP/(6-31G(d,p)+LANL2DZ) Level for Complex  $I_2Py(R)Pd$  in acetonitrile Solution<sup>a</sup>

| Complex                | Estate                 | Energy (eV) | $\lambda$ (nm) | f.osc. | Monoexcitacions                 | Nature                                                                                                                                                                     | Description                                           |
|------------------------|------------------------|-------------|----------------|--------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                        | G                      | 2 ( 12 (    | 4(0.19         | 0.0023 | HOMO-3 $\rightarrow$ LUMO (46)  | $ \begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array} $                           | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | <b>S</b> <sub>1</sub>  | 2.6426      | 409.18         |        | HOMO-2 $\rightarrow$ LUMO (51)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                             | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        |                        |             |                |        | HOMO-3 $\rightarrow$ LUMO (48)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                             | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | $S_2$                  | 2.7887      | 444.59         | 0.0013 | HOMO-2 $\rightarrow$ LUMO (28)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd\text{-}Cl} \\ + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}O} \end{array}$                       | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        |                        |             |                |        | HOMO-1 $\rightarrow$ LUMO (18)  | $\begin{array}{c} \pi_{Br2PhOH} \rightarrow \sigma^*_{Pd-Cl} + \\ \sigma^*_{Pd-N} + \sigma^*_{Pd-O} \end{array}$                                                           | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | $S_3$                  | 2 8783      | 430.76         | 0.0018 | HOMO-5 $\rightarrow$ LUMO (34)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd\text{-}Cl} \\ + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}O} \end{array}$                       | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
| I <sub>2</sub> Py(R)Pd |                        | 2.0705      |                |        | HOMO-4 $\rightarrow$ LUMO (53)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd\text{-}Cl} \\ + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}O} \end{array}$                       | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | C                      | 2.9572      | 419.26         | 0.0018 | HOMO-5 $\rightarrow$ LUMO (65)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd\text{-}Cl} \\ + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}O} \end{array}$                       | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        |                        |             |                |        | HOMO-4 $\rightarrow$ LUMO (22)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd\text{-}Cl} \\ + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}O} \end{array}$                       | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | $S_5$                  | 3.0782      | 402.79         | 0.0184 | HOMO $\rightarrow$ LUMO (100)   | $\begin{array}{c} \pi_{\rm I2PhOH} \rightarrow \sigma^*_{\rm Pd-Cl} + \\ \sigma^*_{\rm Pd-N} + \sigma^*_{\rm Pd-O} \end{array}$                                            | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        |                        | 5.1347      | 241.46         | 0.3220 | HOMO-13 $\rightarrow$ LUMO (17) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} + \pi_{py} \rightarrow \\ \sigma^{*}_{Pd\text{-}Cl} + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}} \\ & \sigma \end{array}$ | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        | <b>3</b> <sub>27</sub> |             |                |        | $HOMO-11 \rightarrow LUMO (44)$ | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} + \pi_{py} \rightarrow \\ \sigma^{*}_{Pd-Cl} + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-} \end{array}$                                  | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                        |                        | 1           | 1              |        |                                 |                                                                                                                                                                            |                                                       |

Table S5 Lowest Singlet Excited States Calculated at the TDDFT B3LYP/(6-31G(d,p)+LANL2DZ) Level for Complex **ClBrPy(R)Pd** in acetonitrile Solution<sup>a</sup>

| Complex     | Estate                | Energy (eV) | $\lambda$ (nm) | f.osc. | Monoexcitacions                 | Nature                                                                                                                                                         | Description                                           |
|-------------|-----------------------|-------------|----------------|--------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|             | G                     | 2 ( 400     | 469.64         | 0.0021 | HOMO-2 $\rightarrow$ LUMO (61)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             | 31                    | 2.6400      |                |        | HOMO-1 $\rightarrow$ LUMO (39)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             | $S_2$                 | 2 7870      | 111 97         | 0.0011 | HOMO-2 $\rightarrow$ LUMO (37)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             |                       | 2.7870      | 444.07         | 0.0011 | HOMO-1 $\rightarrow$ LUMO (54)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             | S                     | 2.8755      | 431.18         | 0.0019 | HOMO-5 $\rightarrow$ LUMO (29)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             | 53                    |             |                |        | HOMO-3 $\rightarrow$ LUMO (53)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
| CIDITY(K)FU | $S_4$                 | 2.9580      | 419.14         | 0.0019 | HOMO-5 $\rightarrow$ LUMO (69)  | $ \begin{aligned} d_{\pi}(Pd) + \pi_{Cl} &\rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{aligned} $             | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             |                       |             |                |        | HOMO-3 $\rightarrow$ LUMO (21)  | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             | <b>S</b> <sub>5</sub> | 3.1716      | 390.92         | 0.0209 | HOMO $\rightarrow$ LUMO (100)   | $ \begin{aligned} \pi_{\text{ClBrPhOH}} &\to \sigma^*_{\text{Pd-Cl}} + \\ \sigma^*_{\text{Pd-N}} + \sigma^*_{\text{Pd-O}} \end{aligned} $                      | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             |                       |             |                |        |                                 | $d_{\pi}(Pd) + \pi_{Cl} + \pi_{py} \rightarrow$                                                                                                                |                                                       |
|             | S                     | 5.4763      | 226.40         | 0.3392 | HOMO-17 $\rightarrow$ LUMO (23) | $\frac{\sigma_{Pd-Cl}^{*} + \sigma_{Pd-N}^{*} + \sigma_{Pd-N}^{*} + \sigma_{Pd-N}^{*}}{o}$                                                                     | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             | S <sub>29</sub>       |             |                |        | HOMO-13 $\rightarrow$ LUMO (51) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} + \pi_{py} \rightarrow \\ \sigma^{*}_{Pd\text{-}Cl} + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}} \end{array}$ | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|             |                       |             |                |        |                                 | о                                                                                                                                                              |                                                       |

Table S6 Lowest Singlet Excited States Calculated at the TDDFT B3LYP/(6-31G(d,p)+LANL2DZ) Level for Complex **Br<sub>2</sub>Pic(R)Pd** in acetonitrile Solution<sup>a</sup>

| Complex                  | Estate          | Energy (eV) | $\lambda$ (nm) | f.osc. | Monoexcitacions                          | Nature                                                                                                                                                                                                                                                                | Description                                                              |
|--------------------------|-----------------|-------------|----------------|--------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                          | S <sub>1</sub>  | 2.6199      | 473.24 0.000   |        | HOMO-3 → LUMO (61)<br>HOMO-2 → LUMO (23) | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} + \pi_{ar} \rightarrow \\ \sigma^{*}_{Pd-Cl} + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-} \\ & o \\ d_{\pi}(Pd) + \pi_{Cl} + \pi_{ar} \rightarrow \\ \sigma^{*}_{Pd-Cl} + \sigma^{*}_{Pd-N} + \sigma^{*}_{Pd-} \\ & o \end{array}$ | <sup>1</sup> MLCT/ <sup>1</sup> LC<br><sup>1</sup> MLCT/ <sup>1</sup> LC |
|                          | $S_2$           | 2.7151      | 456.64         | 0.0001 | HOMO-1 $\rightarrow$ LUMO (81)           | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                                        | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC                    |
| Br <sub>2</sub> Pic(R)Pd | $S_3$           | 2.8100      | 441.23         | 0.0001 | HOMO-4 $\rightarrow$ LUMO (86)           | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                                        | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC                    |
|                          | $S_4$           | 2.8567      | 434.01         | 0.0048 | HOMO-6 $\rightarrow$ LUMO (19)           | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                                        | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC                    |
|                          |                 |             |                |        | HOMO-5 $\rightarrow$ LUMO (52)           | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                                        | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC                    |
|                          | $S_5$           | 3.0699      | 403.87         | 0.0105 | HOMO $\rightarrow$ LUMO (100)            | $\pi_{Br2PhOH} \rightarrow \sigma^*_{Pd-Cl} + \sigma^*_{Pd-N} + \sigma^*_{Pd-O}$                                                                                                                                                                                      | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC                    |
|                          | S <sub>25</sub> | 5.2580      | 235.80         | 0.2661 | HOMO-12 $\rightarrow$ LUMO (46)          | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                                        | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC                    |

<sup>a</sup> Vertical excitation energies (E), dominant monoexcitations with contributions (within parentheses) of >15%, the nature of the electronic transition, and the description of the excited state are summarized.

| Complex                 | Estate          | Estate Energy (eV) $\lambda$ (nm) f.osc. Monoexcitacions |        | Monoexcitacions | Nature                                     | Description                                                                                                                                                                                                                                         |                                                       |
|-------------------------|-----------------|----------------------------------------------------------|--------|-----------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                         | $S_1$           | 2.6171                                                   | 473.75 | 0.0009          | HOMO-3 $\rightarrow$ LUMO (97)             | $\frac{d_{\pi}(Pd)_{r} \rightarrow \sigma^{*}{}_{Pd-Cl} +}{\sigma^{*}{}_{Pd-N} + \sigma^{*}{}_{Pd-O}}$                                                                                                                                              | <sup>1</sup> MLCT                                     |
|                         | $S_2$           | 2.7089                                                   | 457.69 | 0.0002          | HOMO-2 $\rightarrow$ LUMO (94)             | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                      | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | S               | 2 8074                                                   | 111 61 | 0.0002          | HOMO-5 $\rightarrow$ LUMO (17)             | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                      | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | 33              | 2.0074                                                   | 441.04 | 0.0002          | HOMO-4 $\rightarrow$ LUMO (76)             | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                      | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
| I <sub>2</sub> Pic(R)Pd | $S_4$           | 2.8506                                                   | 434.94 | 0.0051          | HOMO-5 $\rightarrow$ LUMO (57)             | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                      | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         |                 |                                                          |        |                 | HOMO-4 $\rightarrow$ LUMO (15)             | $\begin{array}{c} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^*_{Pd\text{-}Cl} \\ + \sigma^*_{Pd\text{-}N} + \sigma^*_{Pd\text{-}O} \end{array}$                                                                                                      | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | $S_5$           | 2.9846 415.41                                            |        | 0.0078          | HOMO $\rightarrow$ LUMO (100)              | $\pi_{\text{I2PhOH}} \rightarrow \sigma^*_{\text{Pd-Cl}} + \sigma^*_{\text{Pd-N}} \sigma^*_{\text{Pd-O}}$                                                                                                                                           | <sup>1</sup> LMCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         | S <sub>30</sub> | 5.2333                                                   | 236.91 | 0.2389          | HOMO-13 → LUMO (47)<br>HOMO-12 → LUMO (17) | $\begin{array}{l} d_{\pi}(Pd) + \pi_{Cl} \rightarrow \sigma^{*}_{Pd\text{-}Cl} \\ + \sigma^{*}_{Pd\text{-}N} + \sigma^{*}_{Pd\text{-}O} \\ d_{\pi}(Pd) + \pi_{Cl} + \pi_{py} + \\ \pi_{12PhOH} \rightarrow \sigma^{*}_{Pd\text{-}Cl} + \end{array}$ | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> LC |
|                         |                 |                                                          |        |                 |                                            | $\sigma_{Pd-N}^* + \sigma_{Pd-O}^*$                                                                                                                                                                                                                 |                                                       |

Table S7 Lowest Singlet Excited States Calculated at the TDDFT B3LYP/(6-31G(d,p)+LANL2DZ) Level for Complex I<sub>2</sub>Pic(R)Pd in acetonitrile Solution<sup>a</sup>

|                        |                                                 |               |               |                    |               |                               | X              |              |               | X              |
|------------------------|-------------------------------------------------|---------------|---------------|--------------------|---------------|-------------------------------|----------------|--------------|---------------|----------------|
| X                      | < <u>∼</u> N^                                   |               | X             | <> <u>∧</u> ∧      |               |                               | Н              | L            |               | H              |
|                        | O-Pd-N                                          |               |               | O-Pd-1             | N N           | Pd                            |                | н            | N-P           | d OH           |
| X                      | Cl                                              |               | X             | Cl                 |               | Cl <sub>(py)</sub>            | Cl(am)         |              | Cl            | Cl(am)<br>(py) |
|                        | Py <sup>-</sup> (CH <sub>2</sub> ) <sub>2</sub> |               |               | Py-CH <sub>2</sub> |               | P                             | y-NH<br>HPh-OH |              |               | Py-NH          |
| ·                      | SalA2                                           |               |               | Jain               |               |                               | 112-111-011    |              |               |                |
|                        | H-4                                             | H-3           | H-2           | H-1                | Η             | L                             | L+1            | L+2          | L+3           | L+4            |
| -                      | 15.02                                           | 24.00         | ( (           | 20.26              | 0.76          | ClBrPyF                       | <sup>2</sup> d | 2 00         | 1.07          | 0.00           |
| Pd                     | 15,83                                           | 24,98         | 65,26         | 30,36              | 9,76          | 47,15                         | 2,83           | 3,08         | 1,87          | 0,99           |
|                        | 32,19                                           | 63,29<br>7 81 | 18,74         | 31,13              | 1,91          | 11,04                         | 0,21           | 0,49         | 0,51          | 0,05           |
| $Py-(CH_2)_2$          | 5,44<br>18 51                                   | 7,01          | 2,95          | 2,05               | 2,00          | 27.16                         | 01 52          | 95,55        | 95,08         | 0,71           |
| SalA <sub>2</sub>      | 40,54                                           | 5,92          | 15,08         | 50,40              | 80,32         | L <sub>2</sub> PicPd          | 91,52          | 0,00         | 1,94          | 90,25          |
| Pd                     | 62,66                                           | 14,11         | 33,47         | 24,94              | 9,22          | 46,44                         | 3,43           | 2,62         | 0,20          | 0,45           |
| Cl                     | 29,02                                           | 35,25         | 30,69         | 20,70              | 2,02          | 10,53                         | 0,11           | 0,04         | 0,01          | 0,06           |
| Py-CH <sub>2</sub>     | 3,73                                            | 0,39          | 1,87          | 2,86               | 1,55          | 15,33                         | 7,58           | 95,55        | 0,17          | 97,45          |
| $SalX_2$               | 4,60                                            | 50,25         | 33,97         | 51,50              | 87,21         | 27,69                         | 88,88          | 1,79         | 99,61         | 2,04           |
|                        |                                                 |               |               |                    | (             | $Cl_2Py(R)$                   | Pd             |              |               |                |
| Pd                     | 51,98                                           | 19,16         | 73,07         | 50,21              | 0,40          | 46,11                         | 3,57           | 2,60         | 2,25          | 0,40           |
| Cl(py)                 | 3,98                                            | 69,59         | 13,58         | 40,85              | 0,25          | 12,00                         | 0,47           | 0,02         | 0,43          | 0,04           |
| Cl(am)                 | 35,38                                           | 2,87          | 5,30          | 2,62               | 0,26          | 11,42                         | 0,14           | 0,89         | 0,21          | 0,13           |
| Py-NH                  | 6,74                                            | 8,00          | 6,68          | 2,98               | 0,90          | 28,10                         | 95,34          | 9,32         | 96,20         | 5,55           |
| CH <sub>2</sub> -Ph-OH | 1,92                                            | 0,38          | 1,37          | 3,35               | 98,19         | 2,37                          | 0,48           | 87,16        | 0,90          | 93,89          |
| <b>D</b> 1             | 4.22                                            | 10.24         | 74.50         | 40.07              | 6 22          | $3r_2Py(R)$                   | Pd             | 2.64         | 2.29          | 0.20           |
| Pd                     | 4,33                                            | 19,24         | /4,50         | 48,07              | 0,33          | 46,06                         | 3,39           | 2,64         | 2,28          | 0,29           |
| Cl(py)                 | 9,94                                            | 04,02         | 5 00          | 40,84              | 0,18          | 12,03                         | 0,44           | 0,02         | 0,44          | 0,03           |
| CI(aIII)               | 2,75                                            | 2,70          | 5,00<br>6 75  | 3,08<br>2 94       | 0,24          | 28.06                         | 0,15<br>95 36  | 0,92<br>8 83 | 0,19<br>96 35 | 0,03           |
| гу-імп<br>СНPh-OH      | 5,50<br>79.05                                   | 5 72          | 2 37          | 2,94               | 0,72<br>98 53 | 20,00                         | 0.45           | 87 59        | 0 74          | 99 22          |
| 0112-1 11-011          | 19,05                                           | 5,72          | 2,37          | 5,07               | ,55           | 2,11<br>I <sub>2</sub> Pv(R)F | Pd             | 07,09        | 0,71          | ,22            |
| Pd                     | 19,82                                           | 65,01         | 52,68         | 11,21              | 0,29          | 46,02                         | 3,58           | 0,10         | 2,25          | 2,81           |
| Cl(py)                 | 68,48                                           | 20,00         | 27,86         | 11,33              | 0,15          | 12,03                         | 0,47           | 0,02         | 0,45          | 0,02           |
| Cl(am)                 | 3,42                                            | 5,91          | 1,99          | 1,44               | 0,21          | 11,47                         | 0,15           | 0,02         | 0,15          | 0,97           |
| Py-NH                  | 8,11                                            | 5,90          | 3,56          | 2,81               | 0,68          | 27,99                         | 95,35          | 0,22         | 96,32         | 9,66           |
| CH <sub>2</sub> -Ph-OH | 0,17                                            | 3,18          | 13,91         | 73,21              | 98,66         | 2,49                          | 0,45           | 99,64        | 0,82          | 86,55          |
|                        |                                                 |               |               |                    | С             | lBrPy(R                       | )Pd            |              |               |                |
| Pd                     | 4,61                                            | 19,61         | 73,71         | 48,79              | 0,36          | 46,09                         | 3,57           | 2,60         | 2,27          | 0,42           |
| Cl(py)                 | 8,49                                            | 65,67         | 12,27         | 39,90              | 0,21          | 12,05                         | 0,45           | 0,02         | 0,44          | 0,04           |
| Cl(am)                 | 3,16                                            | 2,84          | 5,00          | 2,90               | 0,25          | 11,41                         | 0,14           | 0,90         | 0,21          | 0,14           |
| Py-NH                  | 4,17                                            | 7,85          | 6,56          | 3,15               | 0,79          | 28,08                         | 95,35          | 9,16         | 96,24         | 5,77           |
| CH <sub>2</sub> -Ph-OH | 19,57                                           | 4,03          | 2,45          | 5,25               | 98,39         | 2,5/                          | 0,48<br>Pd     | 87,32        | 0,85          | 93,03          |
| DA                     | 51 59                                           | 63 /1         | 20 27         | 40.02              | 0 3/          | 46.41                         | 3 75           | 0.85         | 0.77          | 0.19           |
| ru<br>Cl(ny)           | 10 94                                           | 7 10          | 29,21<br>1276 | 45 45              | 0,54          | 12 02                         | 0.15           | 0,05         | 0.13          | 0.02           |
| Cl(am)                 | 29.32                                           | 4.54          | 2.65          | 9.88               | 0.65          | 11.43                         | 0.22           | 0.25         | 0.15          | 0.06           |
| Pv-NH                  | 7.43                                            | 3,56          | 6,93          | 1,90               | 0,57          | 26,59                         | 94,82          | 48,57        | 54,47         | 0,37           |

Table S8 DFT calculated composition of the frontier molecular orbitals.

\_

| CH <sub>2</sub> -Ph-OH | 0,74           | 21,30 | 56,88 | 2,74  | 98,28 | 2,65  | 1,06  | 50,26 | 44,48 | 99,35 |  |  |
|------------------------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                        | $I_2$ Pic(R)Pd |       |       |       |       |       |       |       |       |       |  |  |
| Pd                     | 47,41          | 83,33 | 39,09 | 2,98  | 0,33  | 46,46 | 3,73  | 0,04  | 0,84  | 0,87  |  |  |
| Cl(py)                 | 20,06          | 2,77  | 47,97 | 0,68  | 0,13  | 12,90 | 0,15  | 0,00  | 0,12  | 0,07  |  |  |
| Cl(am)                 | 24,72          | 4,30  | 11,42 | 0,37  | 0,59  | 11,45 | 0,23  | 0,01  | 0,15  | 0,26  |  |  |
| Py-NH                  | 6,62           | 6,89  | 1,10  | 3,62  | 0,55  | 26,63 | 94,94 | 0,13  | 75,68 | 27,51 |  |  |
| CH <sub>2</sub> -Ph-OH | 1,20           | 2,72  | 0,42  | 92,36 | 98,40 | 2,56  | 0,96  | 99,81 | 23,22 | 71,28 |  |  |

Table S9 DFT calculated chemical descriptors.

|                          | E(HOMO) | E(LUMO) | I.P.  | E.A.  | Gap(H-L) | η     | $\sigma$ | μ      | ω     |
|--------------------------|---------|---------|-------|-------|----------|-------|----------|--------|-------|
| Cl <sub>2</sub> Pic(R)   | -5,873  | -0,726  | 5,873 | 0,726 | -5,147   | 5,147 | 0,194    | -3,300 | 1,058 |
| Cl <sub>2</sub> Pic      | -6,087  | -1,614  | 6,087 | 1,614 | -4,473   | 4,473 | 0,224    | -3,851 | 1,657 |
| Cl <sub>2</sub> Py(R)Pd  | -6,195  | -2,477  | 6,195 | 2,477 | -3,718   | 3,718 | 0,269    | -4,336 | 2,528 |
| ClBrPy(R)Pd              | -6,157  | -2,475  | 6,157 | 2,475 | -3,682   | 3,682 | 0,272    | -4,316 | 2,530 |
| ClBrPicPd                | -5,693  | -2,044  | 5,693 | 2,044 | -3,649   | 3,649 | 0,274    | -3,869 | 2,051 |
| Br <sub>2</sub> Py(R)Pd  | -6,118  | -2,472  | 6,118 | 2,472 | -3,646   | 3,646 | 0,274    | -4,295 | 2,530 |
| I <sub>2</sub> PicPd     | -5,645  | -2,025  | 5,645 | 2,025 | -3,620   | 3,620 | 0,276    | -3,835 | 2,031 |
| Br <sub>2</sub> Pic(R)Pd | -6,188  | -2,587  | 6,188 | 2,587 | -3,601   | 3,601 | 0,278    | -4,388 | 2,673 |
| Cl <sub>2</sub> PyPd     | -5,671  | -2,088  | 5,671 | 2,088 | -3,583   | 3,583 | 0,279    | -3,880 | 2,100 |
| I <sub>2</sub> Py(R)Pd   | -6,029  | -2,462  | 6,029 | 2,462 | -3,567   | 3,567 | 0,280    | -4,246 | 2,527 |
| ClBrPyPd                 | -5,637  | -2,081  | 5,637 | 2,081 | -3,556   | 3,556 | 0,281    | -3,859 | 2,094 |
| Br <sub>2</sub> PyPd     | -5,615  | -2,072  | 5,615 | 2,072 | -3,543   | 3,543 | 0,282    | -3,844 | 2,085 |
| I <sub>2</sub> Pic(R)Pd  | -6,076  | -2,581  | 6,076 | 2,581 | -3,495   | 3,495 | 0,286    | -4,329 | 2,680 |

Hardness ( $\eta$ ); Softness ( $\sigma$ ); Electronic. Chemical Potential ( $\mu$ ); Electrophilicity Index ( $\omega$ )

Table S10 Cytotoxicity and chemical hardness of palladium complexes.

|                          | Cell viability % (±SD) | η     |
|--------------------------|------------------------|-------|
| ClBrPicPd                | $10 \pm 4$             | 3.649 |
| I <sub>2</sub> PicPd     | $100 \pm 2$            | 3.620 |
|                          |                        |       |
| Br <sub>2</sub> Pic(R)Pd | $4.9 \pm 1.1$          | 3.601 |
| I <sub>2</sub> Pic(R)Pd  | $6.5\pm2.5$            | 3.495 |
|                          |                        |       |
| Cl <sub>2</sub> PyPd     | $5.4\pm1.3$            | 3.583 |
| Br <sub>2</sub> PyPd     | $6.7\pm4.5$            | 3.543 |
| ClBrPyPd                 | $6.7\pm2.2$            | 3.556 |
|                          |                        |       |
| Cl <sub>2</sub> Py(R)Pd  | $79\pm5$               | 3.718 |
| ClBrPy(R)Pd              | $47 \pm 11$            | 3.682 |
| Br <sub>2</sub> Py(R)Pd  | $61 \pm 2$             | 3.646 |
| I <sub>2</sub> Py(R)Pd   | $61 \pm 3$             | 3.567 |