Supporting Information

Synthesis, polymorphism, and shape complementarityinduced co-crystallization of hexanuclear Co(II) clusters capped by a flexible heteroligand shell

Michał Terlecki^{*[a]}, Arkadiusz Kornowicz,^[b] Kornel Sacharczuk,^[a] Iwona Justyniak,^[b] and Janusz Lewiński^{*[a,b]}

^[a]Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw,
 Poland
 ^[b]Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw,

Poland

Table of contents

Cobalt(II) acetate purification	S3
TGA Analysis	S3
PXRD Analysis	S5
X-Ray crystallographic data	S7
Coordination geometry analysis	S17
Hirshfeld Surface analysis:	S18

Cobalt(II) acetate purification

Figure S1. Color change during purification of commercial cobalt(II) acetate.

TGA Analysis

According to the literature thermal decomposition of $Co(OAc)_2 \cdot 4H_2O$ is a complicated multi-step process.¹ The mass decrease to 150°C is associated with dehydration and partial elimination of acetic acid with the formation of Co-OH species. Then above 260°C there is further elimination of acetic acid leading to deprotonation of OH groups. Finally, at about 350°C decomposition of organic parts occurs leading to cobalt oxides. A similar multi-step decomposition is observed in commercial and thermally treated $Co(OAc)_2$ (Figure S2 and S3), with a mass decrease below 150°C of about 10% and 3%, respectively. These values quite well reflect the water content in estimated (based on elemental analysis) formulas for both reagents: $[Co(OH)_{0.34}(OAc)_{1.66}] \cdot 0.70H_2O$ (calc. water cont. 7.2%) and $[Co(OH)_{0.28}(OAc)_{1.72}] \cdot 0.12H_2O$ (calc. water cont. 1.3%), respectively (note, that experimental mass decrease is grater likely due to partial elimination of acetic acid). In turn, the TGA curve for purified $Co(OAc)_2$ shows only a three-step decomposition above 240°C (Figure S3), indicating the absence of water or OH groups in the structure.

Figure S2. TGA-DSC plot for commercial cobalt(II) acetate.

Figure S3. TGA-DSC plot for thermally treated cobalt(II) acetate.

Figure S4. TGA-DSC plot for purified cobalt(II) acetate.

PXRD Analysis

Figure S5. PXRD patterns simulated for $[Co_5(OAc)_{10}]^2$ and measured for commercial, thermally treated, and purified $Co(OAc)_2$ reagents.

Figure S6. PXRD patterns simulated for phases α , β , and γ of complex **1** and measured for the outcome from the synthesis of **1**.

Figure S7. PXRD patterns simulated for co-crystal **1**·**2** and measured for for the outcome from the cocrystallization of **1** and **2**.

X-Ray crystallographic data

Table S1. Crystal data and structure refinement for $1(\alpha)$

Empirical formula	$C_{44}H_{86}Co_6N_6O_{16}$	
Formula weight	1308.76	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 11.4060(4) Å	a= 90°.
	b = 11.6220(4) Å	b= 104.348(2)°.
	c = 21.8380(8) Å	g = 90°.
Volume	2804.56(17) Å ³	
Z	2	
Density (calculated)	1.550 Mg/m ³	
Absorption coefficient	1.801 mm ⁻¹	
F(000)	1364	
Theta range for data collection	2.553 to 27.353 °.	
Index ranges	-14<=h<=14, -15<=k<=1	.4, -26<=l<=28
Reflections collected	10537	
Independent reflections	5775 [R(int) = 0.0387]	
Completeness to theta = 25.000°	93.9 %	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	5775 / 0 / 327	
Goodness-of-fit on F ²	1.104	
Final R indices [I>2sigma(I)]	R1 = 0.0367, wR2 = 0.07	794
R indices (all data)	R1 = 0.0434, wR2 = 0.08	323
Largest diff. peak and hole	0.402 and -0.493 e.Å ⁻³	}

^{*a*} $R1 = \Sigma ||Fo| - |Fc||/\Sigma |Fo|$. ^{*b*} $wR2 = [\Sigma w(Fo^2 - Fc^2)^2/\Sigma w(Fo^2)^2]^{1/2}$

Figure. S8. Molecular structure of $1(\alpha)$ with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (-*x*+1, -*y*+1, -*z*+1).

Table S2. Crystal data and structure refinement for **1(β)**

Empirical formula	C44H86C06N6O16	
Formula weight	1308.76	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 14.2057(4) Å	a= 90°.
	b = 12.0883(4) Å	b= 93.260(3)°.
	c = 16.4530(7) Å	g = 90°.
Volume	2820.78(17) Å ³	
Z	2	
Density (calculated)	1.541 Mg/m ³	
Absorption coefficient	1.791 mm ⁻¹	
F(000)	1364	
Theta range for data collection	2.872 to 26.995°.	
Index ranges	-18<=h<=17, -13<=k<=15, -21<=	=l<=20
Reflections collected	13583	
Independent reflections	6056 [R(int) = 0.0543]	
Completeness to theta = 25.242°	99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6056 / 0 / 327	
Goodness-of-fit on F ²	1.109	
Final R indices [I>2sigma(I)]	R1 = 0.0425, wR2 = 0.1003	
R indices (all data)	R1 = 0.0585, wR2 = 0.1130	
Largest diff. peak and hole	0.693 and -0.584 e.Å ⁻³	

 ${}^{o}R1 = \Sigma ||Fo| - |Fc||/\Sigma |Fo|. \quad {}^{b}wR2 = [\Sigma w (Fo^{2} - Fc^{2})^{2} / \Sigma w (Fo^{2})^{2}]^{1/2}$

Figure. S9. Molecular structure of $1(\beta)$ with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (-*x*+1, -*y*+1, -*z*+1).

Table S3. Crystal data and structure refinement for **1(γ)**

Empirical formula	C44H86C06N6O16			
Formula weight	1308.76			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	P c a 21			
Unit cell dimensions	a = 12.6327(3) Å	a= 90°.		
	b = 15.3660(3)Å	b= 90°.		
	c = 27.9274(5) Å	g = 90°.		
Volume	5421.10(19) Å ³			
Z	4			
Density (calculated)	1.604 Mg/m ³			
Absorption coefficient	1.864 mm ⁻¹			
F(000)	2728			
Theta range for data collection	3.024 to 26.999 °.			
Index ranges	-15<=h<=9, -19<=k<=14, -34<=l<=35			
Reflections collected	19815			
Independent reflections	10589 [R(int) = 0.0372]			
Completeness to theta = 25.242°	99.8 %			
Absorption correction	Semi-empirical from equ	uivalents		
Refinement method	Full-matrix least-squares	s on F ²		
Data / restraints / parameters	10589 / 3 / 662			
Goodness-of-fit on F ²	1.045			
Final R indices [I>2sigma(I)]	R1 = 0.0427, wR2 = 0.08	62		
R indices (all data)	R1 = 0.0539, wR2 = 0.09	40		
Largest diff. peak and hole	1.317 and -0.471 e.Å ⁻³			

 o R1 = $\Sigma ||Fo| - |Fc||/\Sigma |Fo|$. b wR2 = $[\Sigma w(Fo^{2} - Fc^{2})^{2}/\Sigma w(Fo^{2})^{2}]^{1/2}$

Figure. S10. Molecular structure of **1(y)** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity.

Table S4. Crystal data and structure refinement for 2

Empirical formula	$C_{48}H_{90}Co_6N_6O_{18}$			
Formula weight	1392.83			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/c			
Unit cell dimensions	a = 12.2702(2) Å	a= 90°.		
	b = 13.7088(3) Å	b= 91.439(2)°.		
	c = 17.3126(3) Å	g = 90°.		
Volume	2911.23(9) Å ³			
Z	2			
Density (calculated)	1.589 Mg/m ³			
Absorption coefficient	1.743 mm ⁻¹			
F(000)	1452			
Theta range for data collection	2.972 to 29.214°.			
Index ranges	-16<=h<=16, -18<=k<=18, -23<=l<=20			
Reflections collected	15030			
Independent reflections	6780 [R(int) = 0.0234]			
Completeness to theta = 25.242°	99.6 %			
Absorption correction	Semi-empirical from equivalent	ts		
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	6780 / 6 / 365			
Goodness-of-fit on F ²	1.081			
Final R indices [I>2sigma(I)]	R1 = 0.0366, wR2 = 0.0831			
R indices (all data)	R1 = 0.0436, wR2 = 0.0861			
Largest diff. peak and hole	0.792 and -0.436 e.Å ⁻³			

 $a R1 = \Sigma ||F0| - |Fc|| / \Sigma |F0|$. $b wR2 = [\Sigma w(F0^2 - Fc^2)^2 / \Sigma w(F0^2)^2]^{1/2}$

Figure. S11. Molecular structure of **2** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (-x, -y, -z).

Table S5. Crystal data and structure refinement for 1-2

$C_{92}H_{176}Co_{12}N_{12}O_{34}$				
2701.60				
100(2) K				
0.71073 Å				
Triclinic				
P -1				
a = 10.1181(4) Å	a= 93.061(3)°.			
b = 16.2501(6) Å	b= 91.191(3)°.			
c = 17.1906(7) Å	g = 91.462(3)°.			
2820.83(19) Å ³				
1				
1.590 Mg/m ³				
1.795 mm ⁻¹				
1408				
3.079 to 27.000°.				
-12<=h<=12, -20<=k<=18, -21<=l<=21				
22897				
12114 [R(int) = 0.0280]				
99.8 %				
Semi-empirical from equivalent	ts			
Full-matrix least-squares on F^2				
12114 / 42 / 710				
1.040				
R1 = 0.0321, wR2 = 0.0682				
R1 = 0.0406, wR2 = 0.0736				
0.536 and -0.559 e.Å ⁻³				
	C ₉₂ H ₁₇₆ Co ₁₂ N ₁₂ O ₃₄ 2701.60 100(2) K 0.71073 Å Triclinic P -1 a = 10.1181(4) Å b = 16.2501(6) Å c = 17.1906(7) Å 2820.83(19) Å ³ 1 1.590 Mg/m ³ 1.795 mm ⁻¹ 1408 3.079 to 27.000°. -12<=h<=12, -20<=k<=18, -21<= 22897 12114 [R(int) = 0.0280] 99.8 % Semi-empirical from equivalent Full-matrix least-squares on F ² 12114 / 42 / 710 1.040 R1 = 0.0321, wR2 = 0.0682 R1 = 0.0406, wR2 = 0.0736 0.536 and -0.559 e.Å ⁻³			

 $a R1 = \Sigma ||F0| - |Fc|| / \Sigma |F0|$. $b wR2 = [\Sigma w(F0^2 - Fc^2)^2 / \Sigma w(F0^2)^2]^{1/2}$

Figure. S12. Molecular structure of **1-2** with thermal ellipsoids set at 30% probability. Hydrogen atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (-x, -y+2, -z), (-x+1, -y+1, -z+1).

Coordination geometry analysis

Analysis of the coordination sphere geometry of Co(II) centers in the presented structures was conducted employing the continuous shape measurement (CShM)³ (lower the CShM values indicate better fit to given geometry) using SHAPE softwere.⁴ The results are presented in Table S6 and S7.

	CShM							
	1(α)	1(β)		1(γ)			
Geometry	Co1	Co3	Co1	Co3	Co1	Co2	Co5	Co6
Vacant octahedron (C _{4v})	6.194	3.614	6.560	5.752	5.235	3.807	3.930	4.762
Trigonal bipyramid (D _{3h})	1.737	2.460	1.759	1.283	2.042	2.420	2.334	1.965
Spherical square pyramid (C _{4v})	4.160	2.006	4.560	4.259	4.024	2.260	2.269	3.628
Johnson trigonal bipyramid J ₁₂ (D _{3h})	2.871	3.909	2.864	2.842	3.297	3.431	3.387	3.146

 Table S6. CShM parameters for five-coordinated Co(II) centers in crystal structures of 1, 2 and 1.2

Table S6 c.d.

	CShM						
	2	1 in	1.2	2 in 1·2			
Geometry	Co1	Co1	Co3	Co6			
Vacant octahedron (C_{4v})	1.574	5.503	6.315	1.487			
Trigonal bipyramid (D _{3h})	3.455	1.635	1.833	3.546			
Spherical square pyramid (C _{4v})	1.138	3.734	4.240	0.966			
Johnson trigonal bipyramid J ₁₂ (D _{3h})	6.189	3.152	2.960	6.192			

 Table S7. CShM parameters for six-coordinated Co(II) centers in crystal structures of 1, 2 and 1.2

	CShM									
	1(α)	1(β)	1(γ)		<i>(</i>) 2		1(γ) 2 1 in 1·2		2 in	1.2
Geometry	Co2	Co2	Co3	Co4	Co2	Co3	Co2	Co4	Co5	
Pentagonal pyramid (C _{5v})	18.624	18.473	19.186	19.064	25.188	16.933	17.205	16.850	24.446	
Octahedron (O _h)	3.272	3.202	3.025	3.057	1.076	4.937	3.933	4.672	1.058	
Trigonal prism (D _{3h})	9.898	9.732	8.927	8.958	12.959	7.646	9.471	8.114	13.864	
Johnson pentagonal pyramid J ₂ (C _{5v})	22.899	22.759	23.612	23.579	28.861	20.297	21.251	20.161	28.131	

Hirshfeld Surface analysis:

Figure S13. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster **1**^a in phase α .

Figure S14. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster 1^a in phase β .

Figure S15. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster 1^b in phase γ .

Figure S16. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster 2^a.

Figure S17. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster $2^{a'}$.

Figure S18. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster **1**^a in co-crystal **1**·2 (including co-former **2**^b).

Figure S19. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster **1**^a in co-crystal **1**·2 (including co-former **2**^b).

Figure S20. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster 2^{b} in co-crystal 1.2.

Figure S21. Hirshfeld surface (mapped with d_{norm}) and fingerprint plot of cluster **2**^b in co-crystal **1**·2.

Molecule	HS area	H····H contacts	H…O contacts	<i>d</i> i [Å]			de [Å]		
	[A ²]	area [%]	area [%]	min	mean	max	min	mean	max
1^{a} in phase α	808.13	94.4	4.5	1.126	1.616	2.803	1.127	1.632	2.749
1^{a} in phase $\boldsymbol{\beta}$	796.83	93.8	5.5	1.048	1.614	2.555	1.046	1.630	2.563
1^ь in phase γ	818.98	92.7	6.3	1.080	1.560	2.373	1.079	1.575	2.479
2ª in 2	819.24	96.0	3.6	1.062	1.581	2.593	1.061	1.594	2.703
2ª' in 2	824.43	96.1	3.5	1.061	1.576	2.583	1.061	1.590	2.701
1ª(with 2 ^b) in 1·2	800.24	93.9	5.6	0.995	1.565	2.293	0.995	1.579	2.349
1ª(with 2 ^b ') in 1·2	797.46	93.9	5.5	0.995	1.561	2.293	0.995	1.574	2.316
2 ^b in 1·2	844.35	96.8	3.0	1.055	1.586	2.298	1.036	1.604	2.367
2 ⁶ ′ in 1·2	845.17	97.0	2.7	1.096	1.579	2.271	1.035	1.596	2.367

Table S8. Selected Hirshfeld surface (HS) parameters for monocomponent crystals of **1** and **2** and co-crystal **1**·**2**.

Figure S22. Analysis of HS contacts of cluster 1 in co-crystal 1.2.

Figure S23. Analysis of HS contacts of cluster 1 in co-crystal 1.2.

References:

- 1 R. Kuhlman, G. L. Schimek and J. W. Kolis, *Inorg. Chem.*, 1999, **38**, 194–196.
- 2 G. Zhang, J. Lin, D. Guo, S. Yao and Y. Tian, *Zeitschrift für Anorg. und Allg. Chemie*, 2010, **636**, 1401–1404.
- 3 H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc., 1992, **114**, 7843–7851.
- 4 M. Llunell, D. Casanova, J. Cirera, P. Alemany and S. Alvarez, 2013, Version 2.1.