Supplementary Data for:

Triple *para*-substitution reactions of $B(C_6F_5)_3$ and $[(C_6F_5)_3PF]^+$ with $P(SiMe_3)_3$

Jordan Thomson, Sofia Michailovich, Linkun Miao, Jeffrey M. Farrell, Jillian A. Murray, Alan Lough and Douglas W. Stephan

Contents

General Considerations			
Synthesis of B(C ₆ F ₄ P(SiMe ₃) ₂) ₃ (1):			
Figure S1. ¹ H NMR spectrum of 1 in CDCl ₃ 4			
Figure S2. ¹⁹ F{ ¹ H} NMR spectrum of 1 in CDCl ₃ 4			
Figure S3. ³¹ P NMR spectrum of 1 in CDCl ₃ 5			
Figure S4. 11 B NMR spectrum of 1 in CDCl ₃ 5			
Synthesis of (MeCN)B(C ₆ F ₄ P(SiMe ₃) ₂) ₃ (2)6			
Figure S5 ¹ H NMR Spectrum of 2 in CDCl ₃ 6			
Figure S6 ¹⁹ F{ ¹ H} NMR Spectrum of 2 in CDCl ₃ 7			
Figure S7 $^{31}P\{^{1}H\}$ NMR Spectrum of ${\bf 2}$ in CDCl_37			
Figure S8 ¹¹ B NMR Spectrum of 2 in CDCl ₃ 8			
Synthesis of (Et ₃ PO)B(C ₆ F ₄ P(SiMe ₃) ₂) ₃ (3):8			
Figure S9. ¹ H NMR Spectrum of 3 in C_6D_6 9			
Figure S10. ¹⁹ F NMR Spectrum of 3 in C_6D_6 9			
Figure S11. $^{31}P\{^{1}H\}$ NMR Spectrum of $\boldsymbol{3}$ in C_6D_6 10			
Figure S12. ^{11}B NMR Spectrum of $\boldsymbol{3}$ in C_6D_6 10			
Synthesis of $(R_3P)B(C_6F_4P(SiMe_3)_2)_3$ (R = Me 4, Bu 5)			
Figure S13 1 H NMR Spectrum of 4 in CDCl ₃ 11			
Figure S14 19 F NMR Spectrum of 4 in CDCl ₃ 12			
Figure S15 $^{31}\text{P}\{^{1}\text{H}\}$ NMR Spectrum of $\textbf{4}$ in CDCl3			
Figure S16 11 B NMR Spectrum of 4 in CDCl ₃ 13			
5:			
Figure S17 ¹ H NMR Spectrum of 5 in CDCl ₃ 14			
Figure S18 ¹⁹ F NMR Spectrum of 5 in CDCl₃14			

	Figure S20 ¹¹ B NMR Spectrum of 5 in CDCl ₃	. 15
Sy	nthesis of [Li][MeB(C ₆ F ₄ P(SiMe ₃) ₂) ₃] (6):	. 16
	Figure S21. ¹ H NMR spectrum of 6 in Et ₂ O	. 16
	Figure S22. ${}^{19}F{}^{1}H{}$ NMR spectrum of 6 in Et ₂ O	. 17
	Figure S23. ³¹ P NMR spectrum of 6 in Et ₂ O	. 17
	Figure S24. ¹¹ B NMR spectrum of 6 in Et ₂ O	. 18
Sy	nthesis of (H ₂ O)B(C ₆ F ₄ PH ₂) ₃ (7):	. 18
	Figure S25. ¹ H NMR spectrum of 7 in C_6D_6	. 19
	Figure S26. ¹⁹ F NMR spectrum of 7 in C_6D_6	. 20
	Figure S27. ³¹ P NMR spectrum of 7 in C_6D_6	. 20
	Figure S28. ${}^{31}P{}^{1}H{}$ NMR spectrum of $\textbf{7}_{d}$ in C ₆ D ₆	.21
	Figure S29. ${}^{11}B{}^{1}H$ NMR spectrum of 7 in C ₆ D ₆	.21
	Figure S30. HRMS of 7	. 22
Sy	nthesis of (MeCN)B(C6F4PH2)3 (8):	. 22
	Figure S31. ¹ H NMR spectrum of 8 in CDCl ₃ /MeCN	. 23
	Figure S32. ¹⁹ F NMR spectrum of 8 in CDCl₃/MeCN	. 23
	Figure S33. ³¹ P NMR spectrum of 8 in CDCl ₃ /MeCN	. 24
	Figure S34. ¹¹ B{ ¹ H} NMR spectrum of 8 in CDCl ₃ /MeCN	. 24
Sy	nthesis of [PF(C ₆ F ₄ P(SiMe ₃) ₂) ₃][B(C ₆ F ₅) ₄] (9):	. 25
	Figure S35. ¹ H NMR Spectrum of 9 in CDCI₃	. 25
	Figure S36. ¹⁹ F NMR Spectrum of 9 in CDCl₃	. 26
	Figure S37. ³¹ P NMR Spectrum of 9 in CDCl ₃	. 26
	Figure S38. ¹¹ B NMR Spectrum of 9 in CDCl₃	. 27
Sy	nthesis of [CH ₃ OP(C ₆ F ₄ PH ₂) ₃][B(C ₆ F ₅) ₄] (10)	. 27
	Figure S39. ${}^{1}H{}^{19}F{}$ NMR spectrum of 10 in C ₆ D ₆	. 28
	Figure S40. ¹⁹ F NMR spectrum of 10.	. 29
	Figure S41. ³¹ P NMR spectrum of 10.	. 29
	Figure S42. ¹¹ B NMR spectrum of 10.	. 30
	Figure S43. HRMS of 10	. 30

General Considerations

All synthetic manipulations were carried out under an atmosphere of dry, O₂-free N₂ employing an MBraun glove box and a Schlenk vacuum-line. Pentane, diethyl ether and toluene were purified with a Grubbs-type column system manufactured by Innovative Technology and dispensed into thick-walled glass Schlenk bombs equipped with Young-type Teflon valve stopcocks. Toluene-*d*₈ and C₆D₆ were each dried over CaH₂, vacuum-transferred into a Young bomb and stored over 4 Å molecular sieves. Dichloromethane, dichloromethane-*d*₂, acetonitrile and pyridine were each dried over CaH₂, vacuum-transferred into a Young bomb and stored over 4 Å molecular sieves. Dichloromethane, dichloromethane-*d*₂, acetonitrile and pyridine were recorded at 25 °C on a Bruker Avance 400 MHz spectrometer. Chemical shifts are given relative to SiMe₄ and referenced to the residual solvent signal (¹H, ¹³C) or relative to an external standard (¹¹B: 15% (Et₂O)BF₃; ¹⁹F: 15% (Et₂O)BF₃, ³¹P; 85% H₃PO₄). Chemical shifts (δ) are reported in ppm and coupling constants (*J*) as scalar values in Hz. Combustion analyses were performed in house employing a Perkin-Elmer CHN Analyzer.

Synthesis of B(C₆F₄P(SiMe₃)₂)₃ (1):

A solution of $P(SiMe_3)_3$ (1.47 g, 5.86 mmol) in 2mL of toluene was added to a stirred solution of $B(C_6F_5)_3$ (1 g, 1.95 mmol) in dry toluene (18 mL) resulting in a bright yellow solution. After 4 days, all volatiles were removed *in vacuo*, and the resulting yellow solid was washed with cold pentane and dried (1.6 g, 1.6 mmol, 82 %).

¹H NMR (400 MHz, CDCl₃): δ 0.32 ppm (d, 54H, Si(CH₃)₃, ³J_{HP} = 6 Hz, ²J_{HSi} = 219 Hz). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ –162.7 ppm (s). ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ 60.0 ppm (br). ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ –125.0 ppm and –130.0 ppm (m, C₆F₄). Calcd. for C₃₆H₅₄BF₁₂P₃Si₆ (987.04): C 43.81%, H 5.51%. Found: C 43.62%, H 5.54%.

Figure S2. $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum of 1 in CDCl3

Figure S4. ¹¹B NMR spectrum of $\mathbf{1}$ in CDCl₃.

(broad peak at 0 to -10 ppm is due to borosilicate glass).

Synthesis of (MeCN)B(C₆F₄P(SiMe₃)₂)₃ (2)

Compound **1** (0.050 g, 0.05 mmol) was dissolved in 2 mL of pentane. One drop (approximately 0.05 mL, 1.5 mmol), of acetonitrile was added to the yellow solution with strong stirring. The solution immediately turned colourless, and a fine white precipitate formed. After stirring for 5 minutes, this white powder was isolated by filtration and thoroughly washed with pentane. The isolated solid was then left in an open container for 2 h, to allow the remaining volatiles to evaporate. (47 mg, 0.046 mmol, 91%).

¹H NMR (400 MHz, CDCl₃): δ 2.66 (s, 3H, CH₃CN); 0.29 (d with ²⁹Si satellites, 54H, Si(CH₃)₃, ³J_{HP} = 6 Hz, ²J_{HSi} = 120 Hz). ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ –126.9 (dt, P–C₆F₄, ³J_{PF} = 26 Hz, ³J_{FF} = 14 Hz); –135.0 (br s, B–C₆F₄). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ –171.4 (t, ³J_{PF} = 14 Hz). ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ –10.2 (br s, $W_{1/2} \sim 628$ Hz).

Figure S5 ¹H NMR Spectrum of **2** in CDCl₃

* Pentane

Figure S7 $^{31}\text{P}\{^1\text{H}\}$ NMR Spectrum of $\boldsymbol{2}$ in CDCl_3

Synthesis of (Et₃PO)B(C₆F₄P(SiMe₃)₂)₃(3):

 Et_3PO (0.015 g, 0.11 mmol) and **1** (0.045g, 0.05 mmol) were each dissolved in 0.2 mL of CDCl₃. These solutions were combined, and the bright yellow solution immediately turned colourless. NMR spectroscopy was taken of this reaction mixture without further purification, which showed quantitative conversion of **1** to **6**.

¹H NMR (400 MHz, CDCl₃): δ 1.18 (dq, 6H, PCH₂CH₃, ²J_{HP} = 12 Hz, ³J_{HH} = 7.7 Hz); 0.45 (dt, 9H, PCH₂CH₃, ³J_{HP} = 19 Hz, ³J_{HH} = 8 Hz); 0.25 (d, 54H, ³J_{HP} = 5.5 Hz). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 73.6 (m, Et₃PO); -172.8 (t, *P*SiMe₃, ³J_{PF} = 13 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -127.7 (dt, ³J_{FP} = 27, ³J_{FF} = 14 Hz), -133.9 (dd, ³J_{FP} = 26, ³J_{FF} = 14 Hz). ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ -2.4 (br, *W*_{1/2} ~ 963 Hz).

Figure S10. ^{19}F NMR Spectrum of $\boldsymbol{3}$ in C_6D_6

Figure S12. ^{11}B NMR Spectrum of $\bm{3}$ in C_6D_6

Synthesis of $(R_3P)B(C_6F_4P(SiMe_3)_2)_3$ (R = Me 4, Bu 5)

These compounds were prepared in a similar fashion and thus only one preparation is detailed. Compound 1 (0.012 g, 0.012 mmol) was dissolved in 3mL of pentane. PMe₃ (0.05 g, 0.66 mmol) was added with strong stirring, and the yellow solution immediately turned colourless. This solution was put in the freezer for 2 days at -10 °C, causing it to crystallize. The excess solvent was removed and the colourless crystals were washed with cold pentane and dried under vacuum (0.007g, 0.006 mmol, 54%).

4: ¹H NMR (400 MHz, CDCl₃): δ 1.37 (d, 9H, PMe₃, ³*J*_{HP} = 11 Hz); 0.28 (d, 54H, Si(CH₃)₃, ³*J*_{HP} = 6 Hz). ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -126.8 (dt, 6F, ³*J*_{FF} = 26, 13 Hz), -130.0 (ddd, 6F, ³*J*_{FF} = 26, ³*J*_{PF} =13, ³*J*_{HP} = 6 Hz). ³¹P{¹H} NMR (162 MHz, CDCl₃) δ -6.4 (s, *PMe*₃); -171.5 (t, ³*J*_{PF} = 13 Hz). ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -14.4 (s).

Figure S13 ¹H NMR Spectrum of **4** in CDCl₃ * pentane

Figure S15 $^{31}\text{P}\{^1\text{H}\}\,$ NMR Spectrum of 4 in CDCl_3

Figure S16 ¹¹B NMR Spectrum of **4** in CDCl₃

5: ¹H NMR (400 MHz, CDCl₃) δ 1.70 (m, 6H, C₄H₉), 1.47 – 1.34 (m, 6H, C₄H₉), 1.26 (q, 6H, ³*J*_{*HH*} = 7 Hz, C₄H₉), 0.84 (t, 9H, ³*J*_{*HH*} = 7 Hz, C₄H₉), 0.28 (d, 54H, ³*J*_{*HP*} = 6 Hz, P(Si(CH₃)₃)₂). ¹⁹F{¹H} NMR (377 MHz, CDCl₃) δ -127.0 (dt, ³*J*_{*FF*} = 26 Hz, ³*J*_{*FP*} = 13 Hz), -129.2 (dd, ³*J*_{*FF*} = 26 Hz, ³*J*_{*FP*} = 13 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -0.4 (s, PnBu₃), -171.9 (t, ³*J*_{*PF*} = 13 Hz, P(Si(CH₃)₃)₂). ¹¹B NMR (128 MHz, CDCl₃) δ -13.2 (s).

Figure S18 ^{19}F NMR Spectrum of 5 in CDCl_3

Figure S20 ^{11}B NMR Spectrum of 5 in CDCl_3

Synthesis of [Li][MeB(C₆F₄P(SiMe₃)₂)₃] (6):

An aliquot of methyllithium (1.6 M in Et₂O, 0.2 mmol, 0.12 mL) was added to an empty vial equipped with a magnetic stir bar in the glovebox and immediately placed under vacuum until dry. The solid methyllithium was weighed, and a toluene solution (2 mL) of compound **1** (200 mg, 0.2 mmol) was added, causing the yellow solution to immediately turn colourless. After 2 h at room temperature, the solvent was removed *in vacuo*, the pale yellow solid was washed with cold pentane and dried under vacuum (107 mg, 0.11 mmol, 53%)

¹H NMR (400 MHz, Et₂O) δ 0.59 (s, 3H), 0.26 (d, *J* = 5.4 Hz, 54H). ³¹P NMR (162 MHz, Et₂O) δ -177.2 ¹⁹F{¹H} NMR (377 MHz, Et₂O) δ -130.7 (m), -131.5 (m). ¹¹B NMR (128 MHz, Et₂O) δ -14.0.

Figure S23. ^{31}P NMR spectrum of $\boldsymbol{6}$ in Et_2O

Synthesis of (H₂O)B(C₆F₄PH₂)₃(7):

BCF (0.2186 g, 0.427 mmol) and P(TMS)₃ (0.3916 g, 1.56 mmol) were dissolved in oDFB and stirred for 4 days, forming a bright yellow solution of 1. Under a nitrogen atmosphere, degassed distilled water (0.5 mL, 27.8 mmol) was added to the solution with strong stirring, immediately turning the bright yellow solution colourless. After 20 minutes of strong stirring, all volatiles were removed under vacuum, yielding a white powder. (0.195 g, 0.341 mmol, 79.8% yield).

After drying under vacuum, the white powder is no longer soluble in oDFB although it does dissolve effectively in coordinating solvents such as Et₂O, THF, and acetonitrile.

7. ¹H NMR (400 MHz, C₆D₆) δ 3.81 (dt, ¹*J*_{*HP*} = 209, ⁴*J*_{*HF*} = 4 Hz). ¹⁹F NMR (377 MHz, C₆D₆) δ -131.8 (ddd, ³*J*_{*FF*} = 24, 13 Hz, ⁴*J*_{*FH*} = 4 Hz), -134.8 (dd, ³*J*_{*FF*} = 24, 13 Hz). ³¹P NMR (162 MHz, C₆D₆) δ -174.3 (t, ¹*J*_{*PH*} = 209 Hz). ¹¹B NMR (128 MHz, C₆D₆): δ -1.2. HRMS [C₁₈H₆BO₂F₁₂P₃]⁺ Calculated mass: 585.949. Measured mass: 585.949.

If D_2O is used instead of distilled water, compound $\mathbf{7}_d$ forms. This compound has no peaks in the ¹H NMR spectrum, and is identical to compound 7 in the ¹⁹F and ¹¹B NMR spectra. The ³¹P{¹H} NMR spectrum shows that the PD₂ species has formed instead of the PH₂.

7_d. ³¹P{¹H} NMR (162 MHz, C₆H₆) δ -178.9 (t, ¹J_{PD} = 32 Hz, PDH), -179.7 (p, ¹J_{PD} = 32 Hz, PD₂).

Figure S25. ¹H NMR spectrum of **7** in C₆D₆ * DCM

Figure S26. ^{19}F NMR spectrum of 7 in C_6D_6

Figure S27. ^{31}P NMR spectrum of 7 in C_6D_6

Figure S29. $^{11}B{}^{1}H$ NMR spectrum of **7** in C₆D₆

Figure S30. HRMS of 7.

Synthesis of (MeCN)B(C₆F₄PH₂)₃ (8):

Compound **7** (45 mg, 0.0787 mmol) was stirred in 1 mL of dry acetonitrile for 2 h at room temperature. The solvent was removed *in vacuo*, the solid was washed with 2 mL cold pentane and dried, yielding a white powder. (46 mg, 0.0773 mmol, 98 % yield)

¹H NMR (400 MHz, CDCl₃) δ 3.92 (dt, ¹*J*_{*HP*} = 209, ³*J*_{HF} = 4 Hz, 1H), 2.75 (br s, CH₃CN-B). ¹⁹F NMR (377 MHz, CDCl₃) δ -131.6 – -131.9 (m), -133.7 (dd, ³*J*_{*FF*} = 24, 14 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -175.1 (t, ¹*J*_{*PH*} = 209 Hz). ¹¹B NMR (128 MHz, CDCl₃) δ -10.8.

Figure S31. ¹H NMR spectrum of **8** in CDCl₃/MeCN * Free MeCN

Figure S32. ¹⁹F NMR spectrum of **8** in CDCl₃/MeCN * oDFB

Figure S34. $^{11}B{^1H}$ NMR spectrum of **8** in CDCl₃/MeCN

Synthesis of [PF(C₆F₄P(SiMe₃)₂)₃][B(C₆F₅)₄] (9):

 $[PF(C_6F_5)_3][B(C_6F_5)_4]$ (80 mg, 0.065 mmol) and P(TMS)₃ (47.5 mg, 0.190 mmol) were dissolved in DCM and the solutions were cooled to -35°C. They were then combined with strong stirring and allowed to warm to room temperature. All volatiles were removed under vacuum, and the product was washed with pentane, yielding a bright orange powder (95 mg, 0.056 mmol, 88%).

¹H NMR (400 MHz, CDCl₃) δ 0.38 (d, 54H, Si(CH₃)₃, ³J_{HP} = 6 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -115.9 (d, PF, ¹J_{FP} = 1050 Hz), -116.5 (s, C₆F₄), -129.1 (s, C₆F₄), -133.1 (s, ortho-BC₆F₅), -163.9 (t, ³J_{FF} = 20 Hz, para-BC₆F₅), -167.7 (s, meta-BC₆F₅). ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 62.6 (d, PF, ¹J_{PF} = 1040 Hz), -139.4 (s, P(SiMe₃)₂). ¹¹B NMR (128 MHz, CDCl₃) δ -16.7 (s, B(C₆F₅)₄). Calcd. for C₆₀H₅₄BF₃₃P₄Si₆ (1704.14): C 42.26%, H 3.19%. Found: C 42.29%, H 2.96%.

C 0.37 0.35

Figure S35. ¹H NMR Spectrum of **9** in CDCl₃.

Figure S37. ^{31}P NMR Spectrum of 9 in CDCl_3.

Figure S38. ¹¹B NMR Spectrum of **9** in CDCl₃.

Synthesis of $[CH_3OP(C_6F_4PH_2)_3][B(C_6F_5)_4]$ (10)

Product **9** (15 mg, 0.009 mmol) was dissolved in DCM to form a bright orange solution. To this solution was added one drop of dry, degassed methanol (approx 0.05 mL, approx. 1.2 mmol) with strong stirring, causing the solution to instantly turn colourless. After 10 minutes, all volatiles were removed under vacuum, yielding a pale yellow solid (10 mg, 0.008 mmol, 90%).

¹H{¹⁹F} NMR (400 MHz, CDCl₃) δ 6.25 (s, 3H, O-CH₃), 3.82 (d, 6H, PH₂, ³*J*_{*HP*} = 214.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -124.9 (s, 6F, C₆F₄), -132.8 (s, 8F, B(C₆F₅)₄), -134.5 (s, 6F, C₆F₄), -163.0 (t, 4F, B(C₆F₅)₄, ³*J*_{*FF*} = 21 Hz), - 166.9 (t, 8F, B(C₆F₅)₄, ³*J*_{*FF*} = 20 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 36.7 (s, P-OMe), -164.4 (t, ¹*J*_{*PH*} = 220 Hz, PH₂).¹⁹F NMR (377 MHz, CDCl₃) δ -120.8, -127.8, -132.8, -163.3 (t, *J* = 20 Hz), -167.2. ³¹P NMR (162 MHz, CDCl₃) δ 6.2 (s, 1P, P-OCH₃), -168.1 (t, 3P, PH₂, ¹*J*_{*PH*} = 215 Hz). ¹¹B NMR (128 MHz, CDCl₃) δ -16.7 (s, B(C₆F₅)₄). HRMS: formula, calc observed. HRMS: $[C_{18}H_7OF_{12}P_4]^+$ Calculated mass: 590.925. Measured mass: 590.925.

Figure S39. ${}^{1}H{}^{19}F{}$ NMR spectrum of **10** in C₆D₆ *pentane

Figure S41. ³¹P NMR spectrum of **10.**

Figure S43. HRMS of **10**.