Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

- Supporting Information -

Towards Structurally Versatile Mesoionic N-Heterocyclic Olefin Ligands and their Coordination to Palladium, Gold, and Boron Hydride

Tisa Ževart,[†] Balazs Pinter,^{‡,§,#} Matic Lozinšek,[⊥] Damijana Urankar,[†] Ross D. Jansen-van Vuuren,[†] and Janez Košmrlj^{†,*}

[†]Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia

[‡]The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968

[§]Current affiliation: European Research Council Executive Agency

¹Jožef Stefan Institute, Jamova cesta 39, SI 1000 Ljubljana, Slovenia

TABLE OF CONTENTS

1. Figures S1–S6	S4
Figure S1	S4
Figure S2	S4
Figure S3	S4
Figure S4	S5
Figure S5	S5
Figure S6	S5
2. Single-crystal X-ray diffraction	S6
Table S1	S7
Figure S7	S8
Table S2	S8
Figure S8	S9
Figure S9	S9
Table S3	S10
Figure S10	S10
3. Experimental section	S11
Table S4	S20
Table S5	S20
4. References	S21
5. Copies of NMR spectra	S22
Figure S11. ¹ H NMR spectrum of 1a	S22
Figure S12. ¹³ C{ ¹ H} NMR spectrum of 1a	S22

[#] Disclaimer: The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the ERCEA and the European Commission.

Figure S13.	¹ H NMR spectrum of 1b	S23
Figure S14.	¹³ C{ ¹ H} NMR spectrum of 1b	S23
Figure S15.	¹ H NMR spectrum of 1c	S24
Figure S16.	¹³ C{ ¹ H} NMR spectrum of 1c	S24
Figure S17.	¹ H NMR spectrum of 1d	S25
Figure S18.	¹³ C{ ¹ H} NMR spectrum of 1d	S25
Figure S19.	¹ H NMR spectrum of 1e	S26
Figure S20.	¹³ C{ ¹ H} NMR spectrum of 1e	S26
Figure S21.	¹ H NMR spectrum of 1f	S27
Figure S22.	¹³ C{ ¹ H} NMR spectrum of 1f	S27
Figure S23.	¹ H NMR spectrum of 1g	S28
Figure S24.	$^{13}C{^{1}H}$ NMR spectrum of 1g	S28
Figure S25.	¹ H NMR spectrum of 1h	S29
Figure S26.	¹³ C{ ¹ H} NMR spectrum of 1h	S29
Figure S27.	³¹ P{ ¹ H} NMR spectrum of 1h	S30
Figure S28.	¹ H NMR spectrum of 1 j	S30
Figure S29.	$^{13}C{^{1}H}$ NMR spectrum of 1j	S31
Figure S30.	$^{31}P\{^{1}H\}$ NMR spectrum of 1j	S31
Figure S31.	¹ H NMR spectrum of 7a	S32
Figure S32.	$^{13}C{^{1}H}$ NMR spectrum of 7a	S32
Figure S33.	¹ H NMR spectrum of 7b	S33
Figure S34.	$^{13}C{^{1}H}$ NMR spectrum of 7b	S33
Figure S35.	¹ H NMR spectrum of 7c	S34
Figure S36.	$^{13}C{^{1}H}$ NMR spectrum of 7c	S34
Figure S37.	¹ H NMR spectrum of 7d	S35
Figure S38.	$^{13}C{^{1}H}$ NMR spectrum of 7d	S35
Figure S39.	¹ H NMR spectrum of 7e	S36
Figure S40.	$^{13}C{^{1}H}$ NMR spectrum of 7e	S36
Figure S41.	¹ H NMR spectrum of 7f	S37
Figure S42.	$^{13}C{^{1}H}$ NMR spectrum of 7f	S37
Figure S43.	¹ H NMR spectrum of 7 g	S38
Figure S44.	$^{13}C{^{1}H}$ NMR spectrum of 7 g	S38
Figure S45.	¹ H NMR spectrum of 8 j	S39
Figure S46.	$^{31}P\{^{1}H\}$ NMR spectrum of 8i	S39
Figure S47.	$^{13}C{^{1}H}$ NMR spectrum of 8i	S40
Figure S48.	Solvent suppression No-D ¹ H NMR spectrum of 7aPd in THF	S40
Figure S49.	$^{1}H^{-13}C$ gs-HSOC NMR spectrum of 7aPd in THF	S41
Figure S50.	^{1}H = ^{13}C gs-HMBC NMR spectrum of 7aPd in THF	S42
Figure S51.	¹ H NMR spectrum of 7aPd in THF- d_8 .	S42
Figure S52.	$^{13}C{^{1}H}$ NMR spectrum of 7aPd in THF- <i>d</i> .	S43
Figure S53.	Solvent suppression No-D ¹ H NMR spectrum of 7bPd in THF	S43
Figure S54	$^{1}\text{H}-^{13}\text{C}$ HSOC NMR spectrum of 7bPd in THF	S44
Figure S55	$^{1}\text{H}^{-13}\text{C}$ gs-HMBC NMR spectrum of 7hPd in THF	S45
Figure S56	Solvent suppression No-D ¹ H NMR spectrum of $7_{9}A_{11}$ in THF	S46
Figure S57	$^{1}\text{H}^{-13}\text{C}$ HSOC NMR spectrum of 7aAu in THF	S46
Figure S58	$^{1}\text{H}^{-13}\text{C}$ os-HMBC NMR spectrum of 7aAu in THF	S47
Figure S50.	Solvent suppression No-D ¹ H NMR spectrum of $7hAu$ in THF	S48
Figure CAA	¹ H_{-13} C HSOC NMR spectrum of 7bAu in THE	S+0 S19
1 igui e 500.	II C HORCE INVIRCE POCULUM OF / DAU III THE	0+0

Figure S61. ¹ H– ¹³ C gs-HMBC NMR spectrum of 7bAu in THF	S59
Figure S62. ¹ H NMR spectrum of 9hPd	S50
Figure S63. ¹³ C{ ¹ H} NMR spectrum of 9hPd	S50
Figure S64. ³¹ P{ ¹ H} NMR spectrum of 9hPd	S51
Figure S65. ¹ H NMR spectrum of 10aBH ₃	S51
Figure S66. ¹³ C{ ¹ H} NMR spectrum of 10aBH ₃	S52
Figure S67. ¹¹ B NMR spectrum of 10aBH ₃	S52
NMR spectra of aldehyde reductions	S53
Figure S68. ¹ H NMR spectrum of 4-bromobenzaldehyde (11b) reduction after 4	h S53
Figure S69. ¹ H NMR spectrum of 4-bromobenzaldehyde (11b) reduction after 2	24 h \$53
Figure S70. ¹ H NMR spectrum of 3-nitrobenzaldehyde (11c) reduction after 4 h	S54
Figure S71. ¹ H NMR spectrum of 3-nitrobenzaldehyde (11c) reduction after 24	h S54
Figure S72. ¹ H NMR spectrum of 2,3,4-trimethoxybenzaldehyde (11d) reductio	n after 4 h. S55
Figure S73. ¹ H NMR spectrum of 2,3,4-trimethoxybenzaldehyde (11d) reductio	n
after 24 h	S55
NMR spectra of ketone reductions	S56
Figure S74. ¹ H NMR spectrum of 4-nitroacetophenone (13a) reduction after 4 h	ı S56
Figure S75. ¹ H NMR spectrum of 4-nitroacetophenone (13a) reduction after 24	h S56
Figure S76. ¹ H NMR spectrum of 4-bromoacetophenone (13b) reduction after 4	h S57
Figure S77. ¹ H NMR spectrum of 4-bromoacetophenone (13b) reduction after 2	24 h S57
Figure S78. ¹ H NMR spectrum of 3-aminoacetophenone (13c) reduction after 4	h S58
Figure S79. ¹ H NMR spectrum of 3-aminoacetophenone (13c) reduction after 2-	4 h S58
Figure S80. ¹ H NMR spectrum of 4-methoxyacetophenone (13d) reduction after	r 4 h S59
Figure S81. ¹ H NMR spectrum of 4-methoxyacetophenone (13d) reduction after	r 24 h S59
Figure S82. ¹ H NMR spectrum of benzophenone (13e) reduction after 4 h	S60
Figure S83. ¹ H NMR spectrum of benzophenone (13e) reduction after 24 h	S60
6. Cartesian coordinates of optimized structures	S61
7aPd	S61
7aPd – isomer 2	S61
7aAu	S62
mNHO-RhCO	S63

1. Figures S1–S6

Figure S1. Selected region of ¹H NMR spectrum of *in situ* generated **8j** indicating *E* and *Z* geometric isomers. Spectra were recorded in THF- d_8 , ^{Δ} and * denote major and minor isomer, respectively.

Figure S2. a) Positive-ion ESI-HRMS spectrum of complex **7aPd**: m/z 472.0997 (calcd for C₂₅H₂₄N₃Pd⁺ [**7aPd** – Cl]⁺ 472.1005), m/z 326.1647 (calcd for C₂₂H₂₀N₃⁺ [(**1a**–OTf)]⁺ 326.1652); b) inset showing the isotope distribution of [**7aPd** – Cl]⁺ ion; and c) the corresponding calculated isotope distribution for C₂₅H₂₄N₃Pd⁺.

Figure S3. Selected regions of solvent suppression No-D ¹H NMR spectrum of **7aPd** in non-deuterated THF [for highly moisture-sensitive compounds like **7**, we found it experimentally convenient to conduct the reactions in a rigorously dried non-deuterated solvent, and record solvent suppression No-D NMR experiments of the aliquots without further manipulations]. THF denotes residual solvent resonance after solvent suppression. Resonances of residual Et₂O (δ = 3.34 ppm) are from the solvent system used for attempted recrystallization of **7aPd** (see above). H' and H" are arbitrarily assigned. Asterisk denotes unidentified species.

Figure S4. Selected regions of solvent suppression No-D ¹H NMR spectrum of **7bPd** in non-deuterated THF. Colour code denotes two different spin systems for the allyl and mNHO ligands in two diastereoisomers as extracted from ${}^{1}\text{H}{-}{}^{1}\text{H}$ *gs*-COSY spectrum. Asterisk denotes unidentified species. THF denotes residual solvent resonance after solvent suppression. Resonances marked by # belong to triazolium cation (**1b**–OTf), a product of hydrolytic decomposition of **7bPd**.

Figure S5. HOMO (left) and HOMO-6 (right) of **7aPd** showing π -type interaction contribution to the C_{exo}-C_{endo} bond of mNHO.

Figure S6. a) Positive-ion ESI-HRMS spectrum of complex **7aAu**: m/z at 563.1491 (calcd for C₂₄H₂₂AuN₄⁺ [**7aAu** – Cl + CH₃CN]⁺ 563.1505), m/z at 522.1236 (calcd for C₂₂H₁₉AuN₃⁺ [**7aAu** – Cl]⁺ 522.1239), m/z 326.1651 (calcd for C₂₂H₂₀N₃⁺ [**1a** – OTf]⁺ 326.1652); b) inset showing the isotope distribution of [**7aAu** – Cl + CH₃CN]⁺ ion; and c) the corresponding calculated isotope distribution for C₂₄H₂₂AuN₄⁺.

2. Single-crystal X-ray diffraction

Crystal structure of **9hPd**·CDCl₃ was measured on a Rigaku OD XtaLAB Synergy-S diffractometer equipped with Cu and Ag PhotonJet micro-focus sealed X-ray tubes and an Eiger2 R CdTe 1M hybrid pixel detector, whereas the crystal structure of **10aBH**₃·0.825(CH₂Cl₂) was measured on a Rigaku OD (Agilent) Gemini single-crystal X-ray diffractometer equipped with Cu and Mo Enhance fine-focus sealed X-ray tubes and an Atlas CCD detector. Both datasets were collected with Cu *Ka* radiation at low temperatures. *CrysAlis*^{Pro} software¹ was used for data collection and reduction. Crystal structures were solved and refined by *olex2.solve*² and *SHELXL*,³ respectively, within the *Olex2* (v. 1.5)⁴ software. *Diamond*⁵ program was used for molecular graphics.

Crystals of **9hPd**, suitable for X-ray diffraction analysis were grown from a CDCl₃ solution by slow evaporation of the solvent and the complex crystallized as a CDCl₃ solvate. Crystals of **9hPd**·CDCl₃ were of low quality. Two full datasets were measured and both crystals were non-merohedrally twinned. Twin data processing and twin refinement using HKLF5-format file unfortunately did not improve the crystal structure model. Both crystal structures suffer from the same issues, namely, poor *R*-factors and high residual electron density peaks. In addition, one nitrogen atom (N4) in the triazole ring turns non-positive definite when refined anisotropically, which results in distorted bond distances, therefore, it was refined isotropically. Nevertheless, despite these shortcomings the crystal structure of **9hPd** complex is fully consistent with the spectroscopic data.

Hydrogen atoms in the crystal structure of $10aBH_3 \cdot 0.825(CH_2Cl_2)$ were located in the difference Fourier map. The positions and isotropic thermal parameters of hydrogen atoms on CH₂ and BH₃ groups were freely refined.⁶ Constrained refinement was employed for hydrogen atoms on methyl and aryl groups in the crystal structure of $10aBH_3 \cdot 0.825(CH_2Cl_2)$ and for all hydrogen atoms in $9hPd \cdot CDCl_3$.

Compound	9hPd · CDCl ₃	10aBH ₃ ·0.825(CH ₂ Cl ₂)
Formula	$[PdCl_2(PC_{25}H_{27}N_3)_2](BF_4)_2 \cdot CDCl_3$	$C_{22}H_{22}BN_3 \cdot 0.825(CH_2Cl_2)$
$F_{ m w}$	1272.22	409.30
<i>T</i> [K]	100.0(1)	150.0(1)
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/n$
a [Å]	18.7815(3)	9.8803(2)
<i>b</i> [Å]	12.9118(2)	23.0698(3)
<i>c</i> [Å]	23.7001(4)	10.6992(3)
α [°]	90	90
β[°]	101.4136(16)	115.988(3)
γ [°]	90	90
V [Å ³]	5633.69(15)	2192.16(10)
Ζ	4	4
$\rho_{\rm calc} [{\rm g/cm^3}]$	1.500	1.240
Crystal size [mm]	$0.144 \times 0.082 \times 0.071$	$0.322 \times 0.222 \times 0.206$
Radiation type	Cu <i>K</i> α	Cu Kα
λ [Å]	1.54184	1.54184
$\mu [\mathrm{mm}^{-1}]$	5.956	2.358
<i>F</i> (000)	2584	859
$ heta_{\max}$ [°]	76.099	76.654
Index ranges	$-23 \le h \le 23$	$-12 \le h \le 12$
	$-10 \le k \le 16$	$-28 \le k \le 29$
	$-29 \le l \le 29$	$-11 \le l \le 13$
Reflections collected	41980	27485
Independent reflections	11392	4522
Reflections with $[I > 2\sigma(I)]$	10029	4162
$R_{\rm int}$	0.0572	0.0262
$R_{ m sigma}$	0.0357	0.0140
Data/restraints/parameters	11392/0/677	4522/6/312
S	1.060	1.058
$R_1, wR_2 [I > 2\sigma(I)]$	0.0987, 0.2641	0.0429, 0.1161
R_1, wR_2 [all data]	0.1056, 0.2717	0.0461, 0.1192
$\Delta ho_{\min}, \Delta ho_{\max} [e \text{\AA}^{-3}]$	-2.683, 6.456	-0.199, 0.386
CCDC deposition number ^[a]	2297782	2297781

Table S1. Summary of the crystal data and structure refinements.

^[a] The supplementary crystallographic data for this paper can be obtained free of charge from The Cambridge Crystallographic Data Centre (CCDC) via <u>www.ccdc.cam.ac.uk/structures</u>.

Figure S7. The asymmetric unit and selected atom labels of the **9hPd**·CDCl₃ crystal structure, the BF_4^- anions, CDCl₃ molecule, and hydrogen atoms are omitted for clarity. Displacement ellipsoids are depicted at the 50% probability level.

			Bond Le	ngths [Å]			
Pd1-Cl1	2.2943(14)	P1C1	1.841(6)	N1-N2	1.335(8)	N4-N5	1.304(7)
Pd1-Cl2	2.2955(14)	P1-C14	1.820(6)	N2-N3	1.318(8)	N5-N6	1.331(7)
Pd1-P1	2.3238(15)	P1-C20	1.819(6)	N1-C1	1.344(8)	N4-C26	1.358(8)
Pd1-P2	2.3331(15)	P2-C26	1.833(6)	N1-C6	1.471(8)	N4-C31	1.454(7)
		P2-C39	1.823(6)	N3-C2	1.367(8)	N6-C27	1.362(8)
		P2-C45	1.811(6)	N3-C7	1.450(7)	N6-C32	1.446(8)
				C1-C2	1.367(9)	C26-C27	1.393(8)
				С2-С3	1.488(9)	C27–C28	1.489(8)

Table S2. Selected bond distances of 9hPd CDCl₃ crystal structure.

Figure S8. The crystal packing and the unit cell of the $9hPd \cdot CDCl_3$ crystal structure viewed along the *b*-crystallographic axis.

Figure S9. The asymmetric unit and selected atom labels of the $10aBH_3$ ·0.825(CH₂Cl₂) crystal structure, the disordered CH₂Cl₂ molecules are omitted for clarity. Displacement ellipsoids are depicted at the 50% probability level and hydrogen atoms are shown as small spheres of arbitrary radius.

Compound **10aBH**₃ crystallized as dichloromethane solvate. In the crystal structure of **10aBH**₃·0.825(CH₂Cl₂) dichloromethane molecule is disordered over two positions with partial occupancies of 0.555(10) and 0.269(10). The observed B–H distances [1.15(2)-1.17(2) Å], CH₂–BH₃ bond distance [1.667(2) Å] and C–C–B angle $[114.37(13)^{\circ}]$ are similar to the values [1.132(13)-1.147(12) Å, 1.6767(19) Å and 109.68(10)°, respectively] reported for the crystal structure of NHO-BH₃ adduct, ((1,3-bis(2,6-diisopropylphenyl)-4,5-dihydro-1*H*-imidazol-3-ium-2-yl)methyl)(trihydrido)borate (Cambridge Structural Databes refcode AGUYAE).⁷

			Bond Le	ngths [Å]			
B1-C1	1.667(2)	C1-C2	1.478(2)	C2-N3	1.367(2)	C3–C4	1.476(2)
B1-H1	1.15(2)	C2–C3	1.385(2)	C3-N1	1.3642(19)	N1-C10	1.4446(18)
B1-H2	1.17(2)	C1–H1a	0.96(2)	N1-N2	1.3166(18)	N3-C16	1.4442(19)
B1-H3	1.17(2)	C1–H1b	1.014(19)	N2-N3	1.3361(17)		

Table S3. Selected bond distances of 10aBH₃·0.825(CH₂Cl₂) crystal structure.

Figure S10. The crystal packing and the unit cell of $10aBH_3 \cdot 0.825(CH_2Cl_2)$ crystal structure viewed along the *b*-crystallographic axis with channels that are occupied by disordered CH₂Cl₂ molecules.

3. Experimental section

General Considerations. All reagents and solvents were used as obtained from the commercial sources (Fluka, Aldrich, Merck, Fluorochem, Honeywell), unless indicated otherwise. Tetrahydrofuran (THF) was dried using solvent purification system MBraun SPS5. For reactions performed in a nitrogen filled glovebox all solvents were purchased dry from Merck. All reactions were carried out in oven-dried glassware under argon atmosphere. All manipulations involving mNHOs were performed in a nitrogen filled glovebox. Preparation of 10aBH₃ was performed using Schlenk techniques. Silica gel column chromatography was carried out on silica gel 60N. Analytical thin-layer chromatography (TLC) was carried out on Fluka Silica Gel TLC cards, visualized with a UV lamp (254 nm and/or 366 nm). Melting points were determined on a Kofler micro hot-stage microscope and are uncorrected. IR spectra were obtained with a PerkinElmer Spectrum 100, equipped with a Specac Golden Gate Diamond ATR as a solid sample support. An Agilent 6224 time-of-flight (TOF) mass spectrometer equipped with a double orthogonal electrospray source at atmospheric pressure ionization (ESI) coupled to an Agilent 1260 HLPC was used for recording HRMS spectra. Mobile phase composed of two solvents: A was 0.1% formic acid in Milli-Q water, and B was 0.1% formic acid in acetonitrile mixed in the ratio of 1:1. Compounds were prepared by dissolving the samples in acetonitrile. 0.1–10 µL of each sample and injected into the LC-MS; flow rate 0.4 mL/min; fragmentor voltage 150 V; capillary voltage 4000 V; mass range 100-1700.

NMR spectra were recorded with a Bruker Avance III 500 MHz NMR instrument operating at 500 MHz (¹H), 126 MHz (¹³C), 565 MHz (¹⁹F), and 160 MHz (¹¹B) and Bruker Avance NEO 600 MHz NMR instrument operating at 600 MHz (¹H), 151 MHz (¹³C) and 565 MHz (¹⁹F) at 296 K in CDCl₃ and THF-*d*₈ (THF-*d*₈ was dried using 4 Å molecular sieves). For the (multiple) solvent suppression No-D ¹H NMR spectra the samples were shimmed using Topshim unlocked and acquired by using standard wetdc pulse program (solvent suppression with shape pulse, with ¹³C low power decoupling) from the Bruker Topspin library. Proton and carbon spectra are referenced to the residual solvent shifts of δ 7.26 and δ 77.20 ppm for CDCl₃ and 1.72 and 25.31 for THF-d₈, respectively. ¹⁹F, ¹¹B and ¹⁵N chemical shifts were determined with respect to external CCl₃F, 15% BF₃ etherate in CDCl₃, and ammonia, respectively, as external standards at δ 0. Assignments of proton, carbon, and nitrogen resonances were performed by 2D NMR techniques (1H-1H gs-COSY, 1H-13C gs-HSOC, 1H-13C gs-HMBC and ¹H-¹⁵N gs-HMBC). ¹³C resonances for Pd-mNHO (7aPd and 7bPd) and Au-mNHO complexes (7aAu and 7bAu) were extracted from the ${}^{1}H{-}^{13}C$ gs-HSQC and ${}^{1}H{-}^{13}C$ gs-HMBC spectra. Coupling constants (J) are given in hertz. Multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet). The starting 4-methylphenyl azide⁸ [Caution! The handling of azides is dangerous because of their explosive character and all reactions should be carried out on a small scale], triazoles [4-phenyl-1-(p-tolyl)-1H-1,2,3triazole (2a) and 2-(1-(p-tolyl)-1H-1,2,3-triazol-4-yl)pyridine (2b)],^{8,9} diaryliodonium salts [diphenyliodonium triflate and bis(4-methoxyphenyl)iodonium hexafluorophosphate]^{Error!} Bookmark not defined. and triazolium salts [5-methyl-4-phenyl-1-(p-tolyl)-1H-1,2,3-triazole (2a'),¹⁰ 3,4-diphenyl-1-(p-tolyl)-1*H*-1,2,3-triazolium trifluoromethanesulfonate (**3a**)⁹ and 3-phenyl-4-(2-pyridinyl)-1-(p-tolyl)-1H-1,2,3-triazolium trifluoromethanesulfonate (**3b**)⁹] were preparedaccording to the known literature procedures.

Computational Details. Gas-phase geometry optimizations of the non-truncated species were performed using density functional theory (DFT) as implemented in ORCA 5.0.¹¹ The

hybrid functional PBE0^{12,13} was employed, in combination with the double- ζ valence basis set def2-SV(p). The chain of spheres exchange algorithm combined with the resolution of identity for the Coulombic term (RIJCOSX)¹⁴ was used to speed up equilibrium structure searches. A grid quality of DEFGRID2 and a tight convergence of the wavefunction were requested. Grimme's D3 method, in combination with the Becke-Johnson (D3BJ) damping scheme¹⁵ to consider dispersion effects was employed in all calculations. To validate that the optimized equilibrium structures correspond to local minima of the potential energy surface (PES), analytical vibrational frequency calculations were carried out at the same level of theory as used for geometry optimizations. Subsequent single-point calculations at the TPSSh-D3/def2-TZVPP(DEFGRID3) level of theory were carried out to refine further the energy and electronic wavefunction of the studied complexes.

Synthesis of triazolium salts 1

General procedure 1 (GP1) for preparation of triazolium salts. Alkylated triazolium salts 1a, 1b, 1e and 1f were synthesized according to a modified literature procedure.¹⁶ Triazolium salt (1 equiv.) was dissolved in dry THF in an oven-dried round-bottomed flask and cooled to -78 °C. *n*-BuLi (1.5 equiv.) was added dropwise to the stirred solution. After 5 min alkyl iodide (4 equiv.) was added. The reaction mixture was stirred at -78 °C for 1 h. After it had been allowed to warm to room temperature it was stirred for 1 h. The precipitate was collected by filtration and dissolved in dichloromethane/MeOH 10:1. The crude product solution was filtered over a pad of silica and solvent was removed under reduced pressure. 1a and 1e were dissolved in a small amount of dichloromethane and triturated with diethyl ether to afford a white solid product. 1f was purified using column chromatography on silica (dichloromethane/methanol = 20:1).

5-Methyl-3,4-diphenyl-1-(p-tolyl)-1H-1,2,3-triazolium trifluoromethanesulfonate (1a).Prepared 3,4-diphenyl-1-(p-tolyl)-1H-1,2,3-triazolium Following **GP1**. from trifluoromethanesulfonate (3a, 1.300 g, 2.817 mmol), n-BuLi (1.6 M in THF, 2.29 mL, 3.67 mmol) and MeI (0.53 mL, 8.46 mmol) in THF (45 mL). Product was obtained as white solid (1.100 g, 82%). mp 258–260 °C. IR: 3047, 3023, 2164, 1619, 1587, 1512, 1491, 1453, 1386, 1261, 1173, 1073, 834, 782, 697 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.99 (d, J = 8.4 Hz, 2H), 7.72–7.71 (m, 4H), 7.55–7.42 (m, 8H), 2.59 (s, 3H), 2.49 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 142.7, 140.9, 140.1, 134.3, 131.6, 131.5, 131.3, 131.1, 130.6, 129.7, 129.3, 126.4, 122.9, 21.6, 11.0. ¹⁵N NMR (61 MHz, CDCl₃): δ 253, 250. ¹⁹F NMR (565 MHz, CDCl₃): δ -78.23. HRMS (ESI+): calcd for $C_{22}H_{20}N_3^+$ [M]⁺, 326.1652; found, 326.1647.

5-*Ethyl-3,4-diphenyl-1-(p-tolyl)-1H-1,2,3-triazolium* trifluoromethanesulfonate (**1b**). Following **GP1**. Prepared from 3,4-diphenyl-1-(*p*-tolyl)-1*H*-1,2,3-triazolium trifluoromethanesulfonate (**3a**, 1.00 g, 2.17 mmol), *n*-BuLi (1.6 M in THF, 2.03 mL, 3.25 mmol) and EtI (0.70 mL, 8.68 mmol) in THF (35 mL). Product was obtained as white solid (0.68 g, 64%). mp 77–79 °C. IR: 3056, 2981, 2165, 1613, 1594, 1514, 1494, 1262, 1223, 1178, 1030, 829, 692, 636 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.68–7.67 (m, 4H), 7.51–7.48 (m, 2H), 7.45–7.41 (m, 6H), 2.95 (q, *J* = 7.7 Hz, 2H), 2.49 (s, 3H), 1.06 (t, *J* = 7.7 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 144.3, 142.8, 140.5, 134.2, 131.6, 131.5, 131.3, 131.0, 130.6, 129.6, 129.3, 126.53, 126.49, 123.0, 21.6, 17.9, 12.2. ¹⁵N NMR (61 MHz, CDCl₃): δ 252, 251. ¹⁹F NMR (565 MHz, CDCl₃): δ –78.19. HRMS (ESI+): calcd for C₂₃H₂₂N₃⁺ [M]⁺, 340.1808; found, 340.1811.

5-Methyl-3-phenyl-4-(2-pyridinyl)-1-(p-tolyl)-1H-1,2,3-triazolium trifluoromethanesulfonate (*1e*). Following **GP1**. Prepared from 3-phenyl-4-(2-pyridinyl)-1-(p-tolyl)-1H-1,2,3-triazolium trifluoromethanesulfonate (**3b**, 1.000 g, 2.162 mmol), *n*-BuLi (1.6 M in THF, 2.0 mL, 3.2 mmol) and MeI (0.5 mL, 8.6 mmol) in THF (36 mL). Product was obtained as white solid (0.728 g, 71%). mp 287–288 °C. IR: 3374, 2920, 1580, 1493, 1460, 1348, 1234, 1176, 836, 806, 693 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.65–8.64 (m, 1H), 8.22–8.20 (m, 1H), 7.93–7.91 (m, 2H), 7.80–7.76 (m, 3H), 7.56–7.53 (m, 1H), 7.48–7.44 (m, 4H), 7.42–7.39 (m, 1H), 2.62 (s, 3H), 2.48 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 150.3, 143.3, 143.1, 141.3, 139.9, 137.8, 134.4, 131.9, 131.2, 130.8, 129.8, 128.7, 126.4, 126.3, 125.7, 21.7, 11.0. ¹⁵N NMR (61 MHz, CDCl₃): δ 253, 251. HRMS (ESI+): calcd for C₂₁H₁₉N₄⁺ [M]⁺, 327.1604; found, 327.1597.

5-*Ethyl-3-phenyl-4-(2-pyridinyl)-1-(p-tolyl)-1H-1,2,3-triazolium* trifluoromethanesulfonate (*If*). Following **GP1**. Prepared from 3-phenyl-4-(2-pyridinyl)-1-(*p*-tolyl)-1*H*-1,2,3-triazolium trifluoromethanesulfonate (**3b**, 0.973 g, 2.104 mmol), *n*-BuLi (1.6 M in THF, 1.7 mL, 2.7 mmol) and EtI (0.7 mL, 8.4 mmol) in THF (30 mL). Product was obtained as yellow solid (0.512 g, 50%). mp 240–241 °C. IR: 3732, 2018, 1574, 1511, 1262, 1018, 785, 695, cm⁻¹. ¹H NMR (500 MHz, CDCl₃): *δ* 8.69–8.68 (m, 1H), 8.33 (d, *J* = 7.9 Hz, 1H), 7.97 (d, *J* = 8.3 Hz, 2H), 7.82–7.78 (m, 3H), 7.55–7.52 (m, 1H), 7.48–7.41 (m, 5H), 3.00 (q, *J* = 7.6 Hz, 2H), 2.51 (s, 3H), 1.15 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): *δ* 150.3, 145.6, 143.5, 143.2, 139.5, 137.8, 134.4, 131.8, 131.4, 130.8, 129.8, 128.9, 126.6, 126.5, 125.7, 21.7, 18.2, 12.4. ¹⁵N NMR (61 MHz, CDCl₃): *δ* 252, 251. HRMS (ESI+): calcd for C₂₂H₂₁N₄⁺ [M]⁺, 341.1761; found, 341.1760.

General procedure 2 (GP2) for preparation of triazolium salts. Alkylated triazolium salts 1d and 1g were synthesized from corresponding triazolium salts according to a following procedure. Triazolium salt (1 equiv.) was combined with KOt-Bu (1 equiv.) and cooled to -78 °C. THF was added, and the mixture was stirred for 10 min. After the addition of *N*,*N*-dimethylmethyleneammonium iodide (1 equiv.) the reaction mixture was warmed to room temperature and stirred overnight. The precipitate was filtered off and the solvent was evaporated. Crude products were purified using column chromatography on silica (dichloromethane/methanol = $20:1 \rightarrow 10:1$).

5-((Dimethylamino)methyl)-3,4-diphenyl-1-(p-tolyl)-1H-1,2,3-triazolium

trifluoromethanesulfonate (*1d*). Following **GP2**. Prepared from 3,4-diphenyl-1-(*p*-tolyl)-1*H*-1,2,3-triazolium trifluoromethanesulfonate (**3a**, 0.500 g, 1.084 mmol), KO*t*-Bu (0.122 g, 1.084 mmol) and *N*,*N*-dimethylmethyleneammonium iodide (0.200 g, 1.084 mmol) in THF (10 mL). Product was obtained as white solid (0.243 g, 43%). mp 64–66 °C. IR: 3055, 2826, 2774, 1513, 1494, 1452, 1260, 1147, 1029, 826, 765, 692, 636 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.00–7.98 (m, 2H), 7.64–7.60 (m, 4H), 7.54–7.48 (m, 2H), 7.46–7.41 (m, 6H), 3.69 (s, 2H), 2.49 (s, 3H), 2.05 (s, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 142.9, 134.3, 132.1, 131.8, 131.5, 131.0, 130.5, 129.9, 129.5, 126.4, 126.3, 122.8, 121.9, 119.8, 50.9, 45.2, 21.6. ¹⁵N NMR (61 MHz, CDCl₃): δ 251.0, 251.4, 256. ¹⁹F NMR (565 MHz, CDCl₃): δ –78.27. HRMS (ESI+): calcd for C₂₄H₂₅N₄⁺ [M]⁺, 369.2074; found, 369.2077.

5-((*Dimethylamino*)*methyl*)-3-*phenyl*-4-(2-*pyridinyl*)-1-(*p*-tolyl)-1*H*-1,2,3-triazolium trifluoromethanesulfonate (**1***g*). Following **GP2**. Prepared from 3-phenyl-4-(2-pyridinyl)-1-(*p*-tolyl)-1*H*-1,2,3-triazolium trifluoromethanesulfonate (**3b**, 0.518 g, 1.120 mmol), KOt-Bu (0.126 g, 1.120 mmol) and *N*,*N*-dimethylmethyleneammonium iodide (0.207 g, 1.120 mmol) in THF (10 mL). Product was obtained as white solid (0.502 g, 86%). mp 115–118 °C. IR: 1578, 1513, 1494, 1456, 1342, 1261, 1225, 1149, 1032, 819, 798, 773, 691, 636 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ 8.60–8.59 (m, 1H), 8.34–8.33 (m, 1H), 8.04–8.02 (m, 2H), 7.85–7.82 (m, 1H), 7.72–7.71 (m, 2H), 7.52–7.50 (m, 1H), 7.45–7.39 (m, 5H), 3.71 (s, 2H), 2.48 (s, 3H), 2.07 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 150.1, 143.2, 142.9, 141.2, 140.9, 137.7, 134.5, 131.9, 131.7, 130.4, 129.7, 128.5, 126.4, 126.3, 125.7, 51.4, 45.3, 21.6. ¹⁵N NMR (61 MHz, CDCl₃): δ 28, 251, 255, 318. ¹⁹F NMR (565 MHz, CDCl₃): δ –78.30. HRMS (ESI+): calcd for C₂₃H₂₄N₅⁺ [M]⁺, 370.2026; found, 370.2027.

3-(4-Methoxyphenyl)-5-methyl-4-phenyl-1-(p-tolyl)-1H-1,2,3-triazolium hexafluorophosphate (1c). 1c was prepared according to a slightly modified literature procedure.⁹ In a high pressure tube 5-methyl-4-phenyl-1-(p-tolyl)-1H-1,2,3-triazole (2a', 85 mg, 0.341 mmol) was combined with di-(4-methoxyphenyl)iodonium hexafluorophosphate (298 mg, 0.614 mmol) and CuSO₄ (5 mg, 0.0341 mmol). The reaction mixture was stirred overnight at 130 °C. The crude product was dissolved in acetone and triturated with light petroleum. It was filtered and purified using column chromatography on silica (dichloromethane/methanol = $30:1 \rightarrow 10:1$). 1c was obtained as a white solid (95 mg, 56%). mp 83–85 °C. IR: 1605, 1509, 1257, 1174, 1056, 1026, 833, 774, 697 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.68–7.66 (m, 2H), 7.47–7.44 (m, 3H), 7.41–7.35 (m, 6H), 6.84–6.83 (m, 2H), 3.78 (s, 3H), 2.44 (s, 3H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 161.8, 142.8, 140.6, 139.2, 131.5, 131.3, 130.8, 130.6, 129.5, 127.4, 126.9, 125.9, 123.0, 115.0, 55.8, 21.6, 10.0. ¹⁵N NMR (51 MHz, CDCl₃): δ 253, 250. ³¹P NMR (243 MHz, CDCl₃): δ -73.65. HRMS (ESI+): calcd for C₂₃H₂₂N₃O⁺ [M]⁺, 356.1757; found 356.1758.

4-(Diphenylphosphino)-5-propyl-1-(p-tolyl)-1H-1,2,3-triazole (5). Prepared according to a literature procedure.¹⁷ In an oven-dried round-bottomed flask ethylmagnesium bromide (15.0 mmol, 1 M solution in THF) was diluted in 30 mL THF. Pentyne (1.48 mL, 15.0 mmol) was added dropwise. The reaction mixture was heated to 50 °C and stirred for 15 min. After cooling to room temperature 4-methylphenyl azide (2.197 g, 16.50 mmol) was added. The reaction was stirred for 30 min at room temperature and for 1 h at 50 °C. After cooling to room temperature, a solution of PPh₂Cl (3.23 mL, 18.0 mmol) in THF (15 mL) was added and the mixture was stirred for 5 h at room temperature. The reaction was guenched with water (100 mL) and the product was extracted with ethyl acetate. Combined organic phases were washed with brine and dried over magnesium sulfate. The solvent was removed under reduced pressure and the product was purified using column chromatography on silica (light petroleum/ethyl acetate = $10:1 \rightarrow$ 1:1). The product 5 was obtained as a yellowish solid (2.958 g, 51%). mp 96–97 °C. IR: 3060, 2959, 2927, 1518, 1478, 1434, 1246, 1177, 1091, 998, 821, 742, 695, 629 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ 7.62–7.59 (m, 4H), 7.36–7.31 (m, 10H), 2.85–2.82 (m, 2H), 2.45 (s, 3H), 1.47– 1.40 (m, 2H), 0.78 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 144.8 (d, J = 40.3 Hz), 140.0, 139.7 (d, J = 9.9 Hz), 136.9 (d, J = 4.3 Hz), 134.2, 133.9 (d, J = 20.4 Hz) 130.2, 128.8, 128.5 (d, J = 7.2 Hz), 125.5, 25.3 (d, J = 6.5 Hz), 23.1 (d, J = 2.7 Hz), 21.4, 13.9. ¹⁵N NMR (61 MHz, CDCl₃): δ 254. ³¹P{H} NMR (243 MHz, CDCl₃): δ –37.9. HRMS (ESI+): calcd for $C_{24}H_{25}N_3P^+$ [M + H]⁺, 368.1781; found, 368.1776.

[4-(Diphenylphosphino)-1-phenyl-5-propyl-1H-1,2,3-triazole]trihydroboron (**6**). In an ovendried round-bottomed flask triazole **5** (700 mg, 1.816 mmol) was dissolved in dry THF (4 mL). BH₃·THF solution (1 M, 3.1 mL, 3.1 mmol) was added and the reaction mixture was stirred for 1 h at room temperature. Reaction was quenched with the addition of water (10 mL) and the product was extracted with dichloromethane. Combined organic phases were dried over sodium sulphate and the solvent was evaporated under reduced pressure. Isolated product (666 mg, 92%) was used in the next step without further purification. ¹H NMR (500 MHz, CDCl₃): δ 7.83–7.79 (m, 4H), 7.51–7.43 (m, 6H), 7.36–7.34 (m, 2H), 7.31–7.30 (m, 2H), 2.97–2.93 (m, 2H), 2.46 (s, 3H), 1.35–1.29 (m, 2H), 0.73 (t, *J* = 7.3 Hz, 3H). ³¹P NMR (202 MHz, CDCl₃): δ 3.4 (br). ¹¹B NMR (160 MHz, CDCl₃): δ –38.3.

4-(*Diphenylphospino*)-3-methyl-5-propyl-1-(*p*-tolyl)-1H-1,2,3-triazolium tetrafluoroborate (*Ih*). An oven-dried round-bottomed flask was charged with 4-(diphenylphosphino)-5-propyl-1-(*p*-tolyl)-1*H*-1,2,3-triazole (**5**, 1.005 g, 2.607 mmol) and cooled to 0 °C. Trimethyloxonium tetrafluoroborate (0.386 g, 2.607 mmol) and dry dichloromethane (8 mL) were added and reaction mixture was stirred at room temperature for 3 h. The solvent was evaporated and products were separated using column chromatography on silica (ethyl acetate). The product **1h** was obtained as a slightly yellow solid (0.575 g, 45%). mp 65–66 °C. IR: 2964, 1512, 1436, 1378, 1047, 1033, 833, 747, 729, 695 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.53–7.48 (m, 10H), 7.36 (d, *J* = 8.1 Hz, 2H), 4.11 (s, 3 H), 2.44 (s, 3H), 2.23–2.19 (m, 2H), 1.11–1.03 (m, 2H), 0.42 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 148.6 (d, *J* = 6.2 Hz), 141.9, 135.9, 135.5, 132.9, 132.7, 130.2, 129.9, 129.8, 128.94, 128.88, 127.83, 127.78, 125.3, 39.2 (d, *J* = 9.2 Hz), 24.5, 21.1, 20.6, 12.8. ³¹P NMR (202 MHz, CDCl₃): δ –28.5. ¹⁹F NMR (470 MHz, CDCl₃): δ –153.9. HRMS (ESI+): calcd for C₂₅H₂₇N₃P⁺ [M]⁺, 400.1937; found, 400.1929.

Triphenyl(*5-propyl-1-(p-tolyl)-1H-1,2,3-triazol-4-yl)phosphonium trifluoromethanesulfonate* (*Ij*). An oven-dried round-bottomed flask was charged with [4-(diphenylphosphino)-1-phenyl-5-propyl-1*H*-1,2,3-triazole]trihydroboron (**6**, 0.666 g, 1.668 mmol), diphenyliodonium triflate (1.292 g, 3.002 mmol) and CuSO₄ (27 mg, 0.167 mmol). *N,N*-Dimethylformamide (4 mL) was added, and the reaction mixture was stirred overnight at 100 °C under Ar. The solvent was evaporated and the product **1j** was purified using column chromatography on silica (dichloromethane/methanol = 20:1 → 10:1). The product was obtained as an off-white solid (0.532 g, 52%). mp 62–63 °C. IR: 3064, 2965, 1511, 1438, 1259, 1222, 1146, 1108, 1028, 996, 824, 753, 724, 688, 635 cm⁻¹. ¹H NMR (500 MHz, CDCl3): δ 7.89–7.76 (m, 15H), 7.52 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 2.46 (s, 3H), 2.28–2.25 (m, 2H), 0.92–0.84 (m, 2H), 0.34 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl3): δ 150.0 (d), 141.6, 135.9 (d), 134.6 (d), 132.4, 130.8 (d), 130.7, 126.0, 123.9, 122.8, 122.4, 119.8, 118.0, 117.3, 25.4, 22.5, 21.5, 13.8. ¹⁵N NMR (CDCl₃): δ 261. ³¹P NMR (CDCl3): δ 9.6. ¹⁹F NMR (565 MHz, CDCl₃): δ –78.14. HRMS (ESI+): calcd for C₃₀H₂₉N₃P⁺ [M⁺], 462.2094; found, 462.2095.

Synthesis of mNHOs

General procedure 3 (GP3) for preparation of mNHOs 7. mNHOs 7 were prepared according to a slightly modified literature procedure.¹⁸ In a Schlenk tube triazolium salts 1 (1 equiv.) were combined with KHMDS (1.05 equiv.) and dissolved in THF. Reaction mixture instantly turned dark blue (7d, 7e, 7f), green (7g) purple (7a, 7b, 7c) or red (8j) colour. It was left stirring at room temperature for 15 min.

7*a*. Prepared from **1a** according to **GP3**. ¹H NMR (600 MHz, THF-*d*₈): δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.45–7.39 (m, 5H), 7.24–7.18 (m, 6H), 7.13–7.10 (m, 1H), 3.25 (d, *J* = 2.1 Hz, 1H), 3.18 (d, *J* = 2.1 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, THF-*d*₈): δ 146.1, 138.0, 137.9, 135.7, 130.6, 130.22, 130.20, 130.0, 129.1, 129.0, 127.5, 126.2, 121.7, 120.1, 46.8, 21.1. ¹⁵N NMR (61 MHz, THF-*d*₈): δ 291, 241, 192.

7*b*. Prepared from **1b** according to **GP3**. In ¹H NMR spectra all resonances for the two isomers are overlapping. ¹H NMR (600 MHz, THF- d_8): δ 7.56–7.55 (m, 2H), 7.37–7.30 (m, 6H), 7.19–7.17 (m, 4H), 7.14–7.09 (m, 3H), 3.88–3.82 (m, 1H), 2.33 (s, 3H), 1.27–1.24 (m, 3H). ¹³C NMR (151 MHz, THF- d_8): δ 141.7, 141.5, 138.7, 138.12, 138.10, 137.8, 135.0, 134.9, 131.4, 130.8, 130.33, 130.27, 130.2, 130.1, 129.9, 129.7, 129.4, 129.3, 129.1, 128.3, 127.7, 127.5, 126.6, 126.1, 123.1, 122.0, 121.4, 119.4, 61.9, 58.5, 21.0, 14.8, 13.2. ¹⁵N NMR (61 MHz, THF- d_8): δ 183, 242, 292.

7c. Prepared from 1c according to GP3. ¹H NMR (600 MHz, THF- d_8): δ 7.62–7.61 (m, 2H), 7.33–7.31 (m, 2H), 7.24–7.19 (m, 6H), 7.12–7.10 (m, 1H), 6.93–6.92 (m, 2H), 3.78 (s, 3H), 3.23 (d, J = 1.9 Hz, 1H), 3.16 (d, J = 1.9 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, THF- d_8): δ 161.6, 146.0, 137.9, 135.6, 130.6, 130.4, 130.2, 129.1, 127.4, 127.3, 121.7, 120.0, 115.0, 55.8, 46.6, 21.1. ¹⁵N NMR (61 MHz, THF- d_8): δ 290, 240, 191.

7*d*. Prepared from 1d according to GP3. Two isomeric products in a 1:0.45 (A:B) ratio. Resonances for aromatic protons of the different isomers cannot be separated. A: ¹H NMR (600 MHz, THF- d_8): δ 7.53–7.07 (m, 14H), 4.84 (s, 1H), 2.31 (s, 3H), 2.03 (s, 6H). ¹⁵N NMR (61 MHz, THF- d_8): δ 25, 182, 240, 289. B: ¹H NMR (600 MHz, THF- d_8): δ 7.53–7.07 (m, 14H), 4.67 (s, 1H), 2.33 (s, 3H), 1.96 (s, 6H). ¹⁵N NMR (61 MHz, THF- d_8): δ 20, 242. ¹³C NMR (151 MHz, THF- d_8): δ 138.9 (B), 138.1 (B), 137.0 (A), 134.9 (B), 133.0 (A), 132.84, 132.77, 132.6 (A), 131.4, 130.3, 130.1 (B), 129.9, 129.90, 129.86, 129.75, 129.4 (A), 129.1 (A), 128.0 (A), 127.6, 126.90, 126.87, 126.5, 126.2, 122.9, 121.9 (A), 121.7 (B), 120.0 (A), 119.7 (B), 92.7 (A), 90.2 (B), 47.7 (B), 45.0 (A), 21.1 (A), 21.0 (B). Some resonances could not be unambiguously assigned to isomer A or B.

7e. Prepared from **1e** according to **GP3**. ¹H NMR (600 MHz, THF-*d*₈): δ 8.22–8.21 (m, 1H), 7.62–7.61 (m, 2H), 7.55–7.52 (m, 1H), 7.44–7.39 (m, 5H), 7.27–7.26 (m, 3H), 6.88–6.86 (m, 1H), 3.54 (d, *J* = 1.8 Hz, 1H), 3.34 (d, *J* = 1.9 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (151 MHz, THF-*d*₈): δ 149.7, 148.9, 145.6, 139.4, 137.2, 136.7, 136.2, 130.4, 130.2, 129.6, 126.1, 122.9, 121.6, 120.1, 118.8, 45.5, 21.1. ¹⁵N NMR (61 MHz, THF-*d*₈): δ 196, 242, 300, 312.

7*f*. Prepared from **1f** according to **GP3**. Two isomeric products in 1:0.5 ratio, all proton resonances except for olefinic -CH- are overlapping. ¹H NMR (600 MHz, THF-*d*₈): δ 8.25–8.24 (m, 1H), 7.56–7.52 (m, 1H), 7.47–7.32 (m, 7H), 7.22–7.20 (m, 2H), 7.10–7.08 (m, 1H), 6.94–6.84 (m, 1H), 4.40 (A, q, *J* = 7.3 Hz, 1H), 3.89 (B, q, *J* = 7.2 Hz, 1H), 2.34 (s, 3H), 1.27–1.24 (m, 3H). ¹³C NMR (151 MHz, THF-*d*₈): δ 149.8, 149.4, 149.3, 149.0, 141.6, 140.4, 139.4,

138.6, 138.5, 137.7, 135.9, 135.7, 135.62, 135.60, 130.3, 130.2, 129.7, 129.5, 129.4, 129.3, 126.7, 126.1, 125.5, 123.6, 122.5, 122.0, 121.1, 120.2, 120.0, 119.0, 63.9, 59.3, 21.1, 14.7, 13.9. $^{15}\mathrm{N}$ NMR (61 MHz, THF- d_8): δ 319, 251.

7g. Prepared from 1g according to GP3. Two isomeric products in a 1:0.6 (A:B) ratio. Resonances for aromatic protons of different isomers cannot be separated. A: ¹H NMR (600 MHz, THF- d_8): δ 8.30–6.83 (m, 13H), 5.45 (s, 1H), 2.32 (s, 3H), 2.05 (s, 6H). ¹⁵N NMR (61 MHz, THF- d_8): δ 26, 186, 243, 299. B: ¹H NMR (600 MHz, THF- d_8): δ 8.02–6.83 (m, 13H), 4.69 (s, 1H), 2.34 (s, 3H), 2.01 (s, 6H). ¹³C NMR (151 MHz, THF- d_8): δ 149.7 (A), 148.8 (B), 148.4 (A), 147.8, 139.3, 138.3 (B), 137.7, 136.9, 135.6 (B), 134.1, 133.9 (A), 131.4 (A), 130.3 (B), 130.2, 129.81, 129.76, 129.2, 128.0 (A), 127.6, 126.7, 126.4, 126.3, 122.4 (A), 122.3, 122.1, 120.5, 119.7, 119.0 (B), 118.9 (A), 94.5 (A), 90.1(B), 47.4 (B), 44.9 (A), 21.10 (A), 21.06 (B).

8j. Prepared from **1j** according to **GP3**. Two isomeric products in a 1:0.9 (A:B) ratio. Resonances for phenyl protons of different isomers cannot be separated. A: ¹H NMR (600 MHz, THF-*d*₈): δ 7.79–7.71 (m, 6H), 7.66–7.62 (m, 3H), 7.57–7.53 (m, 6H), 7.48–7.46 (m, 2H), 7.11–7.10 (m, 2H), 3.67 (t, *J* = 7.2 Hz, 1H), 2.29 (s, 3H), 1.43–1.38 (m, 2H), 0.32 (t, *J* = 7.2 Hz, 3H). B: ¹H NMR (600 MHz, THF-*d*₈): δ 7.79–7.71 (m, 6H), 7.66–7.62 (m, 3H), 7.57–7.53 (m, 6H), 7.23–7.21 (m, 2H), 7.08–7.06 (m, 2H), 2.68 (t, *J* = 6.4 Hz, 1H), 2.28 (s, 3H), 1.51–1.46 (m, 2H), 0.51 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, THF-*d*₈): δ 141.5 (B, d, *J* = 28.9 Hz, C5), 141.1 (A, d, *J* = 29.0 Hz, C5), 140.5 (B), 139.8 (A), 135.05, 135.01, 134.98, 134.94, 133.7 (d, *J* = 2.5 Hz), 133.5 (d, *J* = 3.0 Hz), 133.23, 133.20, 130.0, 129.9, 129.8, 129.7, 129.1 (B), 127.8 (d, *J* = 93.6 Hz), 126.5, 124.5 (d, *J* = 92.7 Hz), 123.5 (B), 122.7 (A), 89.0 (B, C4)*, 88.0 (A, d, *J* = 152.8 Hz, C4), 75.0 (B), 69.2 (A), 26.1 (A) 24.0 (B), 21.1, 21.0, 17.2 (A), 16.5 (B). Not all doublets resulting from carbon-phosphorous coupling could be identified. Some resonances are listed as read from the spectrum. *Coupling constant *J*_{CP} could not be determined from the spectra due to insufficient signal/noise ratio.

Synthesis of mNHO complexes

General procedure 4 (**GP4**) for preparation of palladium complexes. In a Schlenk tube triazolium salt **1** (1 equiv.) was combined with KHMDS (1.05 equiv.). THF was added and the solution was stirred for 10 min. $[Pd(allyl)Cl]_2$ (0.5 equiv.) was dissolved in THF and the solution was added dropwise to mNHO. After 15 min of stirring the solvent was evaporated and the product extracted into diethyl ether. Solvent was removed to afford product as a light yellow solid.

7*aPd*. Prepared from 1a according to GP4. The product was dissolved in Et₂O and layered with pentane to afford pure 7aPd. ¹H NMR (600 MHz, THF): δ 7.93 (d, J = 8.2 Hz, 2H), 7.69–7.68 (m, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.49–7.42 (m, 3H), 7.34 (d, J = 8.1 Hz, 2H), 7.26–7.25 (m, 3H), 4.84–4.77 (m, 1H), 3.79–3.78 (m, 1H), 3.25–3.24 (m, 1H), 2.57 (d, J = 13.2 Hz, 2H), 2.38 (s, 3H), 2.33 (d, J = 9.6 Hz, 1H), 2.19 (d, J = 11.8 Hz, 1H), 2.01 (d, J = 9.6 Hz, 1H). ¹³C NMR (151 MHz, THF): δ 161.6, 140.6, 135.8, 133.4, 130.9, 130.2, 130.6, 129.4, 129.3, 128.9, 128.0, 126.4, 125.7,109.9, 63.6, 53.7, 20.2, -1.6. ¹³C chemical shifts are extracted from ¹H–¹³C *gs*-HSQC and ¹H–¹³C *gs*-HMBC spectra. HRMS (ESI+): calcd for C₂₅H₂₄N₃Pd⁺ [M – Cl]⁺, 472.1005; found, 472.1008.

7bPd. Prepared from **1b** according to **GP4**. Two isomeric products in a 1:0.9 (A:B) ratio. Resonances for aromatic protons of different isomers cannot be separated. ¹H NMR (600 MHz, THF): δ 8.00–7.97 (m, H), 7.91 (d, J = 5.9 Hz, H), 7.86 (d, J = 6.6 Hz, H), 7.56–7.55 (m, H), 7.42–7.31 (m, H), 7.25–7.22 (m, H), 4.93–4.88 (m, 1H), 4.87–4.80 (m, 1H), 3.75 (d, J = 6.5 Hz, 1H) 3.69 (d, J = 6.9 Hz, 1H), 3.31–3.29 (m, 1H, B), 3.26 (d, J = 5.3 Hz, 1H), 3.06 (d, J = 5.2 Hz, 1H), 2.98 (q, J = 6.9 Hz, 1H, A), 2.67 (d, J = 13.3 Hz, 1H), 2.50 (d, J = 13.3 Hz, 1H), 2.24 (d, J = 11.7 Hz, 1H), 2.19 (d, J = 11.5 Hz, 1H), 1.26 (d, J = 6.8 Hz, 3H, A), 1.13 (d, J = 6.9 Hz, 3H, B). ¹³C NMR (151 MHz, THF): δ 162.3, 162.2, 140.5, 135.4, 135.3, 133.4, 133.3, 132.0, 131.9, 130.7 (A and B), 130.2, 128.9, 127.3, 126.9, 125.7, 111.4, 109.8, 63.4, 62.4, 56.1, 56.0, 20.1, 18.6, 18.1, 10.9, 10.7. ¹³C chemical shifts are extracted from ¹H–¹³C *gs*-HSQC and ¹H–¹³C *gs*-HMBC spectra.

General procedure 5 (GP5) for preparation of gold complexes. In a Schlenk tube triazolium salt 1 (1 equiv.) was combined with KHMDS (1.05 equiv.). THF was added and purple solution was stirred for 10 min. AuCl(SMe₂) (1 equiv.) was mixed with THF and the mNHO solution was added dropwise to the mixture. Reaction mixture was stirred for 10 minutes as it turned dark yellow and the solvent was evaporated.

7aAu. Prepared from **1a** according to **GP5**. ¹H NMR (500 MHz, THF): δ 8.00–7.99 (m, 2H), 7.63–7.62 (m, 2H), 7.55–7.52 (m, 3H), 7.48–7.45 (m, 4H), 7.39–7.38 (m, 3H), 2.43 (s, 3H), 2.15 (s, 2H). ¹³C NMR (151 MHz, THF): δ 152.6, 141.5, 132.4, 131.4, 131.1, 130.0, 129.9, 128.9, 125.5, 125.2, 125.0, 20.3, 15.2. ¹³C chemical shifts are extracted from ¹H–¹³C *gs*-HSQC and ¹H–¹³C *gs*-HMBC spectra. HRMS (ESI+): calcd for C₂₂H₁₉AuN₃⁺ [M – Cl]⁺, 522.1239; found, 522.1234.

7bAu. Prepared from **1b** according to **GP5**. Two isomeric products in A:B = 1:0.7 ratio. Resonances for aromatic protons of different isomers cannot be separated. ¹H NMR (600 MHz, THF): δ 8.05–8.03 (m, 2H), 7.72 (m, 2H), 7.51–7.37 (m, 10H), 2.84 (q, *J* = 7.2 Hz, 1H, B), 2.79 (q, *J* = 7.2 Hz, 1H, A), 2.42 (s, 3H), 2.41 (s, 3H), 1.23 (d, *J* = 7.0 Hz, 3H, A), 1.18 (d, *J* = 7.2 Hz, 3H, B). ¹³C NMR (151 MHz, THF): δ 155.3 (B), 154.8 (A), 141.8, 135.1, 133.3 (B), 133.1 (A), 131.2, 131.0, 130.3, 130.1, 129.8, 128.9, 126.0, 125.9, 125.5, 26.0 (A), 20.7, 17.5 (B), 17.0 (A), 15.6 (B). ¹⁵N NMR (61 MHz, THF): δ 250, 249, 241 (B), 242 (A). ¹³C chemical shifts are extracted from ¹H–¹³C *gs*-HSQC and ¹H–¹³C *gs*-HMBC spectra.

Synthesis of palladium complex 9hPd. In a round bottomed flask **1h** (100 mg, 0.205 mmol) was combined with PdCl₂ (18 mg, 0.103 mmol). Dichloromethane (3 mL) was added, and the reaction mixture was stirred overnight at room temperature. Solvent was evaporated to afford a light yellow solid (225 mg, 95%). Crystals appropriate for X-ray diffraction analysis were obtained from a CDCl₃ solution. mp 210–211 °C. IR: 2966, 1510, 1437, 1372, 1059, 1016, 997, 835, 759, 694 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.44–8.40 (m, 4H), 7.74–7.70 (m, 6H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 4.06 (s, 3H), 2.44 (s, 3H), 1.88–1.85 (m, 2H), 1.19–1.11 (m, 2H), 0.40 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 150.4, 143.3, 136.5 (t), 134.1, 130.9, 130.7, 130.6, 130.4 (t), 126.5, 122.4 (t), 42.3, 25.5, 22.3, 21.6, 14.0. ³¹P NMR (CDCl₃): δ 11.2. ¹⁹F NMR (565 MHz, CDCl₃): δ –151.17.

Synthesis of mNHO-borane adduct 10aBH3. In a Schlenk flask **1a** (685 mg, 1.44 mmol) was dried under vacuum for 2 h. After filling the flask with nitrogen, KHMDS (315 mg, 1.58 mmol) was added. The solid mixture was cooled to -78 °C and dry THF (27 mL) was added. The reaction mixture instantly turned deep purple, indicating mNHO formation. After stirring for 20 min BH₃·THF (1 M, 1.44 mL, 1.44 mmol) was added. The reaction mixture was stirred for 2 h at -78 °C. After it had been allowed to warm to room temperature it was stirred overnight and filtered. Volatiles were removed under reduced pressure to afford yellow solid. The crude product was dissolved in dichloromethane, top-layered with hexane and left at -22 °C overnight. The supernatant was decanted off to obtain crystalline **10aBH3** (262 mg, 53%). mp 97–99 °C. IR: 3056, 2250, 1582, 1512, 1493, 1437, 1376, 1346, 1263, 1208, 1119, 823, 768, 693 cm^{-1. 1}H NMR (500 MHz, CDCl₃): δ 7.94–7.92 (m, 2H), 7.67–7.66 (m, 2H), 7.57–7.54 (m, 1H), 7.50–7.47 (m, 2H), 7.43–7.38 (m, 7H), 2.47 (s, 3H), 2.08 (br, 2H), 1.28–0.76 (br q, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 157.2, 141.8, 135.1, 135.0, 132.7, 131.4, 130.7, 130.5, 130.4, 130.1, 129.2, 125.8, 125.2, 124.6, 21.6, 14.3 (br). ¹¹B NMR (160 MHz, CDCl₃): δ –26.8 (q, *J* = 86.1 Hz).

Details on optimization of the reaction conditions for reduction of 3-phenylpropionaldehyde (11a) with 10aBH₃. Stirring a solution of 11a (0.058 M) with 10aBH₃ (1 equiv.) in acetonitrile for 3 h resulted in the quantitative formation of 3-phenylpropanol (12a). Other reaction solvents such as ethyl acetate, methanol, THF, and toluene were tested and found to be equally effective. Reducing the molar ratio of 10aBH₃/aldehyde from 1 to 0.5 and 0.33 also had no effect on the conversion (>90%).

General procedure 7 (*GP7*) *for reduction of aldehydes.* A round-bottomed flask was charged with aldehyde (0.1 mmol), **10aBH**₃ (0.05 mmol) and trimethoxybenzene (0.05 mmol). Acetonitrile (0.5 mL) was added, and the reaction mixture was stirred in the presence of air at room temperature. The conversion to product after 1, 4 and 24 h was determined by ¹H NMR analysis. The products were identified by comparison of the spectra with those for authentic samples of alcohols **12**.

General procedure 8 (GP8) for reduction of ketones. A round-bottomed flask was charged with **10aBH**₃ (0.05 mmol), silica gel (100 mg), trimethoxybenzene (0.05 mmol) and ketone (0.1 mmol). Acetonitrile (0.5 mL) was added, and the reaction mixture was stirred in the presence of air at room temperature. The conversion to product after 1, 4 and 24 h was determined by ¹H NMR analysis. The products were identified by comparison of the spectra with those for authentic samples of alcohols **14**.

 Table S4. Reduction of aldehydes 11 into primary alcohols 12.

0 R H 11	<mark>10aBH₃</mark> MeCN	R [∕] ОН 12		
	Product		Conversion after 4 h (%) [#]	Conversion after 24 h (%) [#]
4-bron	nobenzyl alcohol	l, 12b	25	61
3-nitr	obenzyl alcohol,	, 12c	44	44
3,4,5-met	thoxybenzyl alco	hol, 12d	8	21

[#]Conversion was determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. For copies of ¹H NMR spectra, see below.

Table S5. Reduction of ketones 13 into secondary alcohols 14.

$R = R' = \frac{10aBH_3}{MeCN} = OH$		
13 14		
Product	Conversion after 4 h (%) [#]	Conversion after 24 h (%) [#]
1-(4-nitrophenyl)ethanol, 14a	70	76
1-(4-bromophenyl)ethanol, 14b	62	66
1-(3-aminophenyl)ethanol, 14c	39	50
1-(4-methoxyphenyl)ethanol, 14d	35	39
diphenylmethanol, 14e	38	46

[#]Conversion was determined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. For copies of ¹H NMR spectra, see below.

4. References

- (1) Rigaku Oxford Diffraction, *CrysAlisPro* Software System, v. 1.171.42.89a, Rigaku Corporation, Wrocław, Poland, 2023.
- (2) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, *Acta Crystallogr.*, 2015, A71, 59–75. DOI: 10.1107/S2053273314022207
- (3) G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3–8. DOI: 10.1107/S2053229614024218
- (4) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341. DOI: 10.1107/S0021889808042726
- (5) K. Brandenburg, *Diamond* Crystal and Molecular Structure Visualization, v. 3.1, Crystal Impact GbR, Bonn, Germany, 2005.
- (6) R. I. Cooper, A. L. Thompson, D. J. Watkin, J. Appl. Crystallogr., 2010, 43, 1100–1107. DOI: 10.1107/S0021889810025598
- (7) R. S. Ghadwal, C. J. Schurmann, D. M. Andrada, G. Frenking, *Dalton Trans.* 2015, 44, 14359–14367. DOI: 10.1039/C5DT02237A
- (8) A. Bolje, D. Urankar and J. Košmrlj, *Eur. J. Org. Chem.*, 2014, **36**, 8167–8181. DOI: 10.1002/ejoc.201403100
- (9) M. Virant and J. Košmrlj, J. Org. Chem., 2019, 84, 14030–14044. DOI: 10.1021/acs.joc.9b02197
- (10) A. B. Shashank, S. Karthik, R. Madhavachary and D. B. Ramachary, *Chem. Eur. J.*, 2014, 20, 16877–16881. DOI: 10.1002/chem.201405501
- (11) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022, **12**, e1606. DOI: 10.1002/wcms.1606
- (12) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868. DOI: 10.1103/PhysRevLett.77.3865
- (13) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396. DOI: 10.1103/PhysRevLett.78.1396
- (14) F. Neese, F. Wennmohs, A. Hansen and U. Becker, *Chem. Phys.*, 2009, 356, 98–109.
 DOI: 10.1016/j.chemphys.2008.10.036
- (15) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104. DOI: 10.1063/1.3382344
- (16) I. Ehlers, P. Maity, J. Aubé and B. König, *Eur. J. Org. Chem.*, 2011, **13**, 2474–2490. DOI: 10.1002/ejoc.201001531.
- (17) D. M. Zink, T. Baumann, M. Nieger and S. Bräse, *Eur. J. Org. Chem.*, 2011, **8**, 1432–1437. DOI: 10.1002/ejoc.201001505
- M. M. Hansmann, P. W. Antoni and H. Pesch, Angew. Chem., Int. Ed., 2020, 59, 5782– 5787. DOI: 10.1002/anie.201914571

5. Copies of NMR spectra

Figure S11. ¹H NMR spectrum of 1a in CDCl₃, 500 MHz.

Figure S13. ¹H NMR spectrum of 1b in CDCl₃, 500 MHz.

Figure S15. ¹H NMR spectrum of 1c in CDCl₃, 500 MHz.

Figure S16. ¹³C{¹H} NMR spectrum of 1c in CDCl₃, 126 MHz.

Figure S18. ¹³C{¹H} NMR spectrum of 1d in CDCl₃, 151 MHz.

Figure S19. ¹H NMR spectrum of 1e in CDCl₃, 500 MHz.

Figure S21. ¹H NMR spectrum of 1f in CDCl₃, 500 MHz.

Figure S23. ¹H NMR spectrum of 1g in CDCl₃, 600 MHz.

S29

Figure S27. ³¹P{¹H} NMR spectrum of 1h in CDCl₃, 202 MHz.

Figure S28. ¹H NMR spectrum of 1j in CDCl₃, 500 MHz.

Figure S30. ³¹P{¹H} NMR spectrum of 1j in CDCl₃, 202 MHz.

Figure S31. ¹H NMR spectrum of 7a in THF-*d*₈, 600 MHz.

Figure S33. ¹H NMR spectrum of 7b in THF-*d*₈, 600 MHz.

Figure S34. ${}^{13}C{}^{1}H$ NMR spectrum of 7b in THF- d_8 , 151 MHz.

ppm

Figure S38. ${}^{13}C{}^{1}H$ NMR spectrum of 7d in THF-d₈, 151 MHz.

Figure S42. ${}^{13}C{}^{1}H$ NMR spectrum of 7f in THF- d_8 , 151 MHz.

Figure S44. ${}^{13}C{}^{1}H$ NMR spectrum of 7g in THF- d_8 , 151 MHz.

Figure S45. ¹H NMR spectrum of 8j in THF-*d*₈, 600 MHz.

Figure S46. ³¹P{¹H} NMR spectrum of 8j in THF- d_8 , 243 MHz.

Figure S48. Solvent suppression No-D ¹H NMR spectrum of 7aPd in THF, 600 MHz.

Figure S49. ¹H–¹³C gs-HSQC NMR spectrum of 7aPd in THF, 600 MHz NMR instrument.

Figure S51. ¹H NMR spectrum of **7aPd** in THF- d_8 , 600 MHz. Contains 13% of **1a** as well as residues of allyl ligand and KHMDS.

Figure S52. ¹³C{¹H} NMR spectrum of **7aPd** in THF- d_8 , 600 MHz. Contains 13% of **1a** as well as residues of KHMDS.

Figure S53. Solvent suppression No-D ¹H NMR spectrum of 7bPd in THF, 600 MHz.

Figure S54. ¹H–¹³C HSQC NMR spectrum of 7bPd in THF, 600 MHz NMR instrument.

Figure S55. ¹H–¹³C gs-HMBC NMR spectrum of **7bPd** in THF, 600 MHz NMR instrument.

Figure S56. Solvent suppression No-D¹H NMR spectrum of **7aAu** in THF, 600 MHz NMR instrument.

Figure S57. ¹H–¹³C HSQC NMR spectrum of **7aAu** in THF, 600 MHz NMR instrument.

Figure S58. ¹H–¹³C gs-HMBC NMR spectrum of 7aAu in THF, 600 MHz NMR instrument.

Figure S60. ¹H–¹³C HSQC NMR spectrum of 7bAu in THF, 600 MHz NMR instrument.

Figure S61. ¹H–¹³C gs-HMBC NMR spectrum of 7bAu in THF, 600 MHz NMR instrument.

Figure S63. ¹³C{¹H} NMR spectrum of **9hPd** in CDCl₃, 126 MHz.

Figure S64. ³¹P{¹H} NMR spectrum of 9hPd in CDCl₃, 151 MHz.

Figure S65. ¹H NMR spectrum of **10aBH**₃ in CDCl₃, 500 MHz.

Figure S67. ¹¹B NMR spectrum of 10aBH₃ in CDCl₃, 160 MHz.

NMR spectra of aldehyde reductions

Figure S69. ¹H NMR spectrum of 4-bromobenzaldehyde (11b) reduction after 24 h.

Figure S71. ¹H NMR spectrum of 3-nitrobenzaldehyde (11c) reduction after 24 h.

Figure S73. ¹H NMR spectrum of 2,3,4-trimethoxybenzaldehyde (11d) reduction after 24 h.

NMR spectra of ketone reductions

Figure S75. ¹H NMR spectrum of 4-nitroacetophenone (13a) reduction after 24 h.

Figure S77. ¹H NMR spectrum of 4-bromoacetophenone (13b) reduction after 24 h.

Figure S79. ¹H NMR spectrum of 3-aminoacetophenone (13c) reduction after 24 h.

Figure S81. ¹H NMR spectrum of 4-methoxyacetophenone (13d) reduction after 24 h.

Figure S83. ¹H NMR spectrum of benzophenone (13e) reduction after 24 h.

6. Cartesian coordinates of optimized structures

 $Cartesian \ coordinates \ of \ the \ gas-phase \ optimized \ equilibrium \ structures \ (in \ Å) \ at \ PBE0-D3/ \ def2-SV(p).$ level of theory

7aPd
/ul u

Cl	6.032294000	4.502272000	8.202767000
N	4.239495000	7.404991000	7.579150000
N	3.173223000	6.658568000	7.534851000
N	3.392796000	5.850730000	6.517116000
С	5.169118000	5.127106000	4.941955000
Н	6.056507000	5.550987000	4.451931000
Н	4.435002000	4.782318000	4.200636000
С	4.614786000	6.025431000	5.916651000
С	5.163623000	7.103911000	6.622234000
С	6.444144000	7.789102000	6.453807000
С	7.614338000	7.031728000	6.301779000
Н	7.552391000	5.942513000	6.377261000
С	8.838062000	7.672325000	6.124566000
H	9.747659000	7.074745000	6.014343000
С	8.908822000	9.065300000	6.104614000
H	9.872877000	9.564347000	5.967599000
С	7.747721000	9.822636000	6.264757000
H	7.797143000	10.9153/8000	6.250653000
C	6.520309000	9.189613000	6.434/44000
H	5.610217000	9.785345000	6.5484/4000
C	2.539588000	4./33628000	6.294328000
C	2.565317000	3.689507000	/.21/02/000
C	1.010107000	2.555841000	6.969722000
H	1.022225000	1./33824000	7.692240000
C	1.021102000	2.439700000	5.807766000
C	1.021102000	3.506413000	4.899622000
н С	1 774617000	5.439907000	5.990301000
C	1.115002000	4.032709000	J.133030000
C	4.415695000	8.300038000	0.073707000
C	5.510059000	0.0912/4000	9.512695000
U	5.702594000	0.9303030000	11 252444000
С	4 907630000	10 005622000	10 910750000
с ц	4.007033000	10 683123000	11 655084000
C C	3 708666000	10.187147000	9 970407000
ч	3 004182000	11 003007000	10 154661000
C	3 506429000	9 330741000	8 889662000
C	6 343635000	1 474471000	5 414834000
н	7 390419000	1 412039000	5 090167000
Pd	5 754177000	3 409143000	6 078915000
C	6 044077000	1 333843000	6 775869000
H	5.018139000	1,129856000	7.106503000
Н	6.839412000	1.103395000	7,491329000
C	5.377658000	2.037895000	4.533181000
Н	5.677917000	2.279803000	3.506892000
Н	4.313551000	1.791023000	4.659230000
Н	3.209840000	3.771737000	8.096002000
Н	1.773655000	5.482516000	4.424105000
С	0.242726000	1.188058000	5.524632000
Н	0.859812000	0.460838000	4.964662000
Н	-0.081169000	0.694615000	6.455704000
Н	-0.651917000	1.397300000	4.915098000
Н	2.654654000	9.452795000	8.216331000
Н	6.173514000 7.242885000	9.320631000	
79Pd - i4	somer ?		
	Q 076521000	4 643865000	6 051061000
N	2 005475000	4.043003000	0.UJIJUUU 3 702507000
M	2.005475000	3 668337000	2 7226/1000
TN I	2.133033000	3.00033/000	2.122041000

N	3.945926000	4.119679000	2.996514000
С	5.254980000	5.207259000	4.813667000
Н	5.111132000	5.951803000	5.606296000
Н	6.056582000	5.493112000	4.125432000
С	4.038553000	4.783264000	4.201995000
С	2.702954000	4.794437000	4.656156000
С	2.137815000	5.407530000	5.854683000
С	2.848376000	5.339715000	7.063842000
Н	3.805510000	4.810310000	7.100480000
С	2.331333000	5.931028000	8.214054000
Н	2.895275000	5.871469000	9.149275000
С	1.105856000	6.595029000	8.175012000
Н	0.704643000	7.062086000	9.079238000
С	0.396725000	6.670934000	6.974958000
Н	-0.559259000	7.201084000	6.933699000
С	0.908439000	6.086682000	5.821452000
Н	0.356221000	6.168797000	4.881369000
С	5.041659000	3.725286000	2.182946000
С	5.290648000	2.368933000	1.986335000
С	6.396459000	1.982019000	1.236815000
Н	6.592210000	0.916292000	1.083845000
С	7.271641000	2.929384000	0.691702000
С	6.989520000	4.285980000	0.896242000
Н	7.653188000	5.044776000	0.471150000
С	5.882114000	4.689613000	1.633132000
С	0.637623000	3.675782000	3.764514000
С	0.133437000	3.095381000	4.927244000
С	-1.198268000	2.692005000	4.954672000
Н	-1.603340000	2.234831000	5.861429000
С	-2.007459000	2.860770000	3.830304000
Н	-3.052799000	2.540580000	3.857377000
С	-1.483814000	3.431360000	2.670370000
Н	-2.114800000	3.558452000	1.786419000
С	-0.154507000	3.846103000	2.631940000
С	5.705072000	1.373869000	5.785538000
Н	6.037091000	0.856996000	4.875576000
Pd	6.075539000	3.463226000	5.738915000
С	6.637606000	1.632757000	6.800288000
Н	6.307645000	1.897593000	7.812570000
Н	7.666135000	1.272224000	6.705027000
С	4.462580000	2.068573000	5.775384000
Н	3.801062000	1.945063000	4.908226000
Н	3.940976000	2.257727000	6.724521000
Н	4.619823000	1.626811000	2.424981000
Н	5.671294000	5.750491000	1.785845000
С	8.499588000	2.505828000	-0.060630000
Н	9.368300000	2.444634000	0.620905000
Н	8.369947000	1.513296000	-0.522741000
Н	8.755291000	3.226970000	-0.854539000
Н	0.276796000	4.294592000	1.734369000
H	0.781340000 2.960571000	5.796255000	
7			
	6 279574000	1 222364000	7 471506000
N	2 015962000	1.222304000	3 662732000
N	2.013902000	3 705772000	2 668972000
IN NT	2.705011000	3.703772000	2.000972000
IN C	5 283416000	1 790467000	5.075185000
н	5 080261000	5 626591000	5 76273/000
H	6 113732000	5.020091000	1 292124000 1 292126000
C	A 072287000	4 465956000	1 312076000
C	2 727312000	4 583027000	A 701637000
C	2 142479000	5 141927000	5 942462000
C	2 651670000	4 761097000	7 192032000
н	3 482698000	4.047958000	7 245444000
C	2 098869000	5 283089000	8 358916000
н	2.090009000	4 974751000	9 327822000
C	1 040908000	6 188725000	8 29126000
<u> </u>	T*0100000		0.201200000

Н	0.610392000	6.598397000	9,209769000
C	0 535745000	6 577694000	7 049351000
	0.3933743000	7.205656000	6.000001000
н	-0.287297000	7.295656000	6.990921000
С	1.082753000	6.060225000	5.879867000
Н	0.689859000	6.375151000	4.909055000
С	5.070074000	3.636818000	2.183935000
С	6,164869000	2,900237000	2,631198000
C	7 187903000	2 602686000	1 737931000
	0.000	2.002000000	1.757951000
н	8.043561000	2.020609000	2.093549000
С	7.138509000	3.021925000	0.402243000
С	6.017898000	3.748396000	-0.020372000
Н	5.951362000	4.080647000	-1.060883000
С	4,986804000	4,061495000	0.859107000
C	0 604146000	3 913359000	3 56/311000
C	0.070245000	2.20260000	1 (14292000
C	-0.079245000	3.302689000	4.614283000
C	-1.456402000	3.131354000	4.509063000
Н	-2.002149000	2.652449000	5.326403000
С	-2.133344000	3.557540000	3.365797000
Н	-3.215253000	3.418349000	3.288803000
C	-1 432181000	4 155794000	2 318815000
	1.060265000	1.1007010000	1 420220000
п	-1.900203000	4.400232000	1.420230000
C	-0.054868000	4.3399/3000	2.413931000
H	6.213990000	2.559833000	3.671439000
H	4.115899000	4.628733000	0.523227000
С	8.268750000	2.720437000	-0.538567000
Н	9 095629000	3 441515000	-0 400769000
ц	9 691950000	1 712501000	-0.360197000
п	0.00100000	1.713391000	-0.300187000
н	7.947793000	2.781029000	-1.591202000
H	0.513225000	4.807847000	1.606958000
Н	0.463698000	2.963260000	5.499030000
Au	5.775684000 3.104847000	6.211452000	
mNHO	-RhCO		
Rh	6.504049000	2.771132000	5.569368000
Cl	4 434432000	1 592257000	5 866265000
0	0.011001000	1 205419000	5.000200000 5.102604000
0	9.011801000	4.303410000	J.103094000
	7 0 4 7 0 0 7 0 0 0	0 261227000	c 00000000
0	7.847887000	0.361327000	6.822329000
N	7.847887000 2.051567000	0.361327000 4.016642000	6.822329000 3.882624000
N N	7.847887000 2.051567000 2.648053000	0.361327000 4.016642000 3.712616000	6.822329000 3.882624000 2.763644000
N N N	7.847887000 2.051567000 2.648053000 3.925731000	0.361327000 4.016642000 3.712616000 3.896503000	6.822329000 3.882624000 2.763644000 3.012851000
N N N C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000
N N N C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000
N N C H	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000
N N C H H	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000
N N C H H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000
N N C H C C C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000
N N N C H H C C C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000
N N N C H H C C C C C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000
N N C H H C C C C C C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000
0 N N N C H H C C C C C C C C C C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.60458000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000
0 N N C H H C C C C C C C C C C C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.8052500000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.165321000\end{array}$
N N N C H H C C C C C C C C C H H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.165321000\\ 0.566614000\\ \end{array}$
N N N C H H C C C C C C C C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.165321000\\ 8.596614000\\ \end{array}$
N N N C H H C C C C C C C H C H H C H H C H H C C C C H H H C C H H H H C H	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.165321000\\ 8.596614000\\ 9.449375000\\ \end{array}$
N N N C H H C C C C C C H C H C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.314837000\\ 7.165321000\\ 8.596614000\\ 9.449375000\\ 8.795238000\\ \end{array}$
O N N N C H H C C C C C C H C H C H C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000
N N N C H H C C C C C C C H C H C H C H	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000
O N N N C H H C C C C C C H C H C H C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000
O N N N C H H C C C C C C H C H C H C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 3.805250000 4.861078000 4.861078000 5.636758000 5.944574000 6.019101000 6.632781000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415250000
О N N N C H H C C C C C C C H C H C H C H	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415258000
O N N N C H H C C C C C C H C H C H C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.314837000\\ 7.165321000\\ 8.596614000\\ 9.449375000\\ 8.795238000\\ 9.805052000\\ 7.699849000\\ 7.844379000\\ 6.415258000\\ 5.56689200\\ \end{array}$
О И И И С Н Н С С С С С С Н С Н С Н С Н С	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415258000 5.566892000 1.957545000
О N N N C H H C C C C C C H C H C H C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000 2.468305000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.314837000\\ 7.165321000\\ 8.596614000\\ 9.449375000\\ 8.795238000\\ 9.805052000\\ 7.699849000\\ 7.844379000\\ 6.415258000\\ 5.566892000\\ 1.957545000\\ 1.658052000\\ \end{array}$
О И И И С Н Н С С С С С С Н С Н С Н С Н С	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000 6.314502000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000 2.371004000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415258000 5.566892000 1.957545000 1.658052000 0.638000000
О И И И С Н С С С С С С С Н С Н С Н С Н С	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000 6.314502000 6.715990000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.861078000 5.636758000 5.944574000 6.019101000 6.632781000 5.943093000 3.753051000 2.371004000 1.390036000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415258000 5.566892000 1.957545000 1.658052000 0.638000000 0.372929000
О И И И И С С С С С С С С С С Н С Н С Н С	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000 6.314502000 6.715990000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000 2.371004000 1.390036000 3.502472000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415258000 5.566892000 1.957545000 1.658052000 0.63800000 0.372929000
О N N N C H H C C C C C C C C H C H C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000 6.314502000 6.715990000 6.760103000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.60458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000 2.468305000 2.371004000 1.390036000 3.502472000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415258000 5.566892000 1.957545000 1.658052000 0.638000000 0.372929000 -0.03857000
О N N N C H H C C C C C C C C H C H C H C	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000 6.314502000 6.715990000 6.760103000 7.509187000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000 2.468305000 2.371004000 1.390036000 3.502472000 3.402536000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415258000 5.566892000 1.957545000 1.658052000 0.638000000 0.372929000 -0.038587000 -0.829682000
О И И И С Н Н С С С С С С С С С С С С С С	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000 6.314502000 6.715990000 6.760103000 7.509187000 6.258169000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000 2.468305000 2.371004000 1.390036000 3.502472000 3.402536000 4.759907000	6.822329000 3.882624000 2.763644000 3.012851000 4.803794000 5.664154000 4.014486000 4.292370000 4.870233000 6.334083000 5.296790000 6.209306000 7.314837000 7.165321000 8.596614000 9.449375000 8.795238000 9.805052000 7.699849000 7.844379000 6.415258000 5.566892000 1.957545000 1.658052000 0.638000000 0.372929000 -0.38587000 -0.829682000 0.281148000
О И И И С Н Н С С С С С С С С С С С С С С	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000 6.314502000 6.715990000 6.760103000 7.509187000 6.258169000 6.612127000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000 2.468305000 2.371004000 1.390036000 3.502472000 3.402536000 4.759907000 5.638494000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.314837000\\ 7.165321000\\ 8.596614000\\ 9.449375000\\ 8.795238000\\ 9.805052000\\ 7.699849000\\ 7.844379000\\ 6.415258000\\ 7.844379000\\ 6.415258000\\ 5.566892000\\ 1.957545000\\ 1.658052000\\ 0.372929000\\ -0.038587000\\ -0.829682000\\ 0.281148000\\ -0.265564000\end{array}$
О N N N C H H C C C C C C C H C H C H C H	7.847887000 2.051567000 2.648053000 3.925731000 5.518321000 5.475477000 6.149031000 4.187785000 2.915051000 7.348572000 8.053832000 2.514648000 3.292506000 4.153848000 2.926469000 3.536364000 1.785040000 1.497717000 1.009965000 0.116206000 1.372664000 0.762417000 4.885401000 5.364082000 6.314502000 6.715990000 6.760103000 7.509187000 6.258169000 6.612127000 5.302958000	0.361327000 4.016642000 3.712616000 3.896503000 4.551497000 5.237809000 4.986178000 4.305763000 4.403928000 1.264488000 3.702931000 4.836445000 4.460458000 3.805250000 4.861078000 4.549820000 5.636758000 5.944574000 6.019101000 6.632781000 5.627073000 5.943093000 3.753051000 2.468305000 2.371004000 1.390036000 3.502472000 3.402536000 4.759907000 5.638494000 4.914989000	$\begin{array}{c} 6.822329000\\ 3.882624000\\ 2.763644000\\ 3.012851000\\ 4.803794000\\ 5.664154000\\ 4.014486000\\ 4.292370000\\ 4.870233000\\ 6.334083000\\ 5.296790000\\ 6.209306000\\ 7.314837000\\ 7.314837000\\ 7.165321000\\ 8.596614000\\ 9.449375000\\ 8.795238000\\ 9.805052000\\ 7.699849000\\ 7.844379000\\ 6.415258000\\ 5.566892000\\ 1.957545000\\ 1.658052000\\ 0.63800000\\ 0.372929000\\ -0.038587000\\ -0.829682000\\ 0.281148000\\ -0.265564000\\ 1.289540000\\ \end{array}$

Н	4.062309000	6.189454000	2.469868000
С	3.872933000	6.776371000	0.424785000
Н	4.490750000	6.945251000	-0.474987000
Н	3.378775000	7.731093000	0.679238000
Н	3.094325000	6.040798000	0.164837000
С	5.808313000	7.301314000	1.961353000
Н	6.488795000	7.492904000	1.113143000
Н	6.417265000	6.954652000	2.813052000
Н	5.346458000	8.264207000	2.241521000
С	4.832095000	1.244951000	2.370113000
Н	4.437969000	1.568114000	3.346967000
С	3.673664000	0.631361000	1.577986000
Н	2.864955000	1.364571000	1.417968000
Н	3.253305000	-0.228450000	2.128894000
Н	4.011891000	0.272947000	0.588406000
С	5.912348000	0.213318000	2.676872000
Н	6.300484000	-0.276163000	1.765265000
Н	5.492908000	-0.572322000	3.327532000
Н	6.754570000	0.676943000	3.219141000
С	0.623093000	3.897260000	3.960757000
С	0.088538000	2.850046000	4.725946000
С	-1.305227000	2.772550000	4.803246000
Н	-1.761363000	1.969772000	5.388876000
С	-2.113764000	3.691959000	4.144203000
Н	-3.202289000	3.610947000	4.217669000
С	-1.546510000	4.714583000	3.388931000
Н	-2.194924000	5.428210000	2.873400000
С	-0.159720000	4.845105000	3.282129000
С	0.445584000	5.957614000	2.448649000
Н	1.527518000	5.993055000	2.658553000
С	-0.123912000	7.330984000	2.804106000
Н	-1.194651000	7.412792000	2.548288000
Н	0.409402000	8.117841000	2.242626000
Н	-0.015163000	7.549917000	3.880619000
С	0.279089000	5.649763000	0.958813000
Н	0.774289000	4.699955000	0.697121000
Н	0.719589000	6.453677000	0.344083000
Н	-0.789372000	5.564511000	0.691764000
С	0.959448000	1.821297000	5.410419000
Н	2.009956000	2.138765000	5.340845000
С	0.647989000	1.696946000	6.900629000
Н	0.700147000	2.679450000	7.400815000
Н	1.393333000	1.037216000	7.376169000
Н	-0.354097000	1.267867000	7.082855000
С	0.871457000	0.474506000	4.690034000
Н	-0.143397000	0.041163000	4.754845000
Н	1.583633000	-0.236171000	5.143420000
Н	1.131502000 0.577793000	3.622356000	