Supporting Information

Tunable Benzamidinate Zinc Complexes: Coordination Modes and Catalytic Activity in the Ring-Opening Polymerization of L-lactide

Chen-Chieh Chang,^a Ming-Tsz Chen,^{b,*} Tzu-Lun Huang^a and Chi-Tien Chen^{a,c,*}

- a. Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC.
- ^{b.} Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan, ROC.
- ^{c.} *i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan, ROC.*

*E-mail: mschen@pu.edu.tw (M.-T. Chen); ctchen@dragon.nchu.edu.tw (C.-T. Chen)

Table of Contents:

1.	Crystal structures data	S2
2.	Spectra of ligand precursors L1a-L1b and complexes 1-7	S3
3.	HSQC and DOSY spectra of complex 6	S11
4.	¹ H and ¹³ C{ ¹ H} NMR spectra of PLA-50 catalyzed by 7 in toluene at 25°C	S12
5.	¹ H NMR spectrum of PLA-50 catalyzed by 2 /BnOH in toluene at 50°C	S13
6.	¹ H NMR spectrum of PLA-50 catalyzed by 7/BnOH in toluene at 25°C	S13
7.	¹ H NMR study of the Mechanism in the ROP of L-lactide	S14
8.	MALDI-TOF mass analysis of prepared PLAs	S16

Crystal structure data

t	1	2	3	4	7
Formula	$C_{38}H_{48}N_4Zn_2$	C ₃₆ H ₄₄ N ₄ O ₂ Zn ₂	C ₃₈ H ₅₀ N ₆ Zn ₂	C ₆₈ H ₇₆ N ₈ Zn ₂	C ₃₈ H ₃₂ N ₆ Zn
Fw	691.54	695.49	721.58	1136.11	638.07
Т, К	100(2)	100(2)	100(2)	100(2)	100(2)
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	P-1	C_2/c	<i>P</i> 2(1)/n	C_2/c	P_{bca}
a, Å	9.4824(4)	12.7899(4)	8.4604(2)	14.8451(4)	13.3353(3)
b, Å	10.0818(5)	12.0267(3)	9.6640(2)	20.7782(5)	18.1750(4)
<i>c</i> , Å	10.7058(4)	22.7927(6)	22.0213(5)	20.2976(5)	26.2092(6)
a°	103.486(4)	90	90	90	90
β°	104.402(4)	92.379(2)	98.548(2)	103.280(3)	90
γ°	109.408(4)	90	90	90	90
$V, Å^3$	877.31(7)	3502.96(17)	1780.49(7)	6093.5(3)	6352.3(2)
Z	1	4	2	4	8
$ ho_{ m calc},{ m Mg}/{ m m}^3$	1.309	1.319	1.346	1.238	1.334
μ(Mo Kα), mm ⁻¹	1.398	1.405	1.382	0.834	0.810
Reflections collected	7035	15350	13549	15464	36959
No. of parameters	199	199	221	352	406
Indep. reflns	3973	4300	4231	7071	7946
$(R_{\rm int})$	(0.0146)	(0.0237)	(0.0171)	(0.0391)	(0.0235)
Final R indices	0.0241,	0.0274,	0.0338,	0.0455,	0.0276,
R_1^a , wR_2^a	0.0738	0.0698	0.1230	0.0699	0.0738
R indices (all	0.0264,	0.0379,	0.0414,	0.0854,	0.0433,
data)	0.0748	0.0716	0.1267	0.0731	0.0779
GoF ^b	1.040	1.017	1.024	1.030	1.034

Table S1. Crystallographic data and refinement details for complexes 1-4 and 7

 ${}^{\alpha} P_{I} = \left[\Sigma(|\Phi_{0}| - |\Phi_{\chi}|] / \Sigma |\Phi_{0}|]; \ \omega P_{2} = \left[\Sigma \omega(\Phi_{0}^{2} - \Phi_{\chi}^{2})^{2} / \Sigma \omega(\Phi_{0}^{2})^{2} \right]^{1/2}, \ \omega = 0.10.$ ${}^{b} \text{ GoF} = \left[\Sigma w(F_{0}^{2} - F_{c}^{2})^{2} / (N_{\text{rflns}} - N_{\text{params}}) \right]^{1/2}$

Spectra of ligand precursors L1a-L1b

Spectra of complexes 1-7 ${}^{1}H$ NMR of complex 1 in C_6D_6 ${}^{2nEt-Ph-tBu-H1}_{2nEt(Ph-tBu)}$

 $^{13}C\{^{1}H\}$ NMR of complex 1 in $C_{6}D_{6}$

00	180) 160	140	120	100	80	60	40	20	0	-20

${}^{1}\underset{{}^{Zn-Ph-1Bu2-H1}}{H} NMR of complex 4 in C_6D_6$

 $^{13}C\{^{1}H\}$ NMR of complex 4 in $C_{6}D_{6}$

¹H NMR of complex 7 in CDCl₃

 ${}^{13}C_{\text{Zn-Ph-Py2-C13}}{}^{11}R_{\text{Zn-Ph-Py2-C13}}$ NMR of complex 7 in CDCl₃

Figure S2. The ¹H DOSY NMR spectrum of complex 6 obtained at 25° C in C₆D₆.

Figure S3. The ¹H NMR spectrum (CDCl₃) of PLA-50 catalyzed by 7 in toluene at 25°C.

PLA-without BnOH.7.fid PLA-without BnOH-13C

Figure S4. The ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃) of PLA-50 catalyzed by 7 in toluene at 25°C.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2011

Figure S5. The ¹H NMR spectrum (CDCl₃) of PLA-50 catalyzed by 2/BnOH in toluene at 50°C.

Figure S6. The ¹H NMR spectrum (CDCl₃) of PLA-50 catalyzed by 7/BnOH in toluene at 25°C.

¹H NMR study of the Mechanism in the ROP of L-lactide

*** In a typical experiment, a J. Young NMR tube was charged with a solution of complex (0.0125 mmol for 1; 0.025 mmol for 7), benzyl alcohol (0.025 mmol, 2.6 μ L), and L-lactide (1.25 mmol, 0.18 g) in 0.8 mL of d_8 -toluene. The tube was then transferred to the spectrometer, and ¹H NMR spectra were recorded at the reaction temperature at different time. The internal standard was referenced to d_8 -toluene (2.35 ppm).

For complex 1

Figure S7. ¹H NMR spectra of complex 1/BnOH/L-LA at different time at 50°C in d_8 -toluene (#benzyl alcohol; \star activated L-lactide).

Figure S8. ¹H NMR spectra of complex 7/BnOH/L-LA at different time at 25°C in d_8 -toluene (*ligand precursor L1d; #benzyl alcohol; \star activated L-lactide).

Figure S9. (a)-(b) MALDI-TOF spectrum of PLA initiated by L-LA/complex **2**/BnOH (Table 2, entry 11).

Figure S10. (a)-(b) MALDI-TOF spectrum of PLA initiated by L-LA/complex 7/BnOH (Table 2, entry 1).