Supporting Information

- **S1: Synthetic Details**
- S2: X-Ray Diffraction Studies
- **S3:** Theoretical Details
- **S4: References**

S1: Synthetic Details

General: All manipulations were performed under an inert atmosphere of dry nitrogen, using standard Schlenk techniques and glovebox. Dry, oxygen-free solvents were employed. Sodium 3,5-diphenyl-phosphinin-2-olate was prepared following literature preocedure,¹ while all other starting materials were purchased from commercial sources. NMR spectra were recorded on Bruker Avance 400 MHz (¹H, 400.1 MHz; ¹³C, 100.5 MHz; ³¹P, 161.9 MHz) or Bruker Avance 600 MHz spectrometers (¹H, 600.2 MHz; ¹³C, 150.8 MHz; ³¹P, 242.9 MHz). All spectra were obtained in the solvent indicated at 25 °C except mentioned otherwise. The chemical shifts (δ) were measured according to IUPAC and expressed in ppm relative to SiMe₄ (¹H, ¹³C), and 85 % H₃PO₄ (³¹P). Coupling constants J are reported in Hertz [Hz] as absolute values. Single crystal Xray diffraction data was collected on an Agilent Technologies SuperNova X-RAY diffractometer system equipped with a Cu sealed tube ($\lambda = 1.54178$) at 40 kV and 30 mA. Because of high sensitivity of these compounds or the contamination of solvents, the elemental analyses gave unsatisfying results. The high purity of these isolated compounds has been proved mainly by NMR spectra. ESI-MS/APCI-MS spectra were measured on Bruker ESI/APCI-Q-TOF maxis 4G. UV-Vis absorption spectra were

recorded using a Shimadzu UV Vis/NIR UV-3600 spectrophotometer. Solid-state IR spectra were obtained on a Perkin-Elmer Frontier FT-IR spectrometer in the region of 500-4000 cm⁻¹ using ATR technique. Melting points (M. P.) were measured on jiahang JH-30 apparatus.

Preparation of 1:

Phosphorus trichloride (92 mg, 0.67 mmol) in Et₂O (1 mL) was added to a stirred solution of sodium 3,5-diphenyl-phosphinin-2-olate (570 mg, 2.0 mmol) in Et₂O (10 mL) at room temperature. After stirring for 0.5 hour, some white precipitates appeared. After filtration, the remaining solid was extracted with dichloromethane to remove the salts. Then, the solvent was removed under reduced pressure, and the remaining residue was washed with hexane and dried *in vacuo* to afford **1** as a pale-yellow powder (373 mg, 0.45 mmol), 68 % yield. M. P. = 164 °C. ¹H NMR (CD₂Cl₂, 400.1 MHz): δ = 8.13 (m, 3 H, C_{ar}H), 7.96 (m, 3 H, C_{ar}H), 7.70 (m, 12 H, C_{ar}H), 7.49 (m, 18 H, C_{ar}H); ¹³C{¹H} NMR (CD₂Cl₂, 150.8 MHz): δ = 184.4 (d, ¹J_{PC} = 46.7 Hz, OCP), 171.6 (d, ¹J_{PC} = 49.8 Hz, CPC), 145.9 (Car), 142.9 (d, ²J_{PC} = 27.1 Hz, PCC), 141.0 (Car), 129.7 (Car), 129.0 (d, *J* = 12.1 Hz, Car), 128.3 (d, *J* = 15.1 Hz, Car), 127.8 (Car), 127.6 (Car), 125.8 (Car); ³¹P{¹H} NMR (CD₂Cl₂, 161.9 MHz): δ = 151.8 (d, ³J_{PP} = 68.0 Hz), 127.9 (q, ³J_{PP} 68.0 Hz). IR (ATR, [cm⁻¹]): 3052, 3023, 1572, 1488, 1372, 1105, 955, 868, 759, 695; UV/Vis (THF, λ (nm) ε (M⁻¹cm⁻¹)): 306 (79650); APCI-TOF-MS: calc. for C₅₁H₃₆O₃P₄⁺: 821.16877, ([M+H]⁺), found: 821.16809.

Figure S1. ¹H NMR spectrum of **1** in CD₂Cl₂. [#]Hexane, ^{*} Silicone grease.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Figure S5. IR spectrum of 1

Preparation of [2]Cl:

[Rh(cod)Cl]₂ (100 mg, 0.22 mmol) in THF (5mL) was added to a stirred solution of **1** (350 mg, 0.43 mmol) in THF (10 mL) at room temperature. After stirring for 2 hours, the solvent was removed under reduced pressure. The remaining solid was washed with hexane and dried *in vacuo* to afford a red powder [**2**]Cl (370 mg, 0.39 mmol), 90.3 % yield. M. P. = 134 °C. ¹H NMR (CD₂Cl₂, 400.1 MHz): δ = 8.07 (m, 3 H, C_{ar}H), 7.99 (m, 9 H, C_{ar}H), 7.65 (m, 6 H, C_{ar}H), 7.49 (m, 18 H, C_{ar}H); ¹³C{¹H} NMR (100.5 MHz, CD₂Cl₂): δ = 173.7 (C_{ar}), 161.5 (t, *J* = 15.1 Hz, C_{ar}), 141.2 (C_{ar}), 140.8 (C_{ar}), 139.2 (dd, *J* = 12.1 Hz, *J* = 5.0 Hz, C_{ar}), 131.4 (dd, *J* = 11.1 Hz, *J* = 5.9 Hz, C_{ar}), 129.2 (C_{ar}), 128.9

(C_{ar}), 128.6 (C_{ar}), 128.2 (C_{ar}), 127.3 (C_{ar}), 119.8 (d, J= 20.8 Hz, C_{ar}); ³¹P {¹H} NMR (161.9 MHz, CD₂Cl₂): 218.8 (dq, ¹*J*_{RhP} = 155.4 Hz, ²*J*_{PP} = 25.9 Hz, phosphite), 137.3 (dd, ¹*J*_{RhP} = 170.0 Hz, ²*J*_{PP} = 25.9 Hz, phosphine); IR (ATR, [cm⁻¹]): 3055, 3031, 1493, 1399, 1347, 1134, 1075, 951, 889, 827, 756, 728, 690; UV/Vis (THF, λ (nm) ε (M⁻¹cm⁻¹)): 300 (93130), 361 (52280); 409 (79610); 471 (38140); APCI-TOF-MS: calc. for C₅₁H₃₆O₃P₄Rh⁺: 923.0664 ([M]⁺), found: 923.0647.

Figure S6. ¹H NMR spectrum of [2]Cl in CD₂Cl₂. [#]COD, ^{*}Silicon grease.

Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum of [2]Cl in CD₂Cl₂.

Figure S10. IR spectrum of [2]Cl.

Preparation of [4]²⁺[(GaCl₄)⁻]₂:

GaCl₃ (19 mg, 0.11 mmol) in dichloromethane (3 mL) was added to a stirred solution of [**2**]Cl (110 mg, 0.11 mmol) in dichloromethane (10 mL) at room temperature. After stirring for 2 hours, the solvent was removed under reduced pressure. The remaining solid was washed with hexane and dried *in vacuo* to afford [**4**]²⁺[(GaCl₄)⁻]₂ as a greenblack powder (110 mg, 0.048 mmol), 87 % yield. M. P. > 250 °C. ³¹P{¹H}NMR (CD₂Cl₂, 161.9 MHz, 203 K): $\delta = 170.9$ (m, phosphite), 134.9 (m, η_1 -P), 98.7 (m, η_1 -P), 59.8 (m, μ_2 -P); IR (ATR, [cm⁻¹]): 3054, 3027, 2962, 1563, 1099, 958, 889, 760, 694; UV/Vis (THF, λ (nm) ϵ (M⁻¹ cm⁻¹)): 347 (114040), 385 (94800); 604 (48540), 666 (33320); APCI-TOF-MS: calc. for C₅₁H₃₆O₃P₄Rh⁺: 923.0664 ([M]⁺), found: 923.0623.

8.45 7.92 7.61 7.28 7.28 7.25 7.25 7.11 6.98 6.97 6.95 6.95 6.74 6.74

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 - 1.5 $f_1 (ppm)$ *Figure S11.* ¹H NMR spectrum of [4]²⁺[(GaCl₄)⁻]₂ in CD₂Cl₂ at 297K.

Figure S12. Variable temperature ¹H NMR spectrum of $[4]^{2+}[(GaCl_4)^{-}]_2$ in CD₂Cl₂. (A new peak at 5.9 ppm appeared gradually upon cooling to 203 K).

Figure S13. ³¹P{¹H} NMR spectrum of $[4]^{2+}[(GaCl_4)^-]_2$ in CD₂Cl₂ at 297K.

Figure S14. ³¹P{¹H} NMR spectrum of $[4]^{2+}[(GaCl_4)^{-}]_2$ in CD₂Cl₂ at 203K.

Figure S15. DOSY NMR spectrum of $[4]^{2+}[(GaCl_4)^-]_2$ in CD₂Cl₂ at 297K.

Figure S16. DOSY NMR spectrum of $[4]^{2+}[(GaCl_4)^-]_2$ in CD₂Cl₂ at 203 K (new peak at 5.9 ppm).

Figure S17. $^{1}H^{-31}P$ HMBC NMR spectrum of $[4]^{2+}[(GaCl_{4})^{-}]_{2}$ in CD₂Cl₂ at 203 K.

Figure S19. IR spectrum of [4]²⁺[(GaCl₄)⁻]₂.

Preparation of [5]⁺(GaCl₄)⁻:

Acetonitrile (10 mL) was added to $[4]^{2+}[(GaCl_4)^-]_2$ (220 mg, 0.10 mmol) at room temperature. After stirring for 1 hour, the solvent was removed under reduced pressure, then the remaining solid was washed with hexane and dried *in vacuo* to afford $[5]^+(GaCl_4)^-$ as a red powder (181 mg, 0.154 mmol), 77 % yield. M. P. = 174 °C. ¹H NMR (CD₂Cl₂, 400.1 MHz): $\delta = 8.12$ (m, 6 H, C_{ar}*H*), 7.7 (m, 12 H, C_{ar}*H*), 7.6 (m, 18 H, C_{ar}*H*), 1.92 (s, 3 H, ACN); ¹³C {¹H} NMR (CD₂Cl₂, 100.5 MHz): $\delta = 172.5$ (C_{ar}), 160.6 (t, *J* = 10.1 Hz, C_{ar}), 143.1 (m, C_{ar}), 140.2 (m, C_{ar}), 139.5 (dd, *J* = 11.9 Hz, *J* = 5.1 Hz, C_{ar}), 132.5 (dd, *J* = 10.6 Hz, *J* = 5.7 Hz, C_{ar}), 129.4 (m, C_{ar}), 129.3 (m, C_{ar}), 129.1 (m, C_{ar}), 128.8 (m, C_{ar}), 128.5 (dd, *J* = 7.5 Hz, *J* = 4.5 Hz, C_{ar}), 127.4 (m, C_{ar}), 120.9 (d, *J* = 20.1 Hz, C_{ar}), 4.64 (ACN); ³¹P {¹H} NMR (CD₂Cl₂, 161.9 MHz): $\delta = 212.4$ (dq, ¹*J*_{RhP} = 155.4 Hz, ²*J*_{PP} = 25.9 Hz, phosphite), 138.5 (dd, ¹*J*_{RhP} = 166.8 Hz, ²*J*_{PP} = 25.9 Hz, phosphite), 138.5 (ad, ¹*J*_{RhP} = 166.8 Hz, ²*J*_{PP} = 25.9 Hz, phosphite), 138.5 (ad, ¹*J*_{RhP} = 166.8 Hz, ²*J*_{PP} = 25.9 Hz, phosphite), 138.5 (20, ¹*G*), 1394, 1345, 1260, 1077, 953, 885, 833, 760, 691; UV/Vis (THF, λ (nm) ϵ (M⁻¹cm⁻¹)): 361 (32900), 409 (49800), 467 (25450); ESI-TOF-MS: cale. for C₅₃H₃₉O₃P₄NRh⁺: 964.0930 ([M]⁺), found: 964.0906.

Figure S20. ¹H NMR spectrum of [5]⁺(GaCl₄)⁻ in CD₂Cl₂. [#] silicone grease.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S21. ¹³C NMR spectrum of $[5]^+(GaCl_4)^-$ in CD_2Cl_2 .

Figure S24. IR spectrum of [5]⁺(GaCl₄)⁻.

In a Schlenk tube, the solution of $[4]^{2+}[(GaCl_4)^-]_2$ (227 mg, 0.10 mmol) in dichloromethane (5 mL) was first frozen by liquid nitrogen, then the dinitrogen was pumped off under reduced pressure and replaced with CO gas. The reaction mixture was then allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure, and the remaining residue was washed with hexane and dried *in vacuo* to afford $[6]^+(GaCl_4)^-$ as a red powder (198 mg, 0.17 mmol), 83 % yield. M. P. = 183 °C. ¹H NMR (CD₂Cl₂, 400.1 MHz): δ = 8.31 (m, 3 H, C_{ar}*H*), 8.23 (m, 3 H, C_{ar}*H*), 7.62 (m, 30 H, C_{ar}*H*); ¹³C {¹H} NMR (CD₂Cl₂, 100.5 MHz): 192.1 (s, CO) 172.9 (m, C_{ar}), 160.8 (m, C_{ar}), 124.5 (m, C_{ar}), 139.7 (m, C_{ar}), 138.4 (dd, *J* = 11.1 Hz, *J* = 5.0 Hz, C_{ar}), 133.0 (m, C_{ar}), 129.9 (m, C_{ar}), 129.6 (m, C_{ar}), 129.4 (m, C_{ar}), 129.3 (m, C_{ar}), 128.3 (dd, *J* = 8.1 Hz, *J* = 4.6 Hz, C_{ar}), 127.5 (m, C_{ar}), 121.8 (m, C_{ar}); ³¹P {¹H} NMR (CD₂Cl₂, 161.9 MHz) δ = 225.3 (dq, ¹*J*_{RhP} = 122.2 Hz, ²*J*_{PP} = 34.0 Hz, phosphite),

139.0 (dd, ${}^{1}J_{RhP} = 161.9$ Hz, ${}^{2}J_{PP} = 34.0$ Hz, phosphinine); IR (ATR, [cm⁻¹]): 3054, 3024, 2096 (CO), 1563, 1491, 1397, 1346, 1077, 956, 898, 758, 697, 546; UV/Vis (THF, λ (nm) ϵ (M⁻¹cm⁻¹)): 405 (48960); APCI-TOF-MS: calc. for C₅₂H₃₆O₄P₄Rh⁺: 951.0614 ([M]⁺), found: 951.0644.

Figure S25. ¹H NMR spectrum of [6]⁺(GaCl₄)⁻ in CD₂Cl₂. [#]Hexane, *Silicon grease.

Figure S26. ¹³C NMR spectrum of $[6]^+$ (GaCl₄)⁻ in CD₂Cl₂.[#]Hexane.

Figure S29. IR spectrum of $[6]^+(GaCl_4)^-$.

Preparation of 7:

KC₈ (12 mg, 0.088 mmol) was added to a stirred solution of $[4]^{2+}[(GaCl_4)^-]_2$ (90 mg, 0.039 mmol) in THF (10 mL) at room temperature. After stirring for 2 hours, all the precipitates were filtered off, and the solvent was removed under reduced pressure. The remaining residue was extracted with toluene, washed with hexane and dried *in vacuo* to afford **7** as a red-brown powder (60 mg, 0.032 mmol), 82 % yield. M. P. = 158 °C. ³¹P{¹H} NMR (CD₂Cl₂, 161.9 MHz, 213 K): δ = 224.9 (m, phosphite), δ = 166.2 (m, phosphinine), δ = 160.5 (m, phosphinine); IR (ATR, [cm⁻¹]): 3019, 1599, 1499, 1342, 1264, 1126, 957, 878, 957, 693; UV/Vis (THF, λ (nm) ε (mol⁻¹ L cm⁻¹)): 397 (81020); ESI-TOF-MS: calc. for C₁₀₂H₇₂O₆P₈Rh₂⁺: 1846.1334 ([M]⁺), found: 1846.1280.

Figure S31. ³¹P{¹H} NMR spectrum of 7 in CD₂Cl₂ at 213 K.

Figure S32. ¹H NMR spectrum of 7 in CD₂Cl₂ at 297 K. [#]THF. ^{*}Hexane.

Figure S33. ³¹P $\{^{1}H\}$ NMR spectrum of 7 in CD₂Cl₂ at 297 K.

Figure S35. IR spectrum of 7.

Preparation of $[4]^{2+}[(BAr^F)^-]_2$:

[Fc]⁺[BAr^F]⁻(90 mg, 0.086 mmol) in dichloromethane (3 mL) was added to a stirred solution of **7** (80 mg, 0.043 mmol) in dichloromethane (10 mL) at room temperature. After stirring for 2 hours, the solvent was removed under reduced pressure. The remaining solid was successively washed with toluene and hexane, then dried *in vacuo* to afford [**4**]²⁺[(BAr^F)⁻]₂ as a green-black powder (126 mg, 0.035 mmol), 82 % yield. M. P. > 250 °C. ³¹P{¹H}NMR (CD₂Cl₂, 161.9 MHz): δ = 169.2 (m, phosphite), 97.8 (m, η₁-P); IR (ATR, [cm⁻¹]): 3066, 1567, 1354, 1275, 1110, 960, 882, 837, 770, 709, 695, 682; UV/Vis (THF, λ (nm) ε (mol⁻¹ L cm⁻¹)): 345 (84120), 483 (27020), 607 (51790), 662 (38640); APCI-TOF-MS: calc. for C₅₁H₃₆O₃P₄Rh⁺: 923.0664 ([M]⁺), found: 923.0629.

8.36 7.93 7.77 7.77 7.79 7.59 7.59 7.39 7.39 7.39 6.95 6.95 6.95 6.95

Figure S36. ¹H NMR spectrum of $[4]^{2+}[(BAr^{F})^{-}]_{2}$ in CD₂Cl₂ at 297 K #Toluene,*Hexane.

Figure S37. ³¹P{¹H} NMR spectrum of $[4]^{2+}[(BAr^{F})^{-}]_{2}$ in CD₂Cl₂ at 297 K.

Figure S38. APCI-TOF-MS of $[4]^{2+}[(BAr^F)^-]_2$.

Figure S39. IR spectrum of $[4]^{2+}[(BAr^F)^-]_2$.

Figure S40. UV/Vis absorption spectra for 10^{-5} M THF solution, while complex $[4^{2+}][(GaCl_4)^{-}]_2$ and $[4^{2+}][(BAr^F)^{-}]_2$ in dichloromethane.

S2: X-Ray Diffraction Studies

These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/cgibin/catreq.cgi, or by emailing data_request@ccdc.cam.ac.uk. The CCDC reference numbers for this paper are CCDC 2302402-2302405.

Compounds	[2]Cl	[6] ⁺ [BAr ^F] ⁻
Empirical formula	C102H73Cl2O6P8Rh2	C84H48BF24O4P4Rh
Formula weight	1919.08	1814.82
Temperature/K	150.00(10)	150.00(10)
Crystal system	tetragonal	triclinic
Space group	P41	P-1
a/Å	19.27277(12)	12.6282(8)
b/Å	19.27277(12)	15.4080(9)
c/Å	49.9982(6)	21.6077(12)
α/°	90	77.086(5)
β/°	90	73.804(5)
γ/°	90	84.818(5)
Volume/Å ³	18571.3(3)	3933.6(4)
Z	8	2
$\rho_{calc}g/cm^3$	1.373	1.532
µ/mm ⁻¹	5.133	0.407
F(000)	7816.0	1820.0
Crystal size/mm ³	$0.16 \times 0.14 \times 0.12$	0.5 imes 0.5 imes 0.4
Radiation	Cu Kα (λ = 1.54184)	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/	° 4.914 to 148.82	5.428 to 60.314
Index ranges	$\text{-19} \le h \le 24, \text{-19} \le k \le 23, \text{-62} \le l \le 61$	$-17 \le h \le 15, -21 \le k \le 20, -29 \le l \le 30$
Reflections collected	193095	59159
Independent reflections	37011 [$R_{int} = 0.0663$, $R_{sigma} = 0.0501$]	19422 [$R_{int} = 0.0567, R_{sigma} = 0.0619$]
Data/restraints/parameters	37011/5474/1991	19422/24/1090
Goodness-of-fit on F ²	1.122	1.030
Final R indexes [I>= 2σ (I)]	$R_1=0.0812,wR_2=0.2162$	$R_1=0.0456,wR_2=0.1057$
Final R indexes [all data]	$R_1 = 0.1049, wR_2 = 0.2287$	$R_1 = 0.0699, wR_2 = 0.1180$
Largest diff. peak/hole / e Å-	3 1.83/-1.45	0.99/-0.71
Flack parameter	0.501(17)	

Table S1. Crystal data and structure refinement

to be continued.

Compounds	[4] ²⁺ [(GaCl ₄) ⁻] ₂	7
Empirical formula	$C_{104}H_{76}Cl_{12}Ga_{2}O_{6}P_{8}Rh_{2} \\$	$C_{126}H_{120}O_{12}P_8Rh_2$
Formula weight	2440.06	2279.79
Temperature/K	150.00(10)	149.99(10)
Crystal system	triclinic	monoclinic
Space group	P-1	P21/c
a/Å	15.28780(10)	15.87110(10)
b/Å	16.0822(2)	33.0914(3)

c/Å	22.0950(2)	21.7367(2)
α/°	98.6030(10)	90
β/°	106.9000(10)	109.9920(10)
$\gamma/^{\circ}$	92.9220(10)	90
Volume/Å ³	5113.54(9)	10728.12(17)
Z	2	4
$\rho_{calc}g/cm^3$	1.585	1.412
µ/mm ⁻¹	7.671	4.127
F(000)	2448.0	4728.0
Crystal size/mm ³	$0.17 \times 0.16 \times 0.14$	$0.12\times0.12\times0.09$
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	9 5.586 to 132.02	5.084 to 148.296
Index ranges	$\text{-}11 \leq h \leq 18, \text{-}18 \leq k \leq 19, \text{-}26 \leq l \leq 26$	$\text{-19} \le h \le \text{19}, \text{-27} \le k \le 40, \text{-27} \le l \le 25$
Reflections collected	59935	66736
Independent reflections	17731 [$R_{int} = 0.0263$, $R_{sigma} = 0.0265$]	21196 [$R_{int} = 0.0425$, $R_{sigma} = 0.0440$]
Data/restraints/parameters	17731/128/1210	21196/116/1360
Goodness-of-fit on F ²	1.037	1.064
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0451, wR_2 = 0.1170$	$R_1 = 0.0632, wR_2 = 0.1610$
Final R indexes [all data]	$R_1 = 0.0472, wR_2 = 0.1184$	$R_1 = 0.0743, wR_2 = 0.1674$
Largest diff. peak/hole / e Å-2	3 2.94/-1.59	2.25/-1.62

S3: DFT calculations

All calculations were carried out using the Gaussian 16 quantum mechanical package.² Geometry optimizations were carried out using density functional theory (DFT) at the B3LYP-D3(BJ)/def2-SVP level of theory. At each of the optimized structures, vibrational analysis was performed to ensure that the geometry corresponds to an energy minimum. NBO calculations at the B3LYP-D3(BJ)/def2-SVP level of theory were carried out using NBO 7.0 program.³

Figure S41. Second order perturbation analysis of A (isovalue = 0.05).

Figure S42. Second order perturbation analysis of **B** (isovalue = 0.05).

Figure S43. Second order perturbation analysis of C (isovalue = 0.05).

Ca	Cartesian Coordinates:							
^H [4]] ²⁺			0	0.66709200	0.26686400	4.0349530	
Rh	-0.25168300	-0.84476200	1.1096020	0	-0.38582500	2.10167100	2.5256300	
Р	0.54878200	0.75211400	2.4774280	С	0.13185400	-3.70091100	3.6135100	
Р	1.69499900	2.42141700	-0.1679860	С	0.83871400	-1.56679400	5.5708870	
Р	0.09372700	-2.11004700	2.9673010	Н	1.11772800	-0.84661200	6.3442730	
Р	-1.67736800	0.99669800	0.4490090	С	3.37672800	3.28654900	1.8399060	
0	2.02138300	1.43020100	2.3538920	Н	3.74125700	3.17763300	2.8650250	

С	-2.53106300	3.06201500	2.0928120	С	3.27040900	-1.27502900	0.1624610
Н	-2.34606100	3.73688600	2.9326600	Н	-0.09716300	-4.54043800	2.9530190
С	0.56470900	-1.08977000	4.2999780	Н	1.00240400	-3.23480700	6.9042110
С	-3.74714300	3.13361200	1.3959000	Н	-2.27459900	-3.91930600	1.9820980
С	0.44810700	-3.93375700	4.9562560	Н	-4.67155200	-4.94101400	-1.4369970
Н	0.44321900	-4.97130300	5.3011050	Н	-3.60725600	0.65143900	-0.9944390
С	0.77399400	-2.93479700	5.8796310	Н	-4.47065300	3.88797900	1.7110720
С	2.52480700	3.72008900	-0.9377420	Н	0.09716300	4.54043800	-2.9530190
С	3.90261900	4.28788000	1.0197280	Н	-1.00240400	3.23480700	-6.9042110
С	2.39299000	2.39209900	1.4276560	Н	2.27459900	3.91930600	-1.9820980
С	-1.54973800	2.14032700	1.7719290	Н	4.67155200	4.94101400	1.4369970
С	-4.09441400	2.28037100	0.3391770	Н	3.60725600	-0.65143900	0.9944390
Н	-5.07718500	2.40969000	-0.1225060	Н	4.47065300	-3.88797900	-1.7110720
С	3.49517100	4.49179500	-0.3039510				
Н	3.96792900	5.29406700	-0.8765940	H 7			
С	-3.27040900	1.27502900	-0.1624610	Rh	1.28126515	-0.24001417	0.6025554
Rh	0.25168300	0.84476200	-1.1096020	Rh	-1.28129457	-0.23999015	-0.6025217
Р	-0.54878200	-0.75211400	-2.4774280	Р	-1.93748931	0.51627862	1.3563164
Р	-1.69499900	-2.42141700	0.1679860	Р	1.93761148	0.51538699	-1.3565606
Р	-0.09372700	2.11004700	-2.9673010	Р	1.00975183	1.80482566	1.7255213
Р	1.67736800	-0.99669800	-0.4490090	Р	-3.45715914	-0.75102057	-0.8211084
0	-2.02138300	-1.43020100	-2.3538920	Р	-1.00938187	1.80449481	-1.7261797
0	-0.66709200	-0.26686400	-4.0349530	Р	-0.25919111	-1.87624817	-1.8208302
0	0.38582500	-2.10167100	-2.5256300	Р	0.25872226	-1.87577496	1.8211551
С	-0.13185400	3.70091100	-3.6135100	Р	3.45705199	-0.75130400	0.8213949
С	-0.83871400	1.56679400	-5.5708870	0	-3.61928072	0.61569481	1.4636183
Н	-1.11772800	0.84661200	-6.3442730	0	-1.68465431	-0.30618631	2.7920540
С	-3.37672800	-3.28654900	-1.8399060	0	3.61942354	0.61440417	-1.4639213
Н	-3.74125700	-3.17763300	-2.8650250	0	1.69219684	2.03579308	-1.9340998
С	2.53106300	-3.06201500	-2.0928120	0	-1.69178076	2.03679220	1.9334044
Н	2.34606100	-3.73688600	-2.9326600	0	1.68461613	-0.30741703	-2.7920883
С	-0.56470900	1.08977000	-4.2999780	С	-0.58803326	4.10140409	1.7789758
С	3.74714300	-3.13361200	-1.3959000	Н	-1.59157434	4.53155717	1.8331579
С	-0.44810700	3.93375700	-4.9562560	С	6.05676774	-1.39514330	1.4413274
Н	-0.44321900	4.97130300	-5.3011050	Н	6.77466637	-1.87377462	2.1141577
С	-0.77399400	2.93479700	-5.8796310	С	-6.05696422	-1.39486388	-1.4406489
С	-2.52480700	-3.72008900	0.9377420	Н	-6.77494143	-1.87371580	-2.1132382
С	-3.90261900	-4.28788000	-1.0197280	С	-0.49828921	2.71328398	1.8059905
С	-2.39299000	-2.39209900	-1.4276560	С	0.49888158	2.71259231	-1.8066994
С	1.54973800	-2.14032700	-1.7719290	С	0.17693996	-4.32275296	-3.0226043
С	4.09441400	-2.28037100	-0.3391770	Н	-0.11628262	-5.36773361	-3.1633366
Η	5.07718500	-2.40969000	0.1225060	С	1.76817867	-2.53645641	-3.5996780
С	-3.49517100	-4.49179500	0.3039510	Н	2.65813252	-2.22806720	-4.1556798
Н	-3.96792900	-5.29406700	0.8765940	С	-4.70144932	-1.45546817	-1.7833085

С	-1.76882009	-2.53501491	3.6001783	Ir	0.22713331	-1.37136264	-0.56904990
Н	-2.65868597	-2.22625153	4.1561135	Р	-1.88003963	-0.22937250	-0.20780350
С	0.58896422	4.10069170	-1.7797331	С	-3.32940063	-0.60854705	-1.06880835
Н	1.59260865	4.53060100	-1.8339339	С	-4.57366514	-0.73781819	-0.43641255
С	-1.29909683	-3.85170283	3.7122546	С	-5.70652304	-1.19970938	-1.31264076
С	-0.17808435	-4.32188397	3.0234998	С	-4.76165292	-0.49427619	0.94430829
Н	0.11485101	-5.36691365	3.1644679	С	-6.17602741	-0.73066775	1.51224499
С	-0.59471824	-3.53465064	-2.1654051	С	-3.76658590	-0.09625870	1.77731677
С	1.15494104	-1.57148833	-2.8118706	С	-2.43507115	0.11832013	1.40752427
С	0.59378744	-3.53419230	2.1661133	С	-1.47255186	0.73647681	2.32919887
С	2.14962454	3.10618948	1.5614125	С	-1.62940633	0.67059312	3.72121664
С	4.70123302	-1.45544441	1.7839615	С	-0.64659433	1.27986158	4.50750015
С	-1.15531697	-1.57040497	2.8121452	С	0.42195538	1.94525212	3.91916546
С	-6.54800875	-0.76084219	-0.2969076	С	0.50063416	1.97437778	2.55222870
С	1.29808966	-3.85303680	-3.7114555	Ν	-0.41247637	1.34675256	1.76561470
С	6.54792561	-0.76168405	0.2973233	Р	1.86189139	0.29617065	-0.12298265
С	4.35404545	-0.03946735	-0.5166155	С	3.30471101	0.72320550	-0.91107745
С	1.83343105	4.46077278	1.5627565	С	4.55849007	0.71767866	-0.30058752
Н	2.64640543	5.18720384	1.4678142	С	6.11402800	0.43778363	1.68360117
С	-2.14893358	3.10615053	-1.5620766	С	4.73811013	0.30735015	1.07266000
С	-4.35401926	-0.03850870	0.5166297	С	5.73606653	1.12392686	-1.13297466
С	5.73365920	-0.11189837	-0.6445859	С	3.73282998	-0.17987171	1.79085002
Н	6.18724777	0.36221337	-1.5193085	С	2.40242841	-0.29439230	1.40947841
С	-5.73363539	-0.11073029	0.6446849	С	1.43478895	-1.09833716	2.19348951
Н	-6.18713865	0.36381142	1.5192184	С	1.59871802	-1.33558155	3.57452538
С	0.52303254	4.94067211	1.6675621	С	0.62853104	-2.06855474	4.24404228
С	-0.52189645	4.94023126	-1.6683277	С	-0.49489626	-2.55342867	3.55695340
С	-1.83241122	4.46065496	-1.5634766	С	-0.57886240	-2.31166159	2.19791450
Н	-2.64520443	5.18728860	-1.4685335	Ν	0.34418439	-1.56687906	1.51695356
Н	-1.84237845	-4.53904630	4.3643612	С	-0.33144221	3.65389793	-0.10212723
Н	1.45673269	-3.97275698	1.6576624	С	-1.66100331	3.07475763	-0.17929567
Н	4.39569203	-1.96856817	2.6997248	С	-2.54563486	3.19811651	-1.43144375
Н	7.62582665	-0.77033519	0.1205984	С	-1.84434936	2.82661427	-2.69872532
Н	1.84118601	-4.54067970	-4.3634009	С	-0.69999095	1.82993351	-2.50542824
Н	-1.45778902	-3.97285637	-1.6568574	С	0.61286947	2.17721874	-2.31015142
Н	-4.39599890	-1.96903133	-2.6988557	С	1.14971938	3.55879644	-2.10597820
Н	-7.62590385	-0.76929784	-0.1201377	С	0.31578412	4.42762272	-1.22788093
Н	-3.19571128	2.80193811	-1.4650086	С	-0.51594859	-1.78451055	-2.61371634
Н	-0.35241345	6.01906989	-1.6491573	С	0.83635280	-1.37551161	-2.72523507
Н	3.19632926	2.80171404	1.4643852	С	1.99799310	-2.32216027	-2.97282698
Н	0.35381269	6.01955181	1.6483634	С	2.61177511	-2.93388590	-1.69916453
				С	1.61242918	-2.98540612	-0.57202680
A				С	0.30804044	-3.53050137	-0.64208862
Ir	-0.24131820	1.47711103 -0	.35084493	С	-0.20509288	-4.17918138	-1.89654002

С	-1.04581569	-3.20117971	-2.72149783
Н	-3.27358956	-0.73223993	-2.02019637
Н	-5.43939977	-1.34164260	-2.22416180
Н	-6.07006908	-2.01352923	-0.95484895
Н	-6.37293765	-0.50933191	-1.27732682
Н	-6.17458873	-0.52076976	2.44847913
Н	-6.81099052	-0.17075399	1.05953038
Н	-6.41919388	-1.65305988	1.39168343
Н	-3.99838802	0.06007122	2.69542266
Н	-2.35997803	0.20389632	4.13420861
Н	-0.72165870	1.27135974	5.46463517
Н	1.10757776	2.34165320	4.46253993
Н	1.22502700	2.45825541	2.14795966
Н	3.27125314	0.96652088	-1.83956679
Н	6.74911653	0.80754792	1.06579759
Н	6.04106858	1.01465976	2.44913477
Н	6.40959460	-0.43072299	1.96544323
Н	6.53427019	1.09806586	-0.60198424
Н	5.82632078	0.52079281	-1.87650313
Н	5.59695446	2.01448996	-1.46001420
Н	3.94248056	-0.46888941	2.68178543
Н	2.36307875	-1.00162351	4.04939660
Н	0.72911512	-2.26099763	5.17850199
Н	-1.17760761	-3.05987791	3.99431926
Н	-1.33819228	-2.63073804	1.70348318
Н	-0.09840527	3.95642038	0.77751751
Н	-2.14053855	3.06119275	0.65188008
Н	-2.84105638	4.10951761	-1.48894586
Н	-3.32172180	2.64815619	-1.29741218
Н	-1.48779321	3.61229045	-3.11934101
Н	-2.50812198	2.45453777	-3.28572091
Н	-0.81419546	1.01550771	-2.99907111
Н	1.24333000	1.56008710	-2.68849572
Н	1.23390421	3.95866998	-2.97478369
Н	2.02889526	3.50906660	-1.72342928
Н	0.84547806	5.14947533	-0.88181972
Н	-0.39794018	4.80048007	-1.75077439
Н	-1.13982945	-1.13061107	-2.93582132
Н	0.97323702	-0.50102051	-3.09711912
Н	2.66727653	-1.89887479	-3.51515143
Н	1.63443229	-3.05744862	-3.46845659
Н	3.33776691	-2.35543687	-1.45321474
Н	2.97467117	-3.80684357	-1.86645335
Н	2.03245116	-3.11936757	0.28033643

Η	0.01896458	-3.96107933	0.16597181
Η	-0.72193302	-4.95425649	-1.66496522
Н	0.53035802	-4.46627521	-2.44260622
Н	-1.08073947	-3.48842711	-3.63732209
Н	-1.93968989	-3.22466337	-2.37234819

B

P -0.37716327	1.09713282	-1.61291670
P -0.02901575	-2.02104769	-1.95623832
O 0.63768754	-0.93493914	-3.08909012
C 1.35025026	-4.37155697	-1.30777983
C 0.28731892	1.05188343	-4.30757429
C -1.05228734	-3.09285918	-2.99850952
C 3.59607455	-4.37347646	-0.39704646
C -2.73802668	-4.66496693	-4.57141697
C 0.21839091	0.36356179	-3.10003424
С -3.25277566	-3.98894482	-3.46300791
C -1.38038686	-4.55397452	-4.90062719
C -0.53562753	-3.77065561	-4.11640703
C 1.43737177	-2.98426327	-1.51204452
C 2.60823211	-2.29383789	-1.15566554
C 2.43094043	-5.06149978	-0.75256872
C -2.41490140	-3.19392786	-2.67456213
C -0.13400571	2.37708712	-4.46291472
C -0.84710557	2.67917325	-2.13110075
C 3.68162603	-2.99257185	-0.60280210
C -0.68689966	3.14689118	-3.43171854
Cu -1.03217341	-0.79030277	-0.30564962
Н 0.43870219	-4.91026032	-1.57493762
Н 4.43669782	-4.91554087	0.04290384
Н 2.68651330	-1.21060503	-1.27886414
Н -4.31202561	-4.07381162	-3.21004472
Н -1.00626788	4.16785023	-3.65963486
Н 4.57965458	-2.43920869	-0.31937703
Н 0.68447711	0.50459753	-5.16680821
Н -2.81264340	-2.65212059	-1.80979731
Н 2.36127983	-6.14070763	-0.59673372
Н -0.98350731	-5.08171678	-5.77116734
Н 0.52432548	-3.68082695	-4.36531400
Н -3.39649760	-5.28258640	-5.18734394
Н -1.27705336	3.33265150	-1.36766082
Н -0.03924357	2.82808937	-5.45356478
P 0.37716327	-1.09713282	1.61291670
P 0.02901575	2.02104769	1.95623832

C	-0 28731892	-1 05188343	4 30757429	н	8 974059	3 408579	6 623569
C C	1.05228734	3.09285918	2.99850952	C	5.103405	8.279186	8.597830
С	-3.59607455	4.37347646	0.39704646	C	5.274703	9.591695	8.172083
С	2.73802668	4.66496693	4.57141697	Н	4.543355	10.165009	8.200341
С	-0.21839091	-0.36356179	3.10003424	С	6.484663	10.088331	7.707717
С	3.25277566	3.98894482	3.46300791	Н	6.514995	10.981949	7.449632
С	1.38038686	4.55397452	4.90062719	С	7.652882	9.345103	7.601281
С	0.53562753	3.77065561	4.11640703	Н	8.409735	9.758680	7.253713
С	-1.43737177	2.98426327	1.51204452	С	7.746617	8.019187	7.987467
С	-2.60823211	2.29383789	1.15566554	Н	8.562575	7.584263	7.892333
С	-2.43094043	5.06149978	0.75256872	Cl	3.589548	4.998153	7.962977
С	2.41490140	3.19392786	2.67456213	О	4.325290	3.546373	5.320237
С	0.13400571	-2.37708712	4.46291472	Н	4.158033	4.046814	5.948214
С	0.84710557	-2.67917325	2.13110075	0	3.877463	7.932100	9.016042
С	-3.68162603	2.99257185	0.60280210	Н	3.810040	7.114607	9.015100
С	0.68689966	-3.14689118	3.43171854	Р	6.724794	3.891953	6.517980
Cu	1.03217341	0.79030277	0.30564962	Р	6.412054	7.142377	8.638239
Н	-0.43870219	4.91026032	1.57493762	Cu	6.680602	5.795126	10.544775
Н	-4.43669782	4.91554087	-0.04290384	С	6.891752	7.475280	13.521237
Н	-2.68651330	1.21060503	1.27886414	С	6.448677	8.312219	14.533799
Н	4.31202561	4.07381162	3.21004472	Н	7.076706	8.632006	15.139453
Н	1.00626788	-4.16785023	3.65963486	С	5.131089	8.701186	14.699577
Н	-4.57965458	2.43920869	0.31937703	Н	4.924555	9.254883	15.417319
Н	-0.68447711	-0.50459753	5.16680821	С	4.099121	8.311582	13.852792
Н	2.81264340	2.65212059	1.80979731	Н	3.237090	8.607310	14.037408
Н	-2.36127983	6.14070763	0.59673372	С	4.294777	7.508371	12.754516
Н	0.98350731	5.08171678	5.77116734	Н	3.561196	7.318238	12.214796
Н	-0.52432548	3.68082695	4.36531400	С	7.431850	2.447631	10.240536
Н	3.39649760	5.28258640	5.18734394	С	7.260552	1.135122	10.666283
Н	1.27705336	-3.33265150	1.36766082	Н	7.991900	0.561808	10.638025
Η	0.03924357	-2.82808937	5.45356478	С	6.050592	0.638486	11.130649
Cl	-3.10326332	-1.06949869	0.43700768	Н	6.020260	-0.255132	11.388734
Cl	3.10326332	1.06949869	-0.43700768	С	4.882374	1.381713	11.237085
				Н	4.125520	0.968137	11.584653
С				С	4.788638	2.707629	10.850899
Cu	5.854653	4.931691 8.29	93591	Н	3.972680	3.142554	10.946033
С	5.643503	3.251537 5.3	17129	Cl	8.945707	5.728664	10.875389
С	6.086578	2.414598 4.3	04567	0	8.209965	7.180444	13.518129
Н	5.458549	2.094811 3.6	98913	Н	8.377223	6.680003	12.890152
С	7.404166	2.025631 4.1	38789	0	8.657792	2.794717	9.822324
Н	7.610700	1.471933 3.4	21047	Н	8.725215	3.612210	9.823266
~	8 136135	2 415235 4 9	85574	Р	5.810462	6 834864	12 320386

S4: References

- 1 a) X. Chen, S. Alidori, F. F. Puschmann, G. Santiso-Quinones, Z. Benkő, Z. Li, G. Becker, H.-F. Grützmacher, H. Grützmacher, Angew. Chem. Int. Ed. 2014, 53, 1641-1645; b) Y. Hou, Z. Li, Y. Li, P. Liu, C.-Y. Su, F. Puschmann and H. Grützmacher, Chem. Sci., 2019, 10, 3168-3180
- 2 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01 ed., Gaussian, Inc., Wallingford CT, 2016.
- 3 NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2018)