Supporting Information

Contrasting Impact of Coordination Polyhedra and Site Symmetry on the Electronic Energy Levels in Nine-coordinated Eu(III) and Sm(III) Crystals Structures Determined from Single Crystal Luminescence Spectra

Sabina Svava Mortensen, Villads R. M. Nielsen and Thomas Just Sørensen*

Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark. <u>TJS@chem.ku.dk</u>

This is the supporting information for the article, showing the additionally measured emission and excitation spectra, time-resolved emission decay profiles, crystallographic information, and PXRD. Additionally, Boltzmann population calculations, Voight fitting of spectra, and arguments for the population analysis of the emission and excitation spectra resulting in the deconvoluted electronic energy levels for the Sm³⁺ systems.

Table of Contents

1	Crysta	llographic Information
	1.1 E	Cu ³⁺ Compounds Crystallographic Information
	1.1.1	Na ₃ [Eu(ODA) ₃]·8H ₂ O Experimental and Crystallographic Information
	1.1.2	Cs ₃ [Eu(DPA) ₃]·9H ₂ O Experimental and Crystallographic InformationS7
	1.1.3	Na[Eu(DOTA)H2O]·4H2O Experimental and Crystallographic Information
	1.1.4	Na[Eu(EDTA)(H ₂ O) ₃]·5H ₂ O Experimental and Crystallographic InformationS12
	1.2 S	m ³⁺ Compounds Crystallographic Information
	1.2.1	Na ₃ [Sm(ODA) ₃]·7H ₂ O Experimental and Crystallographic InformationS16
	1.2.2	Cs ₃ [Sm(DPA) ₃]·9H ₂ O Experimental and Crystallographic InformationS19
	1.2.3	Na[Sm(DOTA)H2O]·4H2O Experimental and Crystallographic Information S22
	1.2.4	Na[Sm(EDTA)(H2O)3]·5H2O Experimental and Crystallographic Information S25
2	Symm	etry Deviation Values
	2.1 S	ymmetry Deviation Values for Ideal Nine-coordinated Structures
	2.2 S	ymmetry Deviation Values for the Eu ³⁺ and Sm ³⁺ Compounds
	2.2.1	Symmetry Deviation Values for the Eu ³⁺ Compounds
	2.2.2	Symmetry Deviation Values for the Sm ³⁺ Compounds
3	PXRD	
	3.1 P	XRD Eu ³⁺ Compounds
	3.1.1	Na ₃ [Eu(ODA) ₃]·8H ₂ O PXRD
	3.1.2	$Cs_3[Eu(DPA)_3]$ ·9H ₂ O PXRD
	3.1.3	Na[Eu(DOTA)H ₂ O]·4H ₂ O PXRD
	3.1.4	$Na[Eu(EDTA)(H_2O)_3] \cdot 5H_2O PXRD \dots S36$
	3.2 P	XRD Sm ³⁺ Compounds
	3.2.1	$Cs_3[Sm(DPA)_3] \cdot 9H_2OPXRD$
	3.2.2	Na[Sm(DOTA)H ₂ O]·4H ₂ O PXRDS38
	3.2.3	Na[Sm(EDTA)H ₂ O]·5H ₂ O PXRD
4	Spectre	oscopy Data
	4.1 E	Experimental Setup for Solid State Single Crystal Luminescence
	4.2 S	pectroscopy Data for Eu ³⁺ Compounds
	4.2.1	Luminescence Lifetimes for Eu ³⁺ Compounds
	4.2.2	Na ₃ [Eu(ODA) ₃]·8H ₂ O Spectra

4.2	2.3	Cs ₃ [Eu(DPA) ₃]·9H ₂ O Spectra	S48
4.2	2.4	Na[Eu(DOTA)H ₂ O]·4H ₂ O Spectra	S54
4.2	2.5	Na[Eu(DOTA)H ₂ O]·4H2O Excitation Spectra	S56
4.2	2.6	Na[Eu(EDTA)(H ₂ O) ₃]·5H ₂ O Spectra	S60
4.3	S	Spectroscopy Data for Sm ³⁺ Compounds	S66
4.	3.1	Luminescence Lifetimes for Sm ³⁺ Compounds	S66
4.	3.2	Na ₃ [Sm(ODA) ₃]·7H ₂ O Spectra	S67
4.	3.3	Cs ₃ [Sm(DPA) ₃]·9H ₂ O Spectra	S69
4.	3.4	Na[Sm(DOTA)H2O]·4H2O Spectra	S72
4.	3.5	Na[Sm(EDTA)(H ₂ O) ₃]·5H ₂ O Spectra	S75
5 De	ecor	nvolution of the Electronic Energies using Voigt fitting and Boltzmann Popu	ilation
Analys	sis		S78
5.1	I	Fits for Na[Sm(DOTA)H ₂ O]·4H ₂ O	S78
5.	1.1	Boltzmann Population Calculations for Na[Sm(EDTA)(H2O)3]·5H2O	S83
5.2	ł	Boltzmann Population Analysis for Na[Sm(EDTA)(H2O)3]·5H2O	S84
5.2	2.1	Voight Fitting for Na[Sm(EDTA)(H ₂ O) ₃]·5H ₂ O	S84
5.3	I	Boltzmann Population Analysis for Na3[Sm(ODA)3]·7H2O	S88
5.4	I	Boltzmann Population Analysis for Cs3[Sm(DPA)3]·9H2O	S93
5.5	I	Electronic Energy Levels for the Sm ³⁺ Compounds	S98
6 R.	efere	ences	S98

1 Crystallographic Information

1.1 Eu³⁺ Compounds Crystallographic Information

1.1.1 Na₃[Eu(ODA)₃]·8H₂O Experimental and Crystallographic Information

1.1.1.1 Picture of Na₃[Eu(ODA)₃]·8H₂O Crystals

Figure S 1: Pictures of Na₃[Eu(ODA)₃] \cdot 8H₂O made following the description in the experimental section. The crystals have a difference in size, but all of the crystal were found to be clear, light, and colourless with a prism structure. All crystals were observed to have the same phase. The complex crystallises in the monoclinic *C*2/*c* space group.

1.1.1.2 Na₃[Eu(ODA)₃]·8H₂O Crystal Structure

Figure S 2: a) Polyhedral depicting coordination around the Eu^{3+} ion in Na₃[Eu(ODA)₃]·8H₂O. **b)** The asymmetric unit for Na₃[Eu(ODA)₃]·8H₂O. **c)** The unit cell for Na₃[Eu(ODA)₃]·8H₂O. Colour code: Eu = pink, N = light blue, C = blue, O = red and Na = orange. Hydrogen atoms omitted for clarity. Thermal ellipsoids are 50% probability.

1.1.1.3 Na₃[Eu(ODA)₃]·8H₂O Crystallographic Information

Table S 1: Crystal data and structure refinement for Na₃[Eu(ODA)₃]·8H₂O.

Crystal data		
Empirical formula	C ₁₂ H ₂₇ EuNa ₃ O ₂₃	
Formula weight	760.26	
Temperature/K	120	
Crystal system	monoclinic	
Space group	C2/c	
a/Å	17.520(3)	

b/Å	8.3804(13)
c/Å	19.059(3)
a/°	90
β/°	111.350(4)
$\gamma/^{\circ}$	90
Volume/Å ³	2606.2(7)
Z	4
$\rho_{calc}g/cm^3$	1.922
µ/mm ⁻¹	2.555
F(000)	1492.0
Crystal size/mm ³	$0.18 \times 0.174 \times 0.11$
Radiation	MoKα (λ = 0.71073)
Data collection	
2Θ range for data collection/°	4.59 to 63.012
Index ranges	$-25 \le h \le 25, -12 \le k \le 12, -27 \le l \le 28$
Reflections collected	29301
Independent reflections	4349 [$R_{int} = 0.0518$, $R_{sigma} = 0.0301$]
Refinement	
Data/restraints/parameters	4349/6/202
Goodness-of-fit on F ²	1.297
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0378, wR_2 = 0.1082$
Final R indexes [all data]	$R_1 = 0.0388, wR_2 = 0.1086$
Largest diff. peak/hole / e Å ⁻³	2.58/-3.37

1.1.2 Cs₃[Eu(DPA)₃]·9H₂O Experimental and Crystallographic Information 1.1.2.1 Picture of Cs₃[Eu(DPA)₃]·9H₂O Crystals

Figure S 3: Pictures of $Cs_3[Eu(DPA)_3]$ ·9H₂O made following the description in the experimental section. The crystals have a difference in size, but all of the crystal were found to be clear, light, and colourless with a prism structure. All crystals were observed to have the same phase. The complex crystallises in the orthorhombic *C222*₁ space group.

1.1.2.2 Cs₃[Eu(DPA)₃]·9H₂O Crystal Structure

The crystal created in the experimental section was found to be a twin, and the structure could not be determined. However, the Bravais lattice and unit cell was found to agree with the previously reported structure by by Brayshaw *et al.*¹ and the crystal was then used for single crystal luminescence measurements.

Crystal data		
Empirical formula	$C_{20}Cs_2EuN_3Na_2O_{21}$	
Formula weight	1081.99	
Temperature/K	296.15	
Crystal system	orthorhombic	
Space group	C2221	
a/Å	18.0233(9)	
b/Å	10.0116(5)	
c/Å	18.5298(9)	
α/°	90	
β/°	90	
$\gamma/^{\circ}$	90	
Volume/Å ³	3343.6(3)	
Z	4	
$\rho_{calc}g/cm^3$	2.149	
µ/mm ⁻¹	4.135	
F(000)	2016.0	
Crystal size/mm ³	$? \times ? \times ?$	
Radiation	MoK α ($\lambda = 0.71073$)	
Refinement		
2Θ range for data collection/°	4.396 to 51.34	
Index ranges	$-21 \le h \le 21, -12 \le k \le 12, -21 \le l \le 22$	
Reflections collected	18157	
Independent reflections	3175 [$R_{int} = 0.0319, R_{sigma} = 0.0226$]	

1.1.2.3 Cs₃[Eu(DPA)₃]·9H₂O Crystallographic Information Table S 2: Crystal data and structure refinement for Cs₃[Eu(DPA)₃]·9H₂O.

1.1.3 Na[Eu(DOTA)H₂O]·4H₂O Experimental and Crystallographic Information

1.1.3.1 Picture of Na[Eu(DOTA)H₂O]·4H₂O Crystals

Figure S 4: Pictures of Na[Eu(DOTA)H₂O]·4H₂O made following the description in the experimental section. The crystals have a difference in size, but all of the crystal were found to be clear, light, and colourless with a prism structure. All crystals were observed to have the same phase. The complex crystallises in the triclinic $P\overline{1}$ space group.

1.1.3.2 Na[Eu(DOTA)H₂O]·4H₂O Crystal Structure

Figure S 5: a) Polyhedral depicting coordination around the Eu^{3+} ion in Na[Eu(DOTA)H₂O]·4H₂O. **b)** The asymmetric unit for Na[Eu(DOTA)H₂O]·4H₂O. **c)** The unit cell for Na[Eu(DOTA)H₂O]·4H₂O. Colour code: Eu = pink, N = light blue, C = blue, O = red and Na = orange. Hydrogen atoms omitted for clarity. Thermal ellipsoids are 50% probability.

1.1.3.3 Na[Eu(DOTA)H₂O]·4H₂O Crystallographic Information

Crystal data		
Empirical formula	$C_{16}H_{34}EuN_4NaO_{13}$	
Formula weight	665.42	
Temperature/K	100	
Crystal system	triclinic	
Space group	P-1	
a/Å	8.6270(5)	

Table S 3: Crystal data and structure refinement for Na[Eu(DOTA)H₂O]·4H₂O.

b/Å	9.1258(6)
c/Å	15.6209(9)
α/°	82.982(2)
β/°	85.085(2)
$\gamma/^{\circ}$	81.209(3)
Volume/Å ³	1203.44(13)
Z	2
$\rho_{calc}g/cm^3$	1.836
µ/mm ⁻¹	2.696
F(000)	672.0
Crystal size/mm ³	$0.205 \times 0.14 \times 0.06$
Radiation	MoKa ($\lambda = 0.71073$)
Refinement	
2Θ range for data collection/°	4.544 to 61.012
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -22 \le l \le 22$
Reflections collected	57415
Independent reflections	7345 [$R_{int} = 0.0667, R_{sigma} = 0.0401$]
Refinement	
Data/restraints/parameters	7345/2/343
Goodness-of-fit on F ²	1.049
Final R indexes $[I > = 2\sigma(I)]$	$R_1 = 0.0250, wR_2 = 0.0467$
Final R indexes [all data]	$R_1 = 0.0341, wR_2 = 0.0489$
Largest diff. peak/hole / e Å ⁻³	0.92/-0.93

1.1.4 Na[Eu(EDTA)(H₂O)₃]·5H₂O Experimental and Crystallographic Information

1.1.4.1 Na[Eu(EDTA)(H₂O)₃]·4H₂O Picture of Crystals

Figure S 6: Pictures of Na[Eu(EDTA)(H₂O)₃] \cdot 5H₂O made following the description in the experimental section. The crystals have a difference in size, but all of the crystal were found to be clear, light, and colourless with a prism structure. All crystals were observed to have the same phase. The complex crystallises in the orthorhombic *Fdd2* space group.

Figure S 7: a) Polyhedral depicting coordination around the Eu^{3+} ion in Na[Eu(EDTA)(H₂O)₃]·5H₂O. **b)** The asymmetric unit for Na[Eu(EDTA)(H₂O)₃]·5H₂O. **c)** The unit cell for Na[Eu(EDTA)(H₂O)₃]·5H₂O. Colour code: Eu = pink, N = light blue, C = blue, O = red and Na = orange. Hydrogen atoms omitted for clarity. Thermal ellipsoids are 50% probability.

Crystal data		
Empirical formula	$C_{10}H_{28}EuN_2NaO_{16}\\$	
Formula weight	607.29	
Temperature/K	100	
Crystal system	orthorhombic	
Space group	Fdd2	
a/Å	19.3808(9)	
b/Å	35.2814(17)	
c/Å	12.0315(6)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	8226.9(7)	
Z	16	
$\rho_{calc}g/cm^3$	1.938	
µ/mm ⁻¹	3.151	
F(000)	4752.0	
Crystal size/mm ³	$0.606 \times 0.522 \times 0.434$	
Radiation	MoKa ($\lambda = 0.71073$)	
Data collection		
2Θ range for data collection/°	4.148 to 61.994	
Index ranges	$-27 \le h \le 28, -50 \le k \le 51, -17 \le l \le 17$	
Reflections collected	35327	
Independent reflections	6527 [$R_{int} = 0.0431$, $R_{sigma} = 0.0328$]	

1.1.4.3 Na[Eu(EDTA)(H₂O)₃]·5H₂O Crystallographic Information Table S 4: Crystal data and structure refinement for Na[Eu(EDTA)(H₂O)₃]·5H₂O.

Refinement		
Data/restraints/parameters	6527/21/325	
Goodness-of-fit on F ²	1.049	
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0193, wR_2 = 0.0461$	
Final R indexes [all data]	$R_1 = 0.0199, wR_2 = 0.0464$	
Largest diff. peak/hole / e Å ⁻³	1.13/-1.88	
Flack parameter	0.018(10)	

1.2 Sm³⁺ Compounds Crystallographic Information

1.2.1 Na₃[Sm(ODA)₃]·7H₂O Experimental and Crystallographic Information

1.2.1.1 Picture of Na₃[Sm(ODA)₃]·7H₂O Crystals

Figure S 8: Pictures of $Na_3[Sm(ODA)_3] \cdot 7H_2O$ made following the description in the experimental section. The crystals have a difference in size, but all of the crystal were found to be clear, light, and colourless with a prism structure. All crystals were observed to have the same phase. The complex crystallises in the monoclinic *Cc* space group.

1.2.1.2 Na₃[Sm(ODA)₃]·7H₂O Crystal Structure

Figure S 9: a) Polyhedral depicting coordination around the Sm^{3+} ion in Na₃[Sm(ODA)₃]·7H₂O. **b)** The asymmetric unit for Na₃[Sm(ODA)₃]·7H₂O. **c)** The unit cell for Na₃[Sm(ODA)₃]·7H₂O. Colour code: Sm = dark blue, N = light blue, C = blue, O = red and Na = orange. Hydrogen atoms omitted for clarity. Thermal ellipsoids are 50% probability.

1.2.1.3 Na₃[Sm(ODA)₃]·7H₂O Crystallographic Information

Table S 5: Crystal data and structure refineme	ent for Na ₃ [Sm(ODA) ₃]·7H ₂ O.
--	--

Crystal data		
Empirical formula	$C_{12}H_{28}Na_3O_{23}Sm$	
Formula weight	759.66	
Temperature/K	100	
Crystal system	monoclinic	
Space group	Cc	
a/Å	17.5900(13)	
b/Å	8.3808(6)	

c/Å	19.0418(16)	
$\alpha^{\prime \circ}$	90	
β/°	111.266(3)	
$\gamma/^{\circ}$	90	
Volume/Å ³	2616.0(4)	
Z	8	
$\rho_{calc}g/cm^3$	1.929	
μ/mm^{-1}	2.393	
F(000)	1516.0	
Crystal size/mm ³	$0.416 \times 0.324 \times 0.202$	
Radiation	MoKa ($\lambda = 0.71073$)	
Data collection		
2Θ range for data collection/°	4.59 to 68.674	
Index ranges	$-26 \le h \le 27, -13 \le k \le 13, -30 \le l \le 30$	
Reflections collected	46134	
Independent reflections	10560 [$R_{int} = 0.0428, R_{sigma} = 0.0434$]	
Refinement		
Data/restraints/parameters	10560/3/371	
Goodness-of-fit on F ²	1.063	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0228, wR_2 = 0.0448$	
Final R indexes [all data]	$R_1 = 0.0273, wR_2 = 0.0461$	
Largest diff. peak/hole / e Å ⁻³	0.44/-0.61	
Flack parameter	0.032(7)	

1.2.2 Cs₃[Sm(DPA)₃]·9H₂O Experimental and Crystallographic Information 1.2.2.1 Picture of Cs₃[Sm(DPA)₃]·9H₂O Crystals

Figure S 10: Pictures of $C_{s_3}[Sm(DPA)_3] \cdot 9H_2O$ made following the description in the experimental section. The crystals have a difference in size, but all of the crystal were found to be clear, light, and colourless with a prism structure. All crystals were observed to have the same phase. The complex crystallises in the orthorhombic $C222_1$ space group.

1.2.2.2 Cs₃[Sm(DPA)₃]·9H₂O Crystal Structure

Figure S 11: a) Polyhedral depicting coordination around the Sm^{3+} ion in $\text{Cs}_3[\text{Sm}(\text{DPA})_3] \cdot 9\text{H}_2\text{O}$. **b)** The asymmetric unit for $\text{Cs}_3[\text{Sm}(\text{DPA})_3] \cdot 9\text{H}_2\text{O}$. **c)** The unit cell for $\text{Cs}_3[\text{Sm}(\text{DPA})_3] \cdot 9\text{H}_2\text{O}$. Colour code: Sm = dark blue, N = light blue, C = blue, O = red and Na = orange. Hydrogen atoms omitted for clarity. Thermal ellipsoids are 50% probability.

1.2.2.3 Cs₃[Sm(DPA)₃]·9H₂O Crystallographic Information

Table S 6: Crystal data and structure refinement for Cs₃[Sm(DPA)₃]·9H₂O.

Crystal data		
Empirical formula	$C_{21}H_{23}Cs_3N_3O_{21}Sm$	
Formula weight	1202.50	
Temperature/K	100	
Crystal system	orthorhombic	
Space group	C222 ₁	
a/Å	10.0017(13)	

b/Å	18.033(3)
c/Å	18.530(3)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3342.1(8)
Z	4
$\rho_{calc}g/cm^3$	2.398
µ/mm ⁻¹	5.068
F(000)	2268.0
Crystal size/mm ³	$0.162 \times 0.127 \times 0.071$
Radiation	MoKa ($\lambda = 0.71073$)
Data collection	
Data collection 2Θ range for data collection/°	4.396 to 72.66
Data collection 2Θ range for data collection/° Index ranges	4.396 to 72.66 $-16 \le h \le 16, -30 \le k \le 30, -30 \le l \le 30$
Data collection2Θ range for data collection/°Index rangesReflections collected	4.396 to 72.66 -16 \leq h \leq 16, -30 \leq k \leq 30, -30 \leq l \leq 30 64847
Data collection2 Θ range for data collection/°Index rangesReflections collectedIndependent reflections	4.396 to 72.66 -16 \leq h \leq 16, -30 \leq k \leq 30, -30 \leq 1 \leq 30 64847 8116 [R _{int} = 0.0502, R _{sigma} = 0.0283]
Data collection 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Refinement	4.396 to 72.66 -16 \leq h \leq 16, -30 \leq k \leq 30, -30 \leq l \leq 30 64847 8116 [R _{int} = 0.0502, R _{sigma} = 0.0283]
Data collection 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Refinement Data/restraints/parameters	4.396 to 72.66 -16 \leq h \leq 16, -30 \leq k \leq 30, -30 \leq 1 \leq 30 64847 8116 [R _{int} = 0.0502, R _{sigma} = 0.0283] 8116/15/257
Data collection 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Refinement Data/restraints/parameters Goodness-of-fit on F ²	$\begin{array}{l} 4.396 \text{ to } 72.66 \\ -16 \leq h \leq 16, -30 \leq k \leq 30, -30 \leq l \leq 30 \\ 64847 \\ 8116 \; [R_{int} = 0.0502, R_{sigma} = 0.0283] \\ \\ 8116/15/257 \\ 1.068 \end{array}$
Data collection 2Θ range for data collection/°Index rangesReflections collectedIndependent reflectionsRefinementData/restraints/parametersGoodness-of-fit on F ² Final R indexes [I>= 2σ (I)]	$\begin{array}{l} 4.396 \text{ to } 72.66 \\ -16 \leq h \leq 16, -30 \leq k \leq 30, -30 \leq l \leq 30 \\ 64847 \\ 8116 \; [R_{int} = 0.0502, R_{sigma} = 0.0283] \\ \\ 8116/15/257 \\ 1.068 \\ R_1 = 0.0244, wR_2 = 0.0617 \end{array}$
Data collection 2Θ range for data collection/°Index rangesReflections collectedIndependent reflectionsRefinementData/restraints/parametersGoodness-of-fit on F ² Final R indexes [I>= 2σ (I)]Final R indexes [all data]	$\begin{array}{l} 4.396 \text{ to } 72.66 \\ -16 \leq h \leq 16, -30 \leq k \leq 30, -30 \leq l \leq 30 \\ 64847 \\ 8116 \; [R_{int} = 0.0502, R_{sigma} = 0.0283] \\ \\ 8116/15/257 \\ 1.068 \\ R_1 = 0.0244, wR_2 = 0.0617 \\ R_1 = 0.0284, wR_2 = 0.0637 \end{array}$
Data collection 2Θ range for data collection/°Index rangesReflections collectedIndependent reflectionsRefinementData/restraints/parametersGoodness-of-fit on F ² Final R indexes [I>= 2σ (I)]Final R indexes [all data]Largest diff. peak/hole / e Å ⁻³	$\begin{array}{l} 4.396 \text{ to } 72.66 \\ -16 \leq h \leq 16, \ -30 \leq k \leq 30, \ -30 \leq l \leq 30 \\ 64847 \\ 8116 \ [R_{int} = 0.0502, \ R_{sigma} = 0.0283] \\ \end{array}$

1.2.3 Na[Sm(DOTA)H₂O]·4H₂O Experimental and Crystallographic Information

1.2.3.1 Picture of Na[Sm(DOTA)H₂O]·4H₂O Crystals

Figure S 12: Pictures of Na[Sm(DOTA)H₂O]·4H₂O made following the description in the experimental section. The crystals have a difference in size, but all the crystal were found to be clear, light, and colourless with an irregular structure. All crystals were observed to have the same phase. The complex crystallises in the triclinic $P\overline{1}$ space group.

1.2.3.2 Na[Sm(DOTA)H₂O]·4H₂O Crystal Structure

Figure S 13: a) Polyhedral depicting coordination around the Sm^{3+} ion in Na[Sm(DOTA)H₂O]·4H₂O. **b)** The asymmetric unit for Na[Sm(DOTA)H₂O]·4H₂O. **c)** The unit cell for Na[Sm(DOTA)H₂O]·4H₂O. Colour code: Sm = dark blue, N = light blue, C = blue, O = red and Na = orange. Hydrogen atoms omitted for clarity. Thermal ellipsoids are 50% probability.

1.2.3.3 Na[Sm(DOTA)H₂O]·4H₂O Crystallographic Information

Table S 7: Crystal	data and structure	refinement for N	Na[Sm(DOTA)	$(H_2O)]$ ·5H ₂ O
--------------------	--------------------	------------------	-------------	------------------------------

Crystal data

Empirical formula	$C_{16}H_{34}N_4NaO_{13}Sm$
Formula weight	663.81
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	8.6233(8)
b/Å	9.1615(8)
c/Å	15.6526(14)

$\alpha^{\prime \circ}$	82.938(3)
β/°	84.975(3)
$\gamma/^{\circ}$	80.994(3)
Volume/Å ³	1209.13(19)
Z	2
$\rho_{calc}g/cm^3$	1.823
μ/mm^{-1}	2.518
F(000)	670.0
Crystal size/mm ³	$0.291 \times 0.134 \times 0.083$
Radiation	MoKα ($\lambda = 0.71073$)
Data collection	
2Θ range for data collection/°	4.53 to 64.06
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -23 \le l \le 23$
Reflections collected	59699
Independent reflections	8427 [$R_{int} = 0.0513$, $R_{sigma} = 0.0305$]
Refinement	
Data/restraints/parameters	8427/0/332
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0200, wR_2 = 0.0435$
Final R indexes [all data]	$R_1 = 0.0249, wR_2 = 0.0450$
Largest diff. peak/hole / e Å ⁻³	0.79/-0.56

1.2.4 Na[Sm(EDTA)(H₂O)₃]·5H₂O Experimental and Crystallographic Information

1.2.4.1 Picture of Na[Sm(EDTA)(H₂O)₃]·5H₂O Crystals

Figure S 14: Pictures of Na[Sm(EDTA)(H₂O)₃] \cdot 5H₂O made following the description in the experimental section. All of the crystal were found to be clear, light, and colourless with a rhombohedral structure. All crystals were observed to have the same phase. The complex crystallises in the orthorhombic *Fdd2* space group.

1.2.4.2 Na[Sm(EDTA)(H₂O)₃]·5H₂O Crystal Structure

Figure S 15: a) Polyhedral depicting coordination around the Sm³⁺ ion in Na[Sm(EDTA)(H₂O)₃]·5H₂O. **b)** The asymmetric unit for Na[Sm(EDTA)(H₂O)₃]·5H₂O. **c)** The unit cell for Na[Sm(EDTA)(H₂O)₃]·5H₂O. Colour code: Sm = dark blue, N = light blue, C = blue, O = red and Na = orange. Hydrogen atoms omitted for clarity. Thermal ellipsoids are 50% probability.

1.2.4.3 Na[Sm(EDTA)(H₂O)₃]·5H₂O Crystallographic Information

Table S 8: Crystal data and structure re	finement for Na[S	Sm(EDTA)(H ₂ O) ₃	$\cdot 5H_2O$
--	-------------------	---	---------------

Crystal data		
Empirical formula	$C_{10}H_{28}N_2NaO_{16}Sm$	
Formula weight	605.68	
Temperature/K	100	
Crystal system	orthorhombic	
Space group	Fdd2	
a/Å	19.459(3)	

b/Å	35.397(6)
c/Å	12.032(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	8288(2)
Z	16
$\rho_{calc}g/cm^3$	1.935
µ/mm ⁻¹	2.936
F(000)	4829.0
Crystal size/mm ³	$0.576 \times 0.308 \times 0.122$
Radiation	MoKa ($\lambda = 0.71073$)
Data collection	
Data collection 2Θ range for data collection/°	4.142 to 69.942
Data collection2Θ range for data collection/°Index ranges	4.142 to 69.942 $-31 \le h \le 31, -56 \le k \le 56, -19 \le l \le 19$
Data collection2Θ range for data collection/°Index rangesReflections collected	4.142 to 69.942 -31 \leq h \leq 31, -56 \leq k \leq 56, -19 \leq 1 \leq 19 42482
Data collection2 Θ range for data collection/°Index rangesReflections collectedIndependent reflections	4.142 to 69.942 -31 \leq h \leq 31, -56 \leq k \leq 56, -19 \leq 1 \leq 19 42482 8972 [R _{int} = 0.0458, R _{sigma} = 0.0418]
Data collection 2@ range for data collection/° Index ranges Reflections collected Independent reflections Refinement	4.142 to 69.942 -31 \leq h \leq 31, -56 \leq k \leq 56, -19 \leq 1 \leq 19 42482 8972 [R _{int} = 0.0458, R _{sigma} = 0.0418]
Data collection 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Refinement Data/restraints/parameters	4.142 to 69.942 $-31 \le h \le 31, -56 \le k \le 56, -19 \le 1 \le 19$ 42482 8972 [R _{int} = 0.0458, R _{sigma} = 0.0418] 8972/5/333
Data collection 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Refinement Data/restraints/parameters Goodness-of-fit on F ²	4.142 to 69.942 $-31 \le h \le 31, -56 \le k \le 56, -19 \le 1 \le 19$ 42482 8972 [R _{int} = 0.0458, R _{sigma} = 0.0418] 8972/5/333 1.013
Data collection 2Θ range for data collection/°Index rangesReflections collectedIndependent reflectionsRefinementData/restraints/parametersGoodness-of-fit on F ² Final R indexes [I>= 2σ (I)]	$\begin{array}{l} 4.142 \mbox{ to } 69.942 \\ -31 \le h \le 31, \ -56 \le k \le 56, \ -19 \le 1 \le 19 \\ 42482 \\ 8972 \ [R_{int} = 0.0458, \ R_{sigma} = 0.0418] \\ \end{array}$
Data collection 2Θ range for data collection/°Index rangesReflections collectedIndependent reflectionsRefinementData/restraints/parametersGoodness-of-fit on F ² Final R indexes [I>= 2σ (I)]Final R indexes [all data]	$\begin{array}{l} 4.142 \ to \ 69.942 \\ -31 \leq h \leq 31, \ -56 \leq k \leq 56, \ -19 \leq 1 \leq 19 \\ 42482 \\ 8972 \ [R_{int} = 0.0458, \ R_{sigma} = 0.0418] \\ \end{array}$
Data collection 2Θ range for data collection/°Index rangesReflections collectedIndependent reflectionsRefinementData/restraints/parametersGoodness-of-fit on F ² Final R indexes [I>= 2σ (I)]Final R indexes [all data]Largest diff. peak/hole / e Å- ³	$\begin{array}{l} 4.142 \mbox{ to } 69.942 \\ -31 \le h \le 31, \ -56 \le k \le 56, \ -19 \le 1 \le 19 \\ 42482 \\ 8972 \ [R_{int} = 0.0458, \ R_{sigma} = 0.0418] \\ \end{array}$

2 Symmetry Deviation Values

2.1 Symmetry Deviation Values for Ideal Nine-coordinated Structures

Table S 9: Symmetry deviation values, σ_{ideal} , for comparison of ideal nine-coordinated structures. Values were calculated using AlignIt.²

						\checkmark
	cSAP	ТТР	MFF	НООР	TCup	HBPy
cSAP	0	0.97	13.51	20.15	16.71	26.83
TTP		0	9.63	14.12	19.26	23.25
MUFF			0	14.61	20.40	24.92
НООР				0	19.79	14.49
TCup					0	21.52
HBPy						0

2.2 Symmetry Deviation Values for the Eu³⁺ and Sm³⁺ Compounds

2.2.1 Symmetry Deviation Values for the Eu³⁺ Compounds Table S 10: Symmetry deviation values, σ_{ideal} , for the Eu³⁺ complexes.

		\bigotimes				\blacklozenge
	cSAP	TTP	MFF	НООР	TCup	HBPy
Na3[Eu(ODA)3]·8H2O	1.26	0.76	11.55	19.94	18.33	24.65
Cs ₃ [Eu(DPA) ₃]·9H ₂ O	1.87	0.89	9.88	14.84	18.96	23.85
Na[Eu(DOTA)(H2O)] [.] 4H2O	0.38	1.48	14.32	20.21	18.41	26.25
Na[Eu(EDTA)(H2O)3] ·5H2O	0.63	0.96	14.35	18.78	17.03	25.31

	Na3[Eu(ODA)3]·8H2O	Cs ₃ [Eu(DPA) ₃]·9H ₂ O	Na[Eu(DOTA)(H 2O)]∙4H2O	Na[Eu(EDTA)(H 2O)3]·5H2O
Na₃[Eu(ODA)₃]·8 H₂O	-	-	-	-
Cs₃[Eu(DPA)₃]·9 H ₂ O	0.19	-	-	-
Na[Eu(DOTA)(H 2O)]·4H2O	1.15	1.97	-	-
Na[Eu(EDTA)(H 2O)3]·5H2O	1.73	1.29	1.07	-

Table S 11: Symmetry deviation values, σ_{ideal} , for the Eu³⁺ complexes.

2.2.2 Symmetry Deviation Values for the Sm³⁺ Compounds Table S 12: Symmetry deviation values, σ_{ideal} , for the Sm³⁺ complexes.

		\bigotimes				\blacklozenge
	cSAP	TTP	MFF	НООР	TCup	HBPy
Na ₃ [Sm(ODA) ₃]·7H ₂ O	1.40	0.87	11.49	16.54	18.81	23.94
Cs ₃ [Sm(DPA) ₃]·9H ₂ O	1.92	0.96	11.19	20.24	19.35	24.12
Na[Sm(DOTA)(H ₂ O)]·4H ₂ O	0.39	1.49	13.63	21.10	17.77	26.14
Na[Sm(EDTA)(H2O)3] ·5H2O	0.64	0.99	13.97	18.55	18.24	25.34

	Na3[Sm(ODA)3]·7H2O	Cs ₃ [Sm(DPA) ₃]·9H ₂ O	Na[Sm(DOTA)(H ₂ O)]·4H ₂ O	Na[Sm(EDTA)(H 2O)3] •5H2O
Na ₃ [Sm(ODA) ₃]. 7H ₂ O	-			
Cs ₃ [Sm(DPA) ₃]·9 H ₂ O	0.25	-		
Na[Sm(DOTA)(H ₂ O)]·4H ₂ O	0.85	1.62	-	
Na[Sm(EDTA)(H 2O)3]·5H2O	0.85	1.33	0.73	-

Table S 13: Symmetry deviation values, σ_{ideal} , for the Sm³⁺ complexes.

3 PXRD 3.1 PXRD Eu³⁺ Compounds 3.1.1 Na₃[Eu(ODA)₃]·8H₂O PXRD

Figure S 16: PXRD for Na₃[Eu(ODA)₃] \cdot 8H₂O. The black diffractogram is recorded for the powder made from crystals crushed to a powder. The purple diffractogram is simulated from the structure determined for the single crystal.

3.1.2 Cs₃[Eu(DPA)₃]·9H₂O PXRD

Figure S 17: PXRD for Na₃[Eu(DPA)₃]·9H₂O. The black diffractogram is recorded for the powder made from crystals crushed to a powder. The green diffractogram is simulated from the published structure by Brayshaw *et al.*¹ as the crystal created in the experimental section was found to be a twin, and the structure could not be determined.

3.1.3 Na[Eu(DOTA)H₂O]·4H₂O PXRD

Figure S 18: PXRD for Na[Eu(DOTA)H₂O]·4H₂O. The black diffractogram is recorded for the powder made from crystals crushed to a powder. The pink diffractogram is simulated from the structure determined for the single crystal.

3.1.4 Na[Eu(EDTA)(H₂O)₃]·5H₂O PXRD

Figure S 19: PXRD for Na[Eu(EDTA)(H₂O)₃] \cdot 5H₂O. The black diffractogram is recorded for the powder made from crystals crushed to a powder. The light blue diffractogram is simulated from the structure determined for the single crystal.
3.2 PXRD Sm³⁺ Compounds 3.2.1 Cs₃[Sm(DPA)₃]·9H₂O PXRD

Figure S 20: PXRD for $Cs_3[Sm(DPA)_3] \cdot 9H_2O$. The black diffractogram is recorded for the powder made from crystals crushed to a powder. The light blue diffractogram is simulated from the structure determined for the single crystal.

3.2.2 Na[Sm(DOTA)H₂O]·4H₂O PXRD

Figure S 21: PXRD for Na[Sm(DOTA)H₂O]·4H₂O. The black diffractogram is recorded for the powder made from crystals crushed to a powder. The light blue diffractogram is simulated from the structure determined for the single crystal.

3.2.3 Na[Sm(EDTA)H₂O]·5H₂O PXRD

Figure S 22: PXRD for Na[Sm(EDTA)(H_2O_{3}]·5 H_2O . The black diffractogram is recorded for the powder made from crystals crushed to a powder. The light blue diffractogram is simulated from the structure determined for the single crystal.

4 Spectroscopy Data

4.1 Experimental Setup for Solid State Single Crystal Luminescence

Figure S 23: Solid-state single crystal emission setup using a crystal mounting loop. Emission was measured at 293 K. The picture shows a $Cs_3[Eu(DPA)_3] \cdot 9H_2O$ crystal. The picture to the right show excitation at 394 nm.

4.2 Spectroscopy Data for Eu³⁺ Compounds

4.2.1 Luminescence Lifetimes for Eu³⁺ Compounds

Table S 14: Luminescence lifetimes of the Eu^{3+} complexes for crystals ground to a powder in 2-methyltetrahydrofuran at 77 K.

Complex	$ au_{obs}$ (µs)
Na ₃ [Eu(ODA) ₃]·8H ₂ O	2860.21
Cs ₃ [Eu(DPA) ₃]·9H ₂ O	1697.99
Na[Eu(DOTA)(H ₂ O)]·4H ₂ O	731.06
$Na[Eu(EDTA)(H_2O)_3]$ ·5H ₂ O	364.10

Table S 15: Luminescence lifetimes of the Eu³⁺ complexes for single crystals at 293 K.

Complex	$ au_{obs}$ (µs)	
Na ₃ [Eu(ODA) ₃]·8H ₂ O	1965.36	
Cs ₃ [Eu(DPA) ₃]·9H ₂ O	1415.91	
Na[Eu(DOTA)(H ₂ O)]·4H ₂ O	748.44	
$Na[Eu(EDTA)(H_2O)_3] \cdot 5H_2O$	355.38	

4.2.2 Na₃[Eu(ODA)₃]·8H₂O Spectra 4.2.2.1 Na₃[Eu(ODA)₃]·8H₂O Emission Spectra

Figure S 24: Normalised emission spectrum (excitation at 394 nm) for Na₃[Eu(ODA)₃]·8H₂O in 2-methyltetrahydrofuran glass at 77 K.

Figure S 25: Normalised emission spectrum (excitation at 394 nm) for single crystal Na₃[Eu(ODA)₃]·8H₂O at 293 K.

4.2.2.2 Na₃[Eu(ODA)₃]·8H₂O Excitation Spectra

Figure S 26: Normalised excitation spectra (emission at 614 nm) for Na₃[Eu(ODA)₃]·8H₂O in 2-methyltetrahydrofuran glass at 77 K.

Figure S 27: Normalised excitation spectra (emission at 614 nm) for single crystal Na₃[Eu(ODA)₃]·8H₂O at 293 K.

4.2.2.3 Na₃[Eu(ODA)₃]·8H₂O Luminescence Lifetimes

Figure S 28: Na₃[Eu(ODA)₃]·8H₂O luminescence lifetime in 2-methyltetrahydrofuran glass at 77 K. Fitted using OriginPro's ExpDec1 function.

Figure S 29: Na₃[Eu(ODA)₃]·8H₂O single crystal luminescence lifetime at 293 K. Fitted using OriginPro's ExpDec1 function.

4.2.3 Cs₃[Eu(DPA)₃]·9H₂O Spectra 4.2.3.1 Cs₃[Eu(DPA)₃]·9H₂O Emission Spectra

Figure S 30: Normalised emission spectrum (excitation at 394 nm) for $Cs_3[Eu(DPA)_3] \cdot 9H_2O$ in 2-methyltetrahydrofuran glass at 77 K.

Figure S 31: Normalised emission spectrum (excitation at 394 nm) for single crystal Cs₃[Eu(DPA)₃]·9H₂O at 293 K.

4.2.3.2 Cs₃[Eu(DPA)₃]·9H₂O Excitation Spectra

Figure S 32: Normalised excitation spectra (emission at 614 nm) for $Cs_3[Eu(DPA)_3] \cdot 9H_2O$ in 2-methyltetrahydrofuran glass at 77 K.

Figure S 33: Normalised excitation spectra (emission at 614 nm) for single crystal $Cs_3[Eu(DPA)_3]$ at 293 K.

Figure S 34: Cs₃[Eu(DPA)₃]·9H₂O luminescence lifetime in 2-methyltetrahydrofuran glass at 77 K. Fitted using OriginPro's ExpDec1 function.

Figure S 35: Cs₃[Eu(DPA)₃]·9H₂O single crystal luminescence lifetime at 293 K. Fitted using OriginPro's ExpDec1 function.

4.2.4 Na[Eu(DOTA)H₂O]·4H₂O Spectra 4.2.4.1 Na[Eu(DOTA)H₂O]·4H₂O Emission Spectra

Figure S 36: Normalised emission spectrum (excitation at 394 nm) for Na[Eu(DOTA)H₂O]·4H₂O in 2-methyltetrahydrofuran glass at 77 K.

Figure S 37: Normalised emission spectrum (excitation at 394 nm) for single crystal Na[Eu(DOTA)H₂O]·4H₂O at 293 K.

4.2.5 Na[Eu(DOTA)H₂O]·4H2O Excitation Spectra

Figure S 38: Normalised excitation spectra (emission at 614 nm) for Na[Eu(DOTA)H₂O]·4H₂O in 2-methyltetrahydrofuran glass at 77 K.

Figure S 39: Normalised excitation spectra (emission at 614 nm) for single crystal Na[Eu(DOTA)H₂O]·4H₂O at 293 K.

4.2.5.1 Na[Eu(DOTA)H₂O]·4H₂O Luminescence Lifetimes

Figure S 40: Na[Eu(DOTA)H₂O]·4H₂O luminescence lifetime in 2-methyltetrahydrofuran glass at 77 K. Fitted using OriginPro's ExpDec1 function.

Figure S 41: Na[Eu(DOTA)H₂O]·4H₂O single crystal luminescence lifetime at 293 K. Fitted using OriginPro's ExpDec1 function.

4.2.6 Na[Eu(EDTA)(H₂O)₃]·5H₂O Spectra 4.2.6.1 Na[Eu(EDTA)(H₂O)₃]·5H₂O Emission Spectra

Figure S 42: Normalised emission spectrum (excitation at 394 nm) for Na[Eu(EDTA)(H₂O)₃]·5H₂O in 2-methyltetrahydrofuran glass at 77 K.

Figure S 43: Normalised emission spectrum (excitation at 394 nm) for single crystal Na[Eu(EDTA)(H₂O)₃]·5H₂O at 293 K.

4.2.6.2 Na[Eu(EDTA)(H₂O)₃]·5H₂O Excitation Spectra

Figure S 44: Normalised excitation spectra (emission at 614 nm) for Na[Eu(EDTA)(H₂O)₃]·5H₂O in 2-methyl tetrahydrofuran glass at 77 K.

Figure S 45: Normalised excitation spectra (emission at 614 nm) for single crystal Na[Eu(EDTA)(H₂O)₃]·5H₂O at 293 K.

4.2.6.3 Na[Eu(EDTA)(H₂O)₃]·5H₂O Luminescence Lifetimes

Figure S 46: Na[Eu(EDTA)(H₂O)₃]·5H₂O luminescence lifetime in 2-methyltetrahydrofuran glass at 77 K. Fitted using OriginPro's ExpDec1 function.

Figure S 47: Na[Eu(EDTA)(H₂O)₃]·5H₂O single crystal luminescence lifetime at 293 K. Fitted using OriginPro's ExpDec1 function.

4.3 Spectroscopy Data for Sm³⁺ Compounds

4.3.1 Luminescence Lifetimes for Sm³⁺ Compounds Table S 16: Luminescence lifetimes of the Sm³⁺ complexes for crystals ground to a powder in 2-methyl tetrahydrofuran at 77 K.

Complex	$ au_{obs}$ (µs)	
Na ₃ [Sm(ODA) ₃]·7H ₂ O	35.14	
$Cs_3[Sm(DPA)_3] \cdot 9H_2O$	42.24	
Na[Sm(DOTA)(H ₂ O)]·4H ₂ O	10.88	
$Na[Sm(EDTA)(H_2O)_3] \cdot 5H_2O$	7.63	

4.3.2 Na₃[Sm(ODA)₃]·7H₂O Spectra

4.3.2.1 Na₃[Sm(ODA)₃]·7H₂O Emission Spectra

Figure S 48: Normalised emission (excitation at 463 nm) for single crystal and powder Na₃[Sm(ODA)₃]·7H₂O, at 77 K and 298 K.

4.3.2.2 Na₃[Sm(ODA)₃]·7H₂O Luminescence Lifetime

$$I(\iota) = \sum_{i=1}^{n} A_{i} e^{-\frac{t}{\tau_{i}}}$$

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A1 [Cnts]	377.0	-18.2	+18.2	Fitting
τ1 [ms]	0.03514	-0.00150	+0.00150	Fitting
Bkgr. Dec [Cnts]	14.420	-0.760	+0.760	Fitting

Average Lifetime:

 $\tau_{Av,1}$ =0.03514 ms (intensity weighted) $\tau_{Av,2}$ =0.03514 ms (amplitude weighted)

Figure S 49: Na₃[Sm(ODA)₃]·7H₂O luminescence lifetime in 2-methyltetrahydrofuran at 77 K. Fitted using the PicoQuant FluoFit software.

4.3.3 Cs₃[Sm(DPA)₃]·9H₂O Spectra 4.3.3.1 Cs₃[Sm(DPA)₃]·9H₂O Emission Spectrum

Figure S 50: Normalised emission spectrum (excitation at 401 nm) for Cs₃[Sm(DPA)₃]·9H₂O in 2-methyltetrahydrofuran at 77 K.

Figure S 51: Normalised excitation spectra (emission at 598 nm) for $Cs_3[Sm(DPA)_3] \cdot 9H_2O$ in 2-methyltetrahydrofuran at 77 K.

4.3.3.3 Cs₃[Sm(DPA)₃]·9H₂O Luminescence Lifetime

$$I(t) = \sum_{i=1}^{n} A_i e^{-\frac{t}{\tau_i}}$$

Parameter	Value	Conf. Lower	Conf. upper	Conf. Estimation
A ₁ [Cnts]	581.4	-21.4	+21.4	Fitting
τ1 [ms]	0.04224	-0.00143	+0.00143	Fitting
Bkgr. Dec [Cnts]	35.11	-1.16	+1.16	Fitting

Average Lifetime:

 $\tau_{Av.1}$ =0.04224 ms (intensity weighted) $\tau_{Av.2}$ =0.04224 ms (amplitude weighted)

Figure S 52: Cs₃[Sm(DPA)₃]·9H₂O luminescence lifetime in 2-methyltetrahydrofuran at 77 K. Fitted using the PicoQuant FluoFit software.

4.3.4 Na[Sm(DOTA)H₂O]·4H₂O Spectra 4.3.4.1 Na[Sm(DOTA)H₂O]·4H₂O Emission Spectrum

Figure S 53: Normalised emission spectrum (excitation at 401 nm) for Na[Sm(DOTA)H₂O]·4H₂O in 2-methyltetrahydrofuran at 77 K.

4.3.4.2 Na[Sm(DOTA)H₂O]·4H₂O Excitation Spectrum

Figure S 54: Normalised excitation spectra (emission at 598 nm) for $Na[Sm(DOTA)H_2O] \cdot 4H_2O$ in 2-methyltetrahydrofuran at 77 K.

4.3.4.3 Na[Sm(DOTA)H₂O]·4H₂O Luminescence Lifetime

Average Lifetime:

 $τ_{Av.1}$ =10.876 μs (intensity weighted) $τ_{Av.2}$ =10.876 μs (amplitude weighted)

Figure S 55: Na[Sm(DOTA)H₂O]·4H₂O luminescence lifetime in 2-methyltetrahydrofuran at 77 K. Fitted using the PicoQuant FluoFit software.

4.3.5 Na[Sm(EDTA)(H₂O)₃]·5H₂O Spectra 4.3.5.1 Na[Sm(EDTA)(H₂O)₃]·5H₂O Emission Spectrum

Figure S 56: Normalised emission spectrum (excitation at 401 nm) for Na[Sm(EDTA)(H₂O)₃]·5H₂O in 2-methyltetrahydrofuran at 77 K.

4.3.5.2 Na[Sm(EDTA)(H₂O)₃]·5H₂O Excitation Spectrum

Figure S 57: Normalised excitation spectra (emission at 598 nm) for $Na[Sm(EDTA)(H_2O)_3] \cdot 5H_2O$ in 2-methyltetrahydrofuran at 77 K.

4.3.5.3 Na[Sm(EDTA)(H₂O)₃]·5H₂O Luminescence Lifetime

$$I(t) = \int_{-\infty}^{t} IRF(t') \sum_{i=1}^{n} A_i e^{-\frac{t-t'}{\tau_i}} dt'$$

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	-107035.5	-73.8	+73.8	Fitting
τ1 [µS]	7.62527	-0.00521	+0.00521	Fitting
Bkgr. Dec [Cnts]	9294.89	-6.84	+6.84	Fitting
Bkgr. IRF [Cnts]	-280.064	-0.211	+0.211	Fitting
Shift IRF [µS]	-1.861	-0.420	+0.420	Fitting
A scat [Cnts]	199640	-1720	+1720	Fitting

Average Lifetime:

 $τ_{Av.1}$ =7.62527 μs (intensity weighted) $τ_{Av.2}$ =7.62527 μs (amplitude weighted)

Figure S 58: Na[Sm(EDTA)(H₂O)₃]·5H₂O luminescence lifetime in 2-methyltetrahydrofuran at 77 K. Fitted using the PicoQuant FluoFit software.

5 Deconvolution of the Electronic Energies using Voigt fitting and Boltzmann Population Analysis

5.1 Fits for Na[Sm(DOTA)H₂O]·4H₂O

In the case of Na[Sm(DOTA)(H₂O)]·4H₂O three peaks were observed in both the emission and excitation spectra at 77 K. One of the peaks is observed in both emission and excitation. From this we unambiguously resolve the energy levels in both ${}^{6}\text{H}_{5/2}$ and ${}^{4}\text{G}_{5/2}$ as is seen in Figure S58. The spectra are fitted in Figure S59 and S60 and the fit values provided in Table S17 and SX18.

Figure S59: Results for Na[Sm(DOTA)H₂O]·4H₂O. Left: Normalised powdered emission (excitation at 463 nm) recorded at 77 K normalised to the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band. Normalised powdered excitation (emission scan from 520 nm to 580 nm) recorded at 77 K normalised to the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band. The spectra were normalised to the transition from the lowest m_J state in the ground state multiplet (${}^{6}H_{5/2}$) to the lowest m_J state in the first emitting state multiplet (${}^{4}G_{5/2}$). The black and pink labels indicate the assumed transitions from the electronic energy levels. Right: Resolved energy levels in ${}^{6}H_{5/2}$ and ${}^{4}G_{5/2}$.

Figure S 60: Voight fitting of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band in the Na[Sm(DOTA)H₂O]·4H₂O emission spectra at 77 K.

		Value	Standard Error	t-Value	Prob> t	Dependency
	y0	0	0			0
	хс	17748.75666	0.15021	118160.80277	0	0.00322
Deptd (Nermelized Intensity)	A	26.6606	0.36211	73.6247	3.90728E-94	0.33884
Peak (Normalised Intensity)	wG*	22.5977	0.35479	63.69243	1.72542E-87	0.38306
	wL	5.32291E-16	0.07638	6.969E-15	1	2.02607E-4
	FWHM	22.5977	0.35479			
	y0	0	0			0
	xc	17570.08898	0.38728	45368.48286	0	0.02286
Deels2(Nerroelized lateraits)	A	26.59476	0.75356	35.29225	4.04868E-61	0.64695
Peak2(Normalised Intensity)	wG*	22.5977	0.35479	63.69243	1.72542E-87	0.38306
	wL	19.46843	1.31199	14.83883	7.99864E-28	0.65818
	FWHM	34.75431	0.89838			
	y0	0	0			0
	хс	17496.66776	2.39568	7303.42468	0	0.01704
Deal/2/Nerroeliand Interacity)	A	3.04238	0.66583	4.56933	1.30636E-5	0.66425
Peaks(Normalised Intensity)	wG*	22.5977	0.35479	63.69243	1.72542E-87	0.38306
	wL	11.59985	8.01491	1.44728	0.15071	0.64768
	FWHM	29.43489	5.15851			

Reduced Chi-sqr = 6.19485291645E-4 COD(R⁴2) = 0.98874932624925 Iterations Performed = 5 Total Iterations in Session = 25

Table S 17: Voight fit parameters of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band in the Na[Sm(DOTA)H₂O]·4H₂O emission spectra at 77 K.

Figure S 61: Voight fitting of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Na[Sm(DOTA)H₂O]·4H₂O excitation spectra at 77 K.

		Value	Standard Error	t-Value	Prob> t	Dependency
	y0	0	0			0
	хс	18073.18816	3.66763	4927.75277	4.89487E-170	0.83707
Deald (Nermelized Intensity)	A	12.03993	3.14974	3.82252	3.16424E-4	0.97733
Peak (Normalised Intensity)	wG*	34.60451	1.21327	28.52158	1.35806E-36	0.90207
	wL	34.67883	10.20331	3.39878	0.00121	0.91602
	FWHM	56.72255	7.35749			
	y0	0	0			0
	хс	18021.247	1.53554	11736.1328	1.02155E-192	0.86962
Deal/2/Nermeliand Interneth)	A	40.26348	3.24597	12.40414	3.31395E-18	0.97442
Peak2(Normalised Intensity)	wG*	34.60451	1.21327	28.52158	1.35806E-36	0.90207
	wL	44.79979	3.38593	13.23115	1.9128E-19	0.89114
	FWHM	64.35038	2.72712			
	y0	0	0			0
	xc	17776.97088	0.17693	100476.07014	6.2181E-249	0.00116
Deels2(Nerroelized latereits)	A	48.21849	0.71166	67.75513	2.14885E-58	0.76874
Peak3(Normalised Intensity)	wG*	34.60451	1.21327	28.52158	1.35806E-36	0.90207
	wL	9.8168	1.49435	6.56927	1.3515E-8	0.94361
	FWHM	40.15287	0.50983			

Reduced Chi-sqr = 2.02168298544E-4 COD(R^2) = 0.99673235705564 Iterations Performed = 4 Total Iterations in Session = 34

Table S 18: Voight fit parameters of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Na[Sm(DOTA)H₂O]·4H₂O excitation spectra at 77 K.

5.1.1 Boltzmann Population Calculations for Na[Sm(EDTA)(H₂O)₃]·5H₂O

For Na[Sm(EDTA)(H₂O)₃]·5H₂O four peaks were observed in both the emission and excitation spectra at 77 K. Similar as was found for the Na[Sm(DOTA)H₂O]·4H₂O sample, the three energy levels in levels in both 6 H_{5/2} and 4 G_{5/2} are unambiguously resolved as is seen in Figure S61. Different to the DOTA complex, the crystal field splitting is found to be slightly lower and thermally populated transitions are observed from 1 and 1'. Only 1' \rightarrow 0 and 1 \rightarrow 0 can be seen as the other three lines convoluted with the primary transitions from 0 and 0'. The spectra are fitted in Figure S62 and S63 and the fit values provided in Table S19 and Table S20.

Figure S 62: Results for for Na[Sm(EDTA)(H₂O)₃]·5H₂O. Left: Normalised powdered emission (excitation at 463 nm) recorded at 77 K normalised to the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band. Normalised powdered excitation (emission scan from 520 nm to 580 nm) recorded at 77 K normalised to the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band. The spectra were normalised to the transition from the lowest m_J state in the ground state multiplet (${}^{6}H_{5/2}$) to the lowest m_J state in the first emitting state multiplet (${}^{4}G_{5/2}$). Orange labels indicate the numbering of the shared peaks. Right: Resolved energy levels in ${}^{6}H_{5/2}$ and ${}^{4}G_{5/2}$.

5.2 Boltzmann Population Analysis for Na[Sm(EDTA)(H₂O)₃]·5H₂O

5.2.1 Voight Fitting for Na[Sm(EDTA)(H₂O)₃]·5H₂O

The spectra are fitted such that the spacing between the shared peaks are the same for emission and excitation, but only shifted by a Stokes shift, which in this case was found to be 12.6 cm⁻¹. The excitation spectrum was fitted first, and the emission spectrum fitted afterwards with the peak position fixed. The spectra were fitted with Voight functions with shared Gaussian width but separate Lorentzian widths for each peak.

Figure S 63: Voight fitting of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band in the Na[Sm(EDTA)(H₂O)₃]·5H₂O emission spectra at 77 K.

		Value	Standard Error	t-Value	Prob> t	Dependency
	y0	0	0			0
	XC	17925	0			0
Dealed (Newsolized Interaits)	A	5.28904	36.3944	0.14533	0.88448	0.62034
Feak (Normalised Intensity)	wG*	18.58295	34.24125	0.54271	0.58742	0.90558
	wL	57.58969	592.17534	0.09725	0.92254	0.59734
	FWHM	63.4018	547.65505			
	y0	0	0			0
	xc	17819	0			0
Reak?(Normalized Intensity)	A	30.10155	23.31782	1.29092	0.19695	0.78901
Peakz(Normalised Intensity)	wG*	18.58295	34.24125	0.54271	0.58742	0.90558
	wL	6.98775	41.68065	0.16765	0.86688	0.94122
	FWHM	22.60102	14.54687			
	y0	0	0			0
	XC	17709	0			0
Reak?(Normalized Intensity)	A	31.03679	31.80021	0.97599	0.32925	0.80944
Feaks(Normalised Intensity)	wG*	18.58295	34.24125	0.54271	0.58742	0.90558
	wL	18.83968	45.17743	0.41702	0.67673	0.83898
	FWHM	30.61931	26.3484			
	y0	0	0			0
	xc	17629.06173	151.42211	116.4233	0	0.21725
Reak/(Normalized Intensity)	A	9.82237	49.31771	0.19917	0.84216	0.75336
reak+(normalised intensity)	wG*	18.58295	34.24125	0.54271	0.58742	0.90558
	wL	71.96948	484.11748	0.14866	0.88184	0.69156
	FWHM	76.77931	458.29441			

Reduced Chi-sqr = 0.63908162107 COD(R^2) = -0.13332200411659 Iterations Performed = 1

Total Iterations in Session = 4

Table S 19: Voight fit parameters of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band in the Na[Sm(EDTA)(H₂O)₃]·5H₂O emission spectra at 77 K.

Figure S 64: Voight fitting of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Na[Sm(EDTA)(H₂O)₃]·5H₂O excitation spectra at 77 K.

		Value	Standard Error	t-Value	Prob> t	Dependency
	y0	0	0			0
	хс	18058.95619	4.51514	3999.64561	1.35355E-79	0.13301
D I d d I was to d I do to to	A	19.29867	2.87632	6.70949	3.33958E-7	0.7363
Peak (Normalised Intensity)	wG*	39.15061	5.16585	7.57874	3.75247E-8	0.95289
	wL	61.11802	15.30037	3.99454	4.49001E-4	0.69697
	FWHM	81.06646	12.49706			
	y0	0	0		12.2	0
	хс	17937.89357	1.38214	12978.34559	1.67986E-93	0.18403
Peak2(Normalised Intensity)	A	33.59118	2.59455	12.94681	4.28225E-13	0.808
	wG*	39.15061	5.16585	7.57874	3.75247E-8	0.95289
	wL	29.47274	6.50108	4.53352	1.06657E-4	0.84906
	FWHM	57.24007	4.19472			
	y0	0	0			0
	хс	17832.20906	0.54785	32549.41276	2.15669E-104	0.05237
Pool/2(Normalized Intensity)	A	54.24611	2.85607	18.99328	3.75688E-17	0.88678
Peaks(Normalised Intensity)	wG*	39.15061	5.16585	7.57874	3.75247E-8	0.95289
	wL	15.2651	6.54289	2.33308	0.02734	0.97332
	FWHM	47.9507	1.76383			
	y0	0	0			0
	xc	17721.88204	6.58753	2690.21792	6.42895E-75	0.06125
Roak4(Normalized Intensity)	A	3.98461	1.78785	2.22872	0.03435	0.74671
reak4(normalised intensity)	wG*	39.15061	5.16585	7.57874	3.75247E-8	0.95289
	wL	11.37161	22.34855	0.50883	0.615	0.66943
Reduced Chi-sor - 6 19931155015.4		45 58596	15 22849			

Reduced Chi-sqr = 6.1883115501E-4 COD(R^2) = 0.99173988409474 Iterations Performed = 1 Total Iterations in Session = 34

Table S 20: Voight fit parameters of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Na[Sm(EDTA)(H₂O)₃]·5H₂O excitation spectra at 77 K.

5.3 Boltzmann Population Analysis for Na₃[Sm(ODA)₃]·7H₂O

For Na₃[Sm(ODA)₃]·7H₂O the spectra recorded at 77 K are not as easily interpreted as for the Na[Sm(EDTA)(H₂O)₃]·5H₂O and Na[Sm(DOTA)H₂O]·4H₂O samples. The crystal field splitting is smaller and therefore a larger contribution of thermally populations are found in the spectra. To arrive at the results seen in Figure S 64 we use a Boltzmann population approach.

Figure S 65: Result for for Na3[Sm(ODA)3]·7H2O. Left: Normalised powdered emission (excitation at 463 nm) recorded at 77 K normalised to the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band. Normalised powdered excitation (emission scan from 520 nm to 580 nm) recorded at 77 K normalised to the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band. The spectra were normalised to the transition from the lowest m_J state in the ground state multiplet (${}^{6}H_{5/2}$) to the lowest m_J state in the first emitting state multiplet (${}^{4}G_{5/2}$). Right: Resolved energy levels in ${}^{6}H_{5/2}$ and ${}^{4}G_{5/2}$.

In the thermal analysis it is exploited only two lines are observed in the emission spectra. These are fitted and the results are used as initial fit parameters for the excitation spectrum. In the emission spectra the splitting between the two observed states in ${}^{6}\text{H}_{5/2}$ are found to be 90 cm⁻¹ therefore the excitation spectrum is fitted with a set of double Voigt functions with a shared splitting parameter initialised at 90 cm⁻¹. The fit of the emission spectrum and the fit of the excitation spectrum is shown in Figure S65 and 66. Based on these results the thermal analysis is performed as shown in the main text.

Figure S 66: Voight fitting of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Na₃[Sm(ODA)₃]·7H₂O emission spectra at 77 K.

		Value	Standard Error	t-Value	Prob> t	Dependency
	y0	0	0			0
	хс	17805.932716	0.468734	37987.286154	1.360048E-254	0.06774
	A	25.692759	0.835914	30.736111	5.396064E-42	0.725065
Peak1(77K emission)	wG*	38.087069	1.95439	19.487961	9.145427E-30	0.936522
	wL	8.695158	2.619667	3.319184	0.001444	0.880229
	FWHM	42.949881	1.241136			
	ymax	0.5178	0.010405			
	y0	0	0			0
	хс	17716.139483	0.254799	69529.835501	8.681761E-273	0.053914
	A	63.046158	1.136488	55.474535	5.636831E-59	0.806294
Peak2(77K emission)	wG*	38.087069	1.95439	19.487961	9.145427E-30	0.936522
	wL	18.886249	2.277336	8.293133	5.816601E-12	0.952409
	FWHM	49.184745	0.801029			
	ymax	1.031413	0.010485			

Table S 21: Voight fit parameters of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band in the Na₃[Sm(ODA)3]·7H₂O emission spectra at 77 K.

Figure S 67: Voight fitting of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Na₃[Sm(ODA)₃]·7H₂O excitation spectra at 77 K with two sets of two Voigt functions fitted with a shared parameter.

		Value Standard Error		t-Value	Prob> t	Dependency
	y0*	0	0			0
	Delta*	-90.393957	29.7666	-3.036758	0.004429	0.554872
	wG*	47.957257	167.580491	0.286174	0.776385	0.991204
	xc1	17834.766453	126.825333	140.624637	6.119653E-51	0.983455
Peak I (77K excitation)	A1	69.360019	244.416172	0.283778	0.778206	0.996205
	wL1	16.990711	285.09868	0.059596	0.952807	0.996967
	A2	21.312751	62.267396	0.342278	0.734132	0.954204
	wL2*	7.891567	220.973561	0.035713	0.971709	0.967088
	y0	0	0			0
	Delta*	-90.393957	29.7666	-3.036758	0.004429	0.554872
	wG*	47.957257	167.580491	0.286174	0.776385	0.991204
Deek2/77K evoltation)	xc1	18000.403651	9733.864246	1.849256	0.072645	0.999701
Peakz(//K excitation)	A1	14.182178	12113.235881	0.001171	0.999072	0.999995
	wL1	100	40883.112323	0.002446	0.998062	0.999943
	A2	4.963538	1023.225032	0.004851	0.996156	0.999741
	wL2*	25.325132	3067.92647	0.008255	0.993459	0.992476
	у0	0	0			0
	Delta*	-90.393957	29.7666	-3.036758	0.004429	0.554872
Peak3(77K excitation)	wG*	47.957257	167.580491	0.286174	0.776385	0.991204
· · · · · ·	xc1	18050	334.980323	53.883762	5.099572E-36	0.962398
	A1	40.771702	6850.466838	0.005952	0.995284	0.999985
	wL1	100	5883.326629	0.016997	0.986533	0.999659

	A2	12.296676	6554.984144	0.001876	0.998514	0.999984		
	wL2*	100	18448.288659	0.005421	0.995705	0.999629		
Table S 22: Voight fit parameters of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Na ₃ [Sm(ODA)3]·7H ₂ O excitation								
spectra at 77 K.								

The calculations for the thermal analysis on the two levels in ${}^{6}\text{H}_{5/2}$ are provided here:

Relative transition probabilities

$$A_{0' \to 0}^{rel} = \frac{I_{0' \to 0}^{rel}}{\sum I_{0' \to i}^{rel}} = \frac{38.08}{101.126}$$
$$A_{0' \to 1}^{rel} = \frac{I_{0' \to 1}^{rel}}{\sum I_{0' \to i}^{rel}} = \frac{63.05}{101.126}$$

$$B_{0 \to 0'}^{rel} = \frac{I_{0 \to 0'}^{rel}}{\sum I_{0 \to i'}^{rel}} = \frac{43.08}{113.6}$$
$$B_{0 \to 1'}^{rel} = \frac{I_{0 \to 1'}^{rel}}{\sum I_{0 \to i'}^{rel}} = \frac{63.05}{113.6}$$

Relative thermal populations as observed from relative transition probabilities

Using these values we calculated the observed thermal populations:

$$P_{i_{obs}}^{6H5/2} = \frac{I_{i \to j}^{rel}}{N \cdot B_{i \leftarrow j}^{rel}}, N = \sum_{j} \frac{I_{i \to j}^{rel}}{B_{i \leftarrow j}^{rel}}$$
$$P_{0_{obs}}^{6H5/2} = 0.730$$
$$P_{1_{obs}}^{6H5/2} = 0.269$$

Relative thermal populations as calculated based on the Boltzmann distrubution

The two energy levels are separated by 90 cm⁻¹, using the Boltzmann distribution we find:

$$P_{i_{calc}}^{system} = \frac{e^{\frac{-E_i}{k_B T}}}{\sum_i^{system} e^{\frac{-E_i}{k_B T}}}$$
$$P_{0_{calc}}^{6H5/2} = 0.843$$
$$P_{1_{calc}}^{6H5/2} = 0.156$$

S91

Evaluating interpretations with the Loss function

Three interpretations can be done with the knowledge that 3 energy levels are present in ${}^{6}\text{H}_{5/2}$: Only two levels are observed, (0,1), the first level is degenerate, (0,0,1), the second level is degenerate, (0,1,1). These interpretations are evaluated using the loss function:

$$L = \sum_{i} 100 \cdot \frac{\left(P_{i_{obs}}^{6H5/2} - P_{i_{calc}}^{6H5/2}\right)^2}{N}$$

The results are compiled in Figure S67. The Loss values found are unambiguously in favour of the (0,1,1) splitting.

Figure S 68: Thermal populations of the electronic states in ⁶H_{5/2} for Na₃[Sm(ODA)₃]·7H₂O.

5.4 Boltzmann Population Analysis for Cs₃[Sm(DPA)₃]·9H₂O

For $Cs_3[Sm(DPA)_3] \cdot 9H_2O$ the spectra recorded at 77 K are following the same patterns as for the ODA complex and the spectra are analysed with the same approach. The final results obtained are shown in Figure S68.

Figure S 69: Left: Normalised powdered emission (excitation at 463 nm) recorded at 77 K normalised to the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band. Normalised powdered excitation (emission scan from 520 nm to 580 nm) recorded at 77 K normalised to the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band. The spectra were normalised to the transition from the lowest m_J state in the ground state multiplet (${}^{6}H_{5/2}$) to the lowest m_J state in the first emitting state multiplet (${}^{4}G_{5/2}$). Orange labels indicate the numbering of the shared peaks. Right: Resolved energy levels in ${}^{6}H_{5/2}$ and ${}^{4}G_{5/2}$.

However, for this sample, the crystal field splitting in the ${}^{4}G_{5/2}$ state allows for a larger contribution of thermal populated emission. This further complicates the spectra. In the emission spectrum all states of ${}^{6}H_{5/2}$ are resolved, but these cannot be resolved in the excitation spectrum as the spectral resolution is slightly lower. See figure 69 and S70 where the fits are provided and Table S23 and S24 where the fit parameters are provided.

Therefore, the areas from the emission is summed and the centre of emission is chosen to be 75, the average of 60 and 90. Using this interpretation, the splitting of the ${}^{6}\text{H}_{5/2}$ is evaluated with the loss function similar as was done for the Na₃[Sm(ODA)₃]·7H₂O sample. The results are visualised in Figure S71. Similarly, the (1) state is found to be degenerate, matching the already expected result obtained for the fitting of the emission spectrum in Figure S69.

Figure S 70: Voight fitting of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Cs₃[Sm(DPA)₃]·9H₂O emission spectra at 77 K.

			- -			
		Value	Standard Error	t-Value	Prob> t	Dependency
	у0	0	0			0
	хс	17808.807523	1.466287	12145.516655	1.296234E-193	0.022352
	A	3.640053	0.697021	5.222301	2.331239E-6	0.677047
Peak1(B)	wG*	19.234844	1.951762	9.855116	3.703431E-14	0.929935
	wL	4.206583	5.101737	0.824539	0.412899	0.676362
	FWHM	21.583058	3.158188			
	ymax	0.14643	0.018711			
	у0	0	0			0
	хс	17751.160081	0.351635	50481.792535	6.749193E-231	0.063616
	A	22.639247	0.902559	25.083412	1.677888E-33	0.729482
Peak2(B)	wG*	19.234844	1.951762	9.855116	3.703431E-14	0.929935
	wL	10.823412	2.127991	5.086212	3.854374E-6	0.897485
	FWHM	25.669684	1.109348			
	ymax	0.699046	0.018144			

	у0	0	0			0
	ХС	17690.865645	0.432816	40873.83215	2.281773E-225	0.649894
	A	34.753511	3.02374	11.493552	8.469125E-17	0.972811
Peak3(B)	wG*	19.234844	1.951762	9.855116	3.703431E-14	0.929935
	wL	13.688745	2.808595	4.873876	8.370152E-6	0.966642
	FWHM	27.580433	1.243806			
	ymax	0.969496	0.03352			
	y0	0	0			0
	хс	17657.032468	3.547168	4977.78366	2.665885E-170	0.838483
	A	16.365799	3.486003	4.694718	1.595119E-5	0.956327
Peak4(B)	wG*	19.234844	1.951762	9.855116	3.703431E-14	0.929935
	wL	38.370137	7.672364	5.001084	5.267104E-6	0.86049
	FWHM	46.759053	6.578574			
	ymax	0.237487	0.025174			

Table S 23: Voight fit parameters of the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ band in the Cs₃[Sm(DPA)₃]·9H₂O emission spectra at 77 K.

Figure S 71: Voight fitting of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Cs₃[Sm(DPA)₃]·9H₂O excitation spectra at 77 K with two sets of two Voigt functions fitted with a shared parameter.

	Value	Standard Error	t-Value	Prob> t	Dependency
у0*	0	0			0
Delta*	-58.780459	1.326807	-44.302187	3.405765E-41	0.890433
wG*	44.756484	3.81032	11.746121	7.39535E-16	0.990895
xc1	17779.373352	19.343302	919.148838	1.682629E-105	0.999074
A1	29.744507	8.291096	3.587524	7.692259E-4	0.998399
wL1	8.687704E-16	8.901622E7	9.759686E-24	1	
A2	31.313266	5.914108	5.294672	2.795433E-6	0.99516
wL2*	17.034953	4.13481	4.119888	1.454724E-4	0.952176
у0	0	0			0
Delta*	-58.780459	1.326807	-44.302187	3.405765E-41	0.890433
wG*	44.756484	3.81032	11.746121	7.39535E-16	0.990895
xc1	17842.45976	11.364862	1569.967167	6.525571E-117	0.996458
A1	35.218887	19.324358	1.822513	0.074482	0.999603
	y0* Delta* wG* xc1 A1 wL1 A2 wL2* y0 Delta* wG* xc1 A1	Value y0* 0 Delta* -58.780459 wG* 44.756484 xc1 17779.373352 A1 29.744507 wL1 8.687704E-16 A2 31.313266 wL2* 17.034953 y0 0 Delta* -58.780459 wG* 44.756484 xc1 17842.45976 A1 35.218887	Value Standard Error y0* 0 0 Delta* -58.780459 1.326807 wG* 44.756484 3.81032 xc1 17779.373352 19.343302 A1 29.744507 8.291096 wL1 8.687704E-16 8.901622E7 A2 31.313266 5.914108 wL2* 17.034953 4.13481 y0 0 0 Delta* -58.780459 1.326807 wL2* 17.034953 4.13481 y0 0 0 Delta* -58.780459 1.326807 wG* 44.756484 3.81032 xc1 17842.45976 11.364862 A1 35.218887 19.324358	ValueStandard Errort-Valuey0*00Delta*-58.7804591.326807-44.302187wG*44.7564843.8103211.746121xc117779.37335219.343302919.148838A129.7445078.2910963.587524wL18.687704E-168.901622E79.759686E-24A231.3132665.9141085.294672wL2*17.0349534.134814.119888y000Delta*-58.7804591.326807-44.302187wG*44.7564843.8103211.746121xc117842.4597611.3648621569.967167A135.21888719.3243581.822513	Value Standard Error t-Value Prob>[t] y0* 0 0

	wl 1	10 253762	14 654020	0 600722	0 497400	0 007927
	VV L I	10.255702	14.034039	0.099723	0.407409	0.997027
	A2	15.80605	17.565622	0.899829	0.372613	0.999596
	wL2*	4.285784	33.029872	0.129755	0.897292	0.998498
	у0	0	0			0
	Delta*	-58.780459	1.326807	-44.302187	3.405765E-41	0.890433
	wG*	44.756484	3.81032	11.746121	7.39535E-16	0.990895
Peak3(C)	xc1	17990	7.488532	2402.339879	5.529525E-126	0.966395
	A1	27.930153	6.589692	4.238461	9.911423E-5	0.990098
	wL1	74.65384	20.978402	3.558605	8.395423E-4	0.978381
	A2	27.06199	8.752826	3.0918	0.003279	0.994075
	wL2*	78.490868	51.160237	1.534216	0.131409	0.995551

Table S 24: Voight fit parameters of the ${}^{4}G_{5/2} \leftarrow {}^{6}H_{5/2}$ band in the Cs₃[Sm(DPA)₃]·9H₂O excitation spectra at 77 K.

Figure S 72: Thermal populations of the electronic states in ${}^{6}H_{5/2}$ for Cs₃[Sm(DPA)₃]·9H₂O.

5.5 Electronic Energy Levels for the Sm³⁺ Compounds

The electronic energy levels determined from the Boltzmann population analysis of the excitation and emission spectra.

	Na3[Sm(ODA)3]·7H2O	Cs ₃ [Sm(DPA) ₃]·9H ₂ O	Na[Sm(DOTA)(H2O)]·4H2O	Na[Sm(EDTA)(H ₂ O) ₃]·5H ₂ O
⁶ H _{5/2}	0	0	0	0
	2x90	2x59	244	110
	-	-	296	202
⁴ G _{5/2}	17834	17779	17749	17832
	18000	17842	17927	17940
	18050	18013	18001	18054

Table S 25: Electronic energy levels (cm⁻¹) for the Sm3+ compounds determined from the spectra.

6 References

- 1 Brayshaw, P. A. *et al.* Synthetic, Structural, and Spectroscopic Studies on Solids Containing Tris(dipicolinato) Rare Earth Anions and Transition or Main Group Metal Cations. *Inorganic Chemistry* **34**, 2068-2076, doi:10.1021/ic00112a019 (1995).
- 2 Thomsen, M. S., Anker, A. S., Kacenauskaite, L. & Sørensen, T. J. We Are Never Ever Getting (back to) Ideal Symmetry: Structure and Luminescence in a Ten-Coordinated Europium (III) Sulfate Crystal. (2022).