Supporting Information

A microporous Bismuth-based MOF for efficient separation of acetylene from carbon dioxide

Bo Xing, Shan-Qing Yang, Qiang Zhang and Tong-Liang Hu*

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China. E-mail: tlhu@nankai.edu.cn

Fitting of Pure Component Isotherms

Dual-site Langmuir-Freundlich model was used to predict binary mixture adsorption from the experimental pure-gas isotherms.

$$q = q_{A, sat} \frac{b_A p^{c_A}}{1 + b_A p^{c_A}} + q_{B,sat} \frac{b_B p^{c_B}}{1 + b_B p^{c_B}}$$

with T-dependent parameters b_A and b_B .

$$b_A = b_{A0} exp(\frac{E_A}{RT})$$
$$b_B = b_{B0} exp(\frac{E_B}{RT})$$

Where p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q is the adsorbed amount per mass of adsorbent (mmol g^{-1}), $q_{A,sat}$, $q_{B,sat}$ are the saturation capacities (mmol g^{-1}), b_A , b_B are the affinity coefficient.

Calculation for C₂H₂/CO₂ Adsorption Selectivities

The ideal adsorbed solution theory (IAST) was used to estimate the composition of the adsorbed phase from the data of single component isotherms and predict the selectivity of binary mixtures C_2H_2/CO_2 . IAST calculations for equimolar C_2H_2/CO_2 mixtures adsorption at 278 and 298 K, respectively were performed by

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$

Figure S1. The PXRD patterns of Bi-BTC.

Figure S2. Pore size distribution of Bi-BTC.

Figure S3. Cycling test of CO_2 adsorption measurements for Bi-BTC at 298 K and 1.0 bar.

Figure S4. Dual-site Langmuir-Freundlich model for CO_2 adsorption isotherm on Bi-BTC at 278 K.

Figure S5. Dual-site Langmuir-Freundlich model for C_2H_2 adsorption isotherm on Bi-BTC at 278 K.

Figure S6. Dual-site Langmuir-Freundlich model for CO₂ adsorption isotherm on Bi-BTC at 298 K.

Figure S7. Dual-site Langmuir-Freundlich model for C₂H₂ adsorption isotherm on Bi-BTC at 298 K.

Figure S8. The details of virial equation (solid lines) fitting to the experimental CO_2 adsorption data (symbols) for Bi-BTC.

Figure S9. The details of virial equation (solid lines) fitting to the experimental C_2H_2 adsorption data (symbols) for Bi-BTC

Adsorbent	S _{BET} (m ² g ⁻¹)	C ₂ H ₂ uptake (cm ³ g ⁻¹)	CO ₂ uptake (cm ³ g ⁻¹)	Q _{st} (C ₂ H ₂) (kJ mol ⁻¹)	IAST Selectivity	Temperature (K)	Ref.
SIFSIX-DPA- Cu-i	898.74	75.59	50.17	46.53	9.3	298	1
Zn-MUC- TRZ	696.3	46.4	42.2	33.06	1.47	298	2
Zn(adenine)(TC PE)	180.1	48.1	33.8	35.1	4.1	298	3
[Co ₂ (F- PyIP) ₂ DMF]	509.1	61.7	34.3	34	6.3	298	4
JXNU-18	622	55.2	31.5	37.4	2.81	298	5
ZNU-11	148.8	45.5	22.5	36.1	8.2	298	6
Bi-BTC	91.35	53.8	39.4	35.37	5.14	298	This work
ZNU-9	1623	177.9	100.8	33.1	10.3	298	7
ZNU-8	1402	113.1	58.2	27.2	3.7	298	7
Cu ₃ (fbptc) ₂	432.1	119.3	56.5	27.2	3.6	298	8
NBU-7-Cl	123.7	34.3	25.0	33	3.3	298	9
FJU-83	872	123	106	26.9	2.93	298	10
SNNU-29-Mn	1077	115	50		2.9	298	11
CoV-bdc-tppy		164	87.2		2.8	298	12
Cu-AD-GA	517	74	58		2.2	298	13

Table S1. Summary and cooperation of C_2H_2 and CO_2 adsorption capacities at 298 K and isosteric heat of adsorption.

References

- 1. J. You, H. Wang, T. Xiao, X. Wu, L. Zhang and C. Z. Lu, Chem. Eng. J., 2023, 477, 147001.
- L. Q. Yang, J. Yu, P. Zhang, Y. Wang, W. Y. Yuan and Q. G. Zhai, *Sep. Purif. Technol.*, 2023, 327, 124930.
- 3. W. Yuan, W. Wang, P. Cen, H. Zhou, X. Liu and B. Liu, *Inorg. Chem.*, 2023, 62, 15110-15117.
- X. Y. Zhang, W. J. Shi, G. D. Wang, L. Hou and Y. Y. Wang, *Inorg. Chem.*, 2023, 62, 16574-16581.
- X. P. Fu, X. Y. Le, Y. H. Xiao, D. M. Zeng, K. A. Zhou, L. Huang, Y. L. Wang and Q. Y. Liu, *Inorg. Chem.*, 2023, 62, 15031-15038.
- 6. Y. Han, Y. Jiang, J. Hu, L. Wang and Y. Zhang, Sep. Purif. Technol., 2024, 332, 125777.
- Y. Zhang, W. Sun, B. Luan, J. Li, D. Luo, Y. Jiang, L. Wang and B. Chen, *Angew. Chem. Int.* Ed., 2023, 62, e202309925.
- R. H. Su, W. J. Shi, X. Y. Zhang, L. Hou and Y. Y. Wang, *Inorg. Chem.*, 2023, 62, 11869-11875.
- 9. J. Wu, Y. Wang, J.-P. Xue, D. Wu and J. Li, *Inorg. Chem.*, 2023, **62**, 19997-20004.
- X. B. Xu, Y. Yang, Z. Yuan, F. Zheng, F. Xiang, Z. Bao, Z. Zhang and S. Xiang, Sep. Purif. Technol., 2023, 325, 124654.
- Y. Y. Xue, X. Y. Bai, J. Zhang, Y. Wang, S. N. Li, Y. C. Jiang, M. C. Hu and Q. G. Zhai, Angew. Chem. Int. Ed., 2021, 60, 10122-10128.
- 12. W. Wang, H. Yang, Y. Chen, X. Bu and P. Feng, J. Am. Chem. Soc., 2023, 145, 17551-17556.
- L. Wang, J. Lv, Q. Ye, Y. Luo, G. Y. Wang and L. H. Xie, ACS Appl. Nano Mater., 2023, 6, 22095-22103.