Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Linker-dependent control of the chiroptical properties of polymethylene-vaulted *trans*-Bis[(β-iminomethyl)naphthoxy]platinum(II) complexes

Masahiro Ikeshita^{a,b*}, Shing Cho Ma^c, Gilles, Muller^{c*}, Takeshi Naota^{a*}

^a Department of Chemistry, Graduate School of Engineering Science, Osaka University

Machikaneyama, Toyonaka, Osaka 560-8531, Japan

^b Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino,

Chiba 275-8575, Japan.

^c Department of Chemistry, San José State University

One Washington Square, San José, California 95192-0101, United States

Contents

Fig. S1 ¹ H and ¹³ C NMR spectra of (R) -1a in CDCl ₃ .	S3
Fig. S2 ¹ H and ¹³ C NMR spectra of (R) -1b in CDCl ₃ .	S4
Fig. S3 ¹ H and ¹³ C NMR spectra of (R) -1c in CDCl ₃ .	S5
Fig. S4 ¹ H and ¹³ C NMR spectra of (R) -1d in CDCl ₃ .	S 6
Fig. S5 ¹ H and ¹³ C NMR spectra of (R) -1e in CDCl ₃ .	S 7
Fig. S6 ¹ H and ¹³ C NMR spectra of (R) -1f in CDCl ₃ .	S 8
Fig. S7 Time-dependent UV absorption intensity of optical resolution of 1a–f.	S9
Fig. S8 ORTEP representation of (R) -1a-f as their optically pure crystals.	S10
Table S1 Crystallographic data for complexes (-)-1a-e and (+)-1f.	S11
Fig. S9 CD spectra of 2.00×10^{-4} M solutions of 1a–f in 2-MeTHF.	S12
Fig. S10 Anisotropy factor g values of CD spectra for 1a-f in 2-MeTHF.	S13
Fig. S11 Photographs of (R) -1a-f in 2-MeTHF under UV irradiation.	S14
Fig. S12 Emission spectra for (R) -1a-f in 2-MeTHF solution state.	S15
Table S2Photophysical data of 1a-f in 2-MeTHF.	S16
Fig. S13 Emission decay curves for (R) -1a-f in 2-MeTHF solution state at 298 K.	S17
Fig. S14 Emission decay curves for (R) -1a-f in 2-MeTHF solution state at 77 K.	S18
Fig. S15 CPL and total emission spectra of 2.0×10^{-4} M solutions of 1a in 2-MeTHF at 298 K	S19
Fig. S16 Optimized molecular structures of (R) -1a-f in the T ₁ state.	S20

Fig. S17 Relationship between linker length and distortion of coordination site for (R) -1a-f in	the T ₁ state.
	S20
Fig. S18 Frontier orbitals and their eigenvalues $[eV]$ for $1a-f$ in the T_1 state.	S21
Table S3Selected data of TD-DFT calculations for (R) -1a-f.	S21
Fig. S19 Experimental and theoretical CD spectra of (R) -1a–f.	S22
Fig. S20 Effects of the C(23)–N(1)–N(2)–C(24) dihedral angles and N(1)–Pt(1)–N(2) angles on to	tal energies
of 2 estimated using DFT calculations.	S22
Fig. S21 Effects of N(1)–Pt(1)–N(2) angles on geometry index (τ_4) of 2 estimated using DFT calcu	lations.
	S22
Fig. S22 Optimized molecular structures of (R) -1d-f in the S ₀ state.	S23
Table S4. Relative energies of various conformations of (R) -1d-f and transition dipole moments in	the $S_0 \rightarrow S_1$
transition.	S24
Table S5 Cartesian coordinates (in angstrom) of (R)-1a in the S ₀ state.	S25
Table S6 Cartesian coordinates (in angstrom) of (R) -1b in the S ₀ state.	S27
Table S7 Cartesian coordinates (in angstrom) of (R)-1c in the S ₀ state.	S29
Table S8 Cartesian coordinates (in angstrom) of (R) -1d in the S ₀ state.	S31
Table S9 Cartesian coordinates (in angstrom) of (R) -1e in the S ₀ state.	S34
Table S10 Cartesian coordinates (in angstrom) of (R)-1f in the S ₀ state.	S37
Table S11 Cartesian coordinates (in angstrom) of (R) -1a in the T ₁ state.	S40
Table S12 Cartesian coordinates (in angstrom) of (R) -1b in the T ₁ state.	S42
Table S13 Cartesian coordinates (in angstrom) of (R) -1c in the T ₁ state.	S44
Table S14 Cartesian coordinates (in angstrom) of (R) -1d in the T ₁ state.	S46
Table S15 Cartesian coordinates (in angstrom) of (R) -1e in the T ₁ state.	S49
Table S16 Cartesian coordinates (in angstrom) of (R)-1f in the T ₁ state.	S52

S3

Fig. S1. (a) ¹H and (b) ¹³C NMR spectra of (R)-1a in CDCl₃.

Fig. S2. (a) ¹H and (b) ¹³C NMR spectra of (R)-1b in CDCl₃.

(b)

Fig. S3. (a) ¹H and (b) ¹³C NMR spectra of (R)-1c in CDCl₃.

S5

Fig. S4. (a) ¹H and (b) ¹³C NMR spectra of (R)-1d in CDCl₃.

Fig. S5. (a) ¹H and (b) ¹³C NMR spectra of (R)-1e in CDCl₃.

Fig. S6. (a) ¹H and (b) ¹³C NMR spectra of (R)-1f in CDCl₃.

Fig. S7. Time-dependent UV absorption intensity of before (left) and after (middle and right) optical resolution of (a) 1a, (b) 1b, (c) 1c, (d) 1d, (e) 1e and (f) 1f on CHIRAL ART Cellulose-SC (CH₂Cl₂, flow = 0.5 mL/min, abs. at 250 nm).

Fig. S8. ORTEP representation of (a) (*R*)-1a, (b) (*R*)-1b, (c) (*R*)-1c, (d) (*R*)-1d, (e) (*R*)-1e and (f) (*R*)-1f as their optically pure crystals. Thermal ellipsoids are shown at 50% probability level and hydrogen atoms are omitted for clarity. The angles of C(7)–Pt(1)–C(18) and dihedral angles of C(11)–N(1)–Pt(1)–O(1)/C(22)–N(2)–Pt(1)–O(2) (in parentheses) are given under the structure.

	(–) -1 a	(–) -1b	(–) -1 c	(–) -1d	(–) -1e	(+) -1f
Formula	$C_{30}H_{30}N_2O_2Pt$	$C_{32}H_{34}N_2O_2Pt$	$C_{34}H_{38}N_2O_2Pt$	$C_{36}H_{42}N_2O_2Pt$	$C_{36}H_{42}N_2O_2Pt$	$C_{40}H_{50}N_2O_2Pt$
		702.12	201 20	700.00	777 00	705.04
$M_{ m F}$	645.67	/02.12	/01./8	/29.83	/5/.88	/85.94
<i>T</i> [K]	113	113	113	113	113	113
Crystal color, habit	red, block	red, block	red, chip	red, chip	red, block	red, chip
Crystal size [mm]	0.20×0.20×0.20	0.20×0.20×0.10	0.20×0.20×0.05	0.20×0.20×0.20	0.20×0.20×0.20	0.10×0.10×0.05
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	monoclinic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 (#18)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (#19)	P2 ₁ 2 ₁ 2 ₁ (#19)	P2 ₁ 2 ₁ 2 ₁ (#19)	P2 ₁ 2 ₁ 2 ₁ (#19)	<i>P</i> 2 ₁ (#4)
a [Å]	17.04673(16)	17.07120(16)	12.075(3)	22.1932(6)	30.3209(7)	9.1109(3)
<i>b</i> [Å]	17.16019(18)	17.85690(17)	10.511(2)	32.7977(7)	9.4282(3)	10.0604(4)
<i>c</i> [Å]	13.07172(12)	26.8416(2)	22.225(5)	32.8261(9)	11.2103(3)	18.7421(6)
α [°]	90	90	90	90	90	90
β[°]	90	90	90	90	90	91.389(3)
γ [°]	90	90	90	90	90	90
<i>V</i> [Å ³]	3823.81(6)	8182.36(13)	2820.8(11)	23893.7(11)	3204.71(15)	1717.38(10)
Ζ	6	12	4	32	4	2
$D_{ m calcd} [m gcm^{-3}]$	1.682	1.710	1.652	1.623	1.571	1.520
μ (MoK α) [cm ⁻¹]	55.120	52.226	49.884	47.148	43.973	41.057
<i>F</i> (000)	1908.00	4176.48	1400.00	11712.00	1528.00	796.00
$2\theta_{\max}$ [°]	55.0	55.0	55.1	55.0	55.0	55.0
No. of reflections	69614	148976	26918	120429	60703	30832
No. observed reflections	8767	18755	6425	52747	7362	7216
No. variables	474	1027	346	2953	388	406
$R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$	0.0220	0.0152	0.0341	0.0579	0.0341	0.1229
wR_2 (all reflections) ^[b]	0.0572	0.0358	0.0684	0.1049	0.0906	0.3273
Goodness of fit	1.082	1.025	0.991	0.969	1.018	1.068
Flack parameter	-0.004(3)	-0.0170(10)	-0.013(9)	-0.024(5)	-0.025(4)	0.126(12)

Table S1. Crystal data and structural refinement details for complexes (–)-1a-e and (+)-1f.^[a]

[a] $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$. [b] $wR_2 = [w(F_o^2 - F_c^2)^2] / wF_o^2)^2]^{1/2}$.

Fig. S9. CD spectra of 2.00×10⁻⁴ M solutions of (a) 1a, (b) 1b, (c) 1c, (d) 1d, (e) 1e, and (f) 1f in 2-MeTHF.

Fig. S10. Anisotropy factor g values of CD spectra for (a) 1a, (b) 1b, (c) 1c, (d) 1d, (e) 1e, (f) 1f in 2-MeTHF.

Fig. S11. Photographs of 2.00×10^{-4} M solutions of (*R*)-**1a-f** in 2-MeTHF under UV irradiation (365 nm) at room temperature.

Fig. S12. Normalized emission spectra for (*R*)-1a–f in 2-MeTHF solution state (2.0× 10⁻⁴ M) at a) 298 K and b) 77 K ($\lambda_{ex} = 500$ nm).

	1 2						
Compound	$\lambda_{\mathrm{abs}} [\mathrm{nm}]$	$\lambda_{ m em} [m nm]^{[b]}$	${D}^{[\mathrm{b},\mathrm{c},\mathrm{d}]}$	τ [μs] ^[b,c]	$k_{\rm r} imes 10^4 [{ m s}^{-1}]^{[{ m b},{ m d}]}$	$k_{\rm nr} \times 10^5 [\rm s^{-1}]^{[\rm b,e]}$	$CIE (x, y)^{[f]}$
1a	487	624 (601, 648)	0.003 (0.36)	0.16 (27.2)	1.8 (1.3)	62 (0.24)	0.67, 0.33
1b	493	620 (600, 650)	0.05 (0.41)	2.7 (24.5)	1.9 (1.7)	3.5 (0.24)	0.67, 0.33
1c	497	620 (603, 657)	0.10 (0.45)	5.1 (22.1)	2.0 (2.0)	1.8 (0.25)	0.67, 0.33
1d	498	620 (603, 651)	0.14 (0.43)	5.3 (21.4)	2.6 (2.0)	1.6 (0.27)	0.67, 0.33
1e	498	620 (603, 652)	0.17 (0.41)	5.7 (21.8)	3.0 (1.9)	1.5 (0.27)	0.67, 0.33
1f	499	621 (604, 654)	0.18 (0.42)	5.8 (20.1)	3.1 (2.1)	1.4 (0.29)	0.67, 0.33

Table S2. Photophysical data for (*R*)-1a–f.^[a]

[a] Data were obtained from a 2.0×10⁻⁴ M in 2-MeTHF at 298 K unless otherwise stated. [b] Values in parentheses are those measured at 77 K. [c] $\lambda_{ex} = 500$ nm. [d] Luminescent quantum efficiencies measured using the absolute method with an integrating sphere. [e] $k_r = \Phi_{298K}/\tau$. [f] $k_{nr} = (1-\Phi_{298K})/\tau$. [g] CIE color coordinates for the emission at 298 K.

Fig. S13. Emission decay curves (black line) for (a) (*R*)-1a, (b) (*R*)-1b, (c) (*R*)-1c (d) (*R*)-1d, (e) (*R*)-1e, and (f) (*R*)-1f in 2-MeTHF solution state (2.0×10^{-4} M) at 298 K [$\lambda_{ex} = 355$ nm, $\lambda_{em} = 620$ nm]. The red curves are those estimated by single-exponential fitting analysis.

Fig. S14. Emission decay curves (black line) for (a) (*R*)-1a, (b) (*R*)-1b, (c) (*R*)-1c (d) (*R*)-1d, (e) (*R*)-1e, and (f) (*R*)-1f in 2-MeTHF solution state $(2.0 \times 10^{-4} \text{ M})$ at 77 K [$\lambda_{ex} = 355 \text{ nm}$, $\lambda_{em} = 620 \text{ nm}$]. The red curves are those estimated by single-exponential fitting analysis.

Fig. S15. CPL (upper figure) and total emission (lower figure) spectra of 2.0×10^{-4} M solutions of 1a in 2-MeTHF at 298 K ($\lambda_{ex} = 420$ nm). Red and blue circles in the CPL spectra correspond to optically pure (100% *ee*) (*R*)- and (*S*)-compounds, respectively, and each point is plotted with a standard error bar. The dashed lines in the upper figure are presented to show the luminescence spectral line shape. The average g_{lum} value was calculated to be -3.4×10^{-3} for (*R*)-1a and $+2.7 \times 10^{-3}$ for (*S*)-1a, respectively. Although the number of measured data is limited due to the weak luminescence intensity, the (*R*)-form tends to show (–)-CPL and the (*S*)-form (+)-CPL, as in 1b–f.

Fig. S16. Optimized molecular structures of (a) (*R*)-1a, (b) (*R*)-1b, (c) (*R*)-1c, (d) (*R*)-1d, (e) (*R*)-1e and (f) (*R*)-1f in the excited state (T_1) as obtained from DFT calculations (UB3LYP/6-31G*, LanL2DZ). The C(11)–N(1)–Pt(1)–O(1) and C(22)–N(2)–Pt(1)–O(2) dihedral angles are provided in parentheses under each structure.

Fig. S17. Relationship between linker length and distortion of coordination site for (*R*)-1a–f. (a) The average C(11)-N(1)-Pt(1)-O(1)/C(22)-N(2)-Pt(1)-O(2) dihedral angles and (b) N(1)-Pt(1)-N(2) angles as functions of chain length. Values were estimated based on optimized structures in the excited state (T₁) estimated using DFT calculations (UB3LYP/6-31G*, LanL2DZ).

Fig. S18. Frontier orbitals and their eigenvalues [eV] for 1a-f as estimated from DFT calculations (UB3LYP/6-31G*, LanL2DZ) on the basis of the optimized geometries in the T₁ state.

Table S3. Selected data for excitation energy,	major configuration,	coefficient,	oscillator streng	th, and the	character of char	ge transfer for
(R)-1a-f (for the geometries optimized in the s	S ₀ state). ^[a]					

Compound	State	Excitation energy (eV)	Major configuration ^[b]	Coefficient	Oscillator strength	Character
(<i>R</i>)-1a	\mathbf{S}_1	2.38 (521 nm)	H→L	0.693	0.0212	¹ MLCT/ ¹ LC
	T_1	1.95 (636 nm)	H→L	0.550	_	³ MLCT/ ³ LC
(<i>R</i>)-1b	\mathbf{S}_1	2.37 (522 nm)	H→L	0.696	0.0229	¹ MLCT/ ¹ LC
	T_1	1.95 (637 nm)	H→L	0.601	_	³ MLCT/ ³ LC
(<i>R</i>)-1c	\mathbf{S}_1	2.37 (522 nm)	H→L	0.697	0.0244	¹ MLCT/ ¹ LC
	T_1	1.93 (642 nm)	H→L	0.603	_	³ MLCT/ ³ LC
(<i>R</i>)-1d	\mathbf{S}_1	2.34 (530 nm)	H→L	0.698	0.0259	¹ MLCT/ ¹ LC
	T_1	1.91 (650 nm)	H→L	0.609	—	³ MLCT/ ³ LC
(<i>R</i>)-1e	\mathbf{S}_1	2.33 (531 nm)	H→L	0.698	0.0263	¹ MLCT/ ¹ LC
	T_1	1.90 (652 nm)	H→L	0.611	_	³ MLCT/ ³ LC
(<i>R</i>)-1f	\mathbf{S}_1	2.33 (532 nm)	H→L	0.698	0.0270	¹ MLCT/ ¹ LC
	T_1	1.90 (652 nm)	H→L	0.613	_	³ MLCT/ ³ LC

[a] Estimated by TD-DFT (B3LYP/6-31G*, LanL2DZ) calculations based on the optimized geometries. [b] Molecular orbitals are shown in Fig. 7.

Fig. S19. (a) Experimental $(2.0 \times 10^{-4} \text{ M in 2-MeTHF})$ and (b) theoretical CD spectra of (*R*)-1a–f. Theoretical spectra were estimated by DFT (B3LYP/6-31G*, LanL2DZ) calculation.

Fig. S20 Effects of (a) the C(23)–N(1)–N(2)–C(24) dihedral angles and (b) N(1)–Pt(1)–N(2) angles on total energies of **2** estimated using DFT calculations (B3LYP/6-31G*, LanL2DZ).

Fig. S21 Effects of N(1)–Pt(1)–N(2) angles on geometry index (τ_4) of **2** estimated using DFT calculations (B3LYP/6-31G*, LanL2DZ).

Fig. S22. Optimized structures of (a) (*R*)-1d, (b) (*R*)-1e, and (c) (*R*)-1f in the S₀ state estimated by DFT calculations from different initial structures (B3LYP/6-31G*, LanL2DZ). The N(1)–Pt(1)–N(2) angles and the C(11)–N(1)–Pt(1)–O(1)/C(22)–N(2)–Pt(1)–O(2) dihedral angles (in parentheses) and are provided under each structure.

Compound	Structure	Relative energy (kcal/mol)	$ \mu_{e} / 10^{-20 [b]}$ (esu.cm)	$ \mu_{\rm m} / 10^{-20 [c]}$ (erg.G ⁻¹)	$\cos(\theta_{e,m})^{[d]}$	$g_{ m abs}{}^{[e]}$
(<i>R</i>)-1d	Optimized	0	170.8	0.367	-0.110	-9.5×10^{-4}
	Conformation I	0.02	170.9	0.367	-0.106	-9.1×10^{-4}
	Conformation II	1.63	168.0	0.386	-0.306	-2.8×10^{-3}
	Conformation III	1.63	168.0	0.385	-0.306	-2.8×10^{-3}
(<i>R</i>)-1e	Optimized	0	172.3	0.357	-0.0890	-7.4×10^{-4}
	Conformation I	6.66	171.2	0.398	-0.0239	-2.2×10^{-4}
	Conformation II	5.33	170.2	0.422	-0.0875	-8.7×10^{-4}
	Conformation III	6.40	170.8	0.422	-0.216	-2.1×10^{-3}
(<i>R</i>)-1f	Optimized	0	174.7	0.377	-0.0600	-5.2×10^{-4}
	Conformation I	1.26	175.6	0.427	-0.142	-1.4×10^{-3}
	Conformation II	3.70	174.4	0.328	-0.102	-7.7×10^{-4}
	Conformation III	3.26	170.4	0.406	-0.149	-1.5×10^{-3}

Table S4. Relative energies of various conformations of (*R*)-1d–f and transition dipole moments in the $S_0 \rightarrow S_1$ transition.^[a]

_

[a] Estimated by TD-DFT (B3LYP/6-31G*, LanL2DZ) calculations. [b] Transition electric dipole moment (TEDM). [c] Transition magnetic dipole moment (TMDM). [d] $\cos(\theta_{e,m})$ represents the angle of TEDM and TMDM. [e] Dissymmetry factor (g_{abs}) was calculated follows: $g_{abs} = 4R/(D+G)$, where *R*, *D*, and *G* represent the rotatory, electric dipole, magnetic dipole strength ($R = |\boldsymbol{\mu}_{e}||\boldsymbol{\mu}_{m}|\cos\theta$, $D = |\boldsymbol{\mu}_{e}|^{2}$, $G = |\boldsymbol{\mu}_{m}|^{2}$)

atom	х	У	Z
Pt	0.02439	0.14294	-0.02232
0	1.84087	0.22508	0.90696
0	-1.75518	-0.08291	-0.98361
Ν	0.95782	0.29181	-1.8362
Ν	-0.91171	0.32869	1.77648
С	3.14075	-0.48605	-1.03071
С	2.91875	-0.3369	0.39268
С	3.93822	-0.74985	1.25353
Н	3.77512	-0.63166	2.32102
С	5.14739	-1.30235	0.78796
С	6.18096	-1.73369	1.67123
Н	6.02689	-1.63183	2.74266
С	7.34959	-2.26834	1.18328
Н	8.12523	-2.59109	1.87312
С	7.56109	-2.40577	-0.21608
Н	8.49194	-2.83032	-0.58112
С	6.58808	-2.00157	-1.09753
Н	6.73706	-2.10175	-2.17053
С	5.36429	-1.44476	-0.62739
С	4.34679	-1.01075	-1.49464
Н	4.5059	-1.09059	-2.5689
С	2.20467	-0.00039	-2.01821
Н	2.6122	0.1608	-3.02009
С	-3.09374	-0.51404	1.01464
С	-2.86021	-0.5151	-0.41521
С	-3.89642	-0.96575	-1.24081
Н	-3.72037	-0.96111	-2.31275
С	-5.12907	-1.41657	-0.73604
С	-6.17955	-1.88209	-1.583
Н	-6.01772	-1.88813	-2.65809
С	-7.3723	-2.31416	-1.05553
Н	-8.16033	-2.66419	-1.7175
С	-7.59429	-2.3102	0.35004
Н	-8.54495	-2.65601	0.74583
С	-6.60711	-1.87025	1.19675
Н	-6.7638	-1.86254	2.27329
С	-5.35672	-1.41535	0.68561
С	-4.32413	-0.95029	1.51439

Table S5. Cartesian coordinates (in angstrom) of (R)-1a in the S₀ state^[a].

Н	-4.48868	-0.9274	2.5905
С	-2.15019	0.00329	1.97383
Н	-2.54354	0.15828	2.98277
С	0.22213	0.97697	-2.91577
Н	-0.60489	0.3291	-3.21871
Н	0.9007	1.1072	-3.76886
С	-0.35886	2.33147	-2.45306
Н	-1.21436	2.10909	-1.81142
Н	-0.76475	2.82783	-3.34528
С	0.6195	3.27753	-1.72589
Н	1.34317	2.69509	-1.14508
Н	1.20664	3.83945	-2.46548
С	-0.08801	4.2754	-0.78231
Н	-0.88062	4.79077	-1.34356
Н	0.62918	5.05564	-0.48976
С	-0.70384	3.66306	0.49525
Н	-1.40517	4.39262	0.92583
Н	-1.308	2.78733	0.2311
С	0.31597	3.28077	1.58642
Н	0.79901	4.20447	1.93422
Н	1.11494	2.65772	1.17091
С	-0.30263	2.55959	2.81224
Н	0.19774	2.90959	3.72505
Н	-1.35938	2.84375	2.92016
С	-0.19084	1.01845	2.8637
Н	0.85436	0.716	2.79441
Н	-0.5959	0.66819	3.82257

[a] The geometry was optimized by DFT calculation (B3LYP/6-31G*, LanL2DZ).

atom х у z -0.20376 Pt 0.00003 0 0 0.94864 1.79761 -0.26887 -1.79752 -0.94868 0 -0.26922 Ν 0.90924 -0.1003 -1.82865 -0.9092 Ν -0.09996 1.82863 С 2.92612 -0.66388 0.4005 \mathbf{C} -2.16643 -0.35573 2.0091 3.02964 Н -2.54529 -0.25689 С -0.13081 0.41014 2.9738 Н -0.76347 3.87003 0.36417 Н 0.72538 -0.25373 3.11044 С 3.1501 -0.73884 -1.0269 С 4.40336 -1.12385 -1.511 Н 4.55994 -2.58795 -1.15884 -2.43044 \mathbf{C} 0.6902 2.89213 Н 1.36014 2.51647 -1.6474 Η 1.31767 3.04884 -3.31987 С 0.38538 1.84225 2.74438 Н 0.92891 2.13446 3.65437 Н 1.94284 1.12655 1.799 С 0.40957 -2.97389 0.13081 Н 0.76343 0.36348 -3.87013 Н -0.72537 -0.25435 -3.1104 С -0.40044 -2.92606 -0.66408 С -2.00909 2.16649 -0.35601 -3.02964 Η 2.54534 -0.25729 С 5.46886 -1.46825 -0.66473 С -0.51695 4.26181 -0.56999 Н -1.14065 5.16172 -0.47029 Η -1.19953 3.40984 -0.45709 С 6.74267 -1.87423 -1.15861 -2.23498 Н 6.89235 -1.92469 С 0.5165 4.26222 0.5694 Н 1.13967 5.16247 0.46948 Η 1.19956 3.41061 0.45663 \mathbf{C} -6.7426 -1.8741 1.15892 Η -6.89227 -1.92435 2.2353 С -3.99333 -0.99284 -1.24348 Н -3.82404 -0.93104 -2.31473

Table S6. Cartesian coordinates (in angstrom) of (R)-1b in the S₀ state^[a].

С	-0.38545	1.84171	-2.74471
Н	-0.92882	2.1338	-3.65483
Н	-1.12675	1.79851	-1.94328
С	-4.40328	-1.12364	1.51115
Н	-4.55988	-1.1584	2.58811
С	5.25004	-1.39402	0.75624
С	3.99338	-0.99253	1.2436
Н	3.82409	-0.93054	2.31485
С	-6.33301	-1.73707	-1.62013
Н	-6.17823	-1.68556	-2.69505
С	-5.4688	-1.4682	0.66496
С	0.09921	4.24597	-1.9851
Н	-0.66675	4.55178	-2.71214
Н	0.88527	5.01279	-2.03461
С	-0.09949	4.24641	1.98457
Н	-0.88557	5.01322	2.03412
Н	0.66659	4.55234	2.71145
С	7.76098	-2.19606	-0.29566
Н	8.72948	-2.50521	-0.67826
С	-7.54791	-2.12511	-1.10902
Н	-8.36046	-2.38202	-1.78389
С	6.33307	-1.73669	1.62041
Н	6.17826	-1.68501	2.69532
С	-5.24999	-1.39423	-0.75603
С	-7.76091	-2.19612	0.29603
Н	-8.72938	-2.50524	0.67871
С	-0.69036	2.89261	2.43018
Н	-1.31764	3.04944	3.31972
Н	-1.36046	2.51682	1.64735
С	7.54797	-2.12481	1.10939
Н	8.36052	-2.38159	1.78431
С	-3.15002	-0.73874	1.02697

atom х z у Pt 0.07362 -0.54033 0.0081 0 -0.93526 -1.72547 -0.57477 0.95291 0 1.86841 -0.62193 Ν -0.82025 -0.56354 1.85233 -1.83146 Ν 0.96227 -0.40056 \mathbf{C} -2.08302 -0.80437 2.01904 Η -2.45005 -0.79526 3.04841 С -0.3989 -2.8692 -0.93811 С -3.95361 -1.17808 -1.25073 Н -3.78682 -1.07023 -2.31873 С 0.14011 -0.05209 -3.00748 Н -0.69167 -0.75758 -3.04348 0.75492 Η -0.183 -3.90776 С 2.23666 -0.55629 -2.01359 Η 2.59626 -0.4657 -3.0415 С 3.03587 -0.83566 0.38934 С -0.02659 -0.22204 3.05043 Н 0.81336 -0.91834 3.09772 Н -0.66037 -0.37409 3.93371 С 2.75017 -0.51369 2.31409 Н -1.03135 2.08293 1.81207 Н 3.53578 -1.28482 2.3254 С -5.22342 -1.55068 -0.77572 С 0.52098 1.21522 3.02231 1.38813 Η 1.01108 3.99132 1.30513 Η 1.25967 2.26114 С 3.26182 -0.82622 -1.03852 С -3.08859 -1.0751 1.0234 С -4.35476 -1.43343 1.49603 Η -4.5065 -1.5201 2.57071 С -2.94936 -0.42212 1.3776 Н -1.02586 1.51417 -3.85872 Н -1.1134 1.43034 -2.10453 С 0.14089 3.70036 2.6419 Η 0.53327 3.99402 3.62584 Η 1.01698 3.62337 1.98389 С 5.65368 -1.28472 -0.70125 С 5.43224 -1.29099 0.72153 С -6.32408 -1.80464 -1.64848

Table S7. Cartesian coordinates (in angstrom) of (R)-1c in the S₀ state^[a].

1	Н	-6.17272	-1.70516	-2.72051
	С	0.63224	2.48788	-2.8621
1	Н	1.34784	2.37879	-3.6912
1	Н	1.2154	2.36576	-1.94097
	С	4.1383	-1.06481	1.22157
1	Н	3.96535	-1.06743	2.294
	С	-0.31817	4.33706	-0.38713
]	Н	0.45849	5.1169	-0.36301
1	Н	0.19258	3.38931	-0.17516
	С	7.80314	-1.74963	1.04972
]	Н	8.64331	-1.93065	1.71533
	С	-6.72531	-2.06594	1.12311
1	Н	-6.87152	-2.16482	2.19659
	С	-1.35989	4.60884	0.70987
1	Н	-2.08293	3.78155	0.72093
]	Н	-1.93929	5.504	0.44142
	С	6.55227	-1.53121	1.57366
	Н	6.39614	-1.53852	2.6496
	С	-5.43817	-1.68779	0.64135
	С	8.01845	-1.74247	-0.35717
	Н	9.01604	-1.91735	-0.74977
	С	-0.93879	4.28228	-1.7915
1	Н	-1.37604	5.26405	-2.0229
]	Н	-1.78149	3.5772	-1.78536
	С	0.04052	3.91041	-2.92135
	Н	0.86878	4.63342	-2.92703
	Н	-0.47593	4.03413	-3.8843
	С	4.55141	-1.04371	-1.5348
	Н	4.70639	-1.02574	-2.61233
	С	-0.781	4.81886	2.12323
]	Н	-0.21487	5.76124	2.13585
	Н	-1.61538	4.95778	2.82577
	С	6.96595	-1.51482	-1.20855
	Н	7.11687	-1.50687	-2.28589
	С	-7.55112	-2.1685	-1.14908
]	Н	-8.37679	-2.35788	-1.83031
	С	-7.76002	-2.30209	0.25223
1	Н	-8.73846	-2.59069	0.62544

atom	Х	У	Z
Pt	-0.18294	-0.86576	-0.00517
0	1.61682	-0.9362	0.93516
0	-1.98317	-0.89275	-0.94313
Ν	0.70122	-1.07273	-1.844
Ν	-1.05405	-0.56895	1.824
С	1.94039	-1.42278	-1.99138
Н	2.30392	-1.51333	-3.01813
С	2.72658	-1.42761	0.43012
С	3.79635	-1.67725	1.29756
Н	3.6461	-1.46993	2.35326
С	-0.20815	-0.20393	2.97796
Н	0.6082	-0.92587	3.02266
Н	-0.81217	-0.29338	3.89062
С	-2.334	-0.64526	2.01663
Н	-2.68327	-0.48307	3.03934
С	-3.15832	-1.00829	-0.36697
С	-0.0648	-0.73897	-3.06194
Н	-0.9614	-1.36215	-3.06876
Н	0.55031	-0.995	-3.93431
С	0.64774	1.75394	-2.91076
Н	1.23419	1.46	-2.03098
Н	1.33974	1.73513	-3.76606
С	5.03258	-2.17877	0.85318
С	-0.48679	0.74007	-3.10862
Н	-0.98429	0.90398	-4.07496
Н	-1.24576	0.8899	-2.33552
С	-3.37693	-0.90795	1.05881
С	2.92637	-1.69525	-0.97668
С	4.15946	-2.18272	-1.4197
Н	4.2972	-2.36622	-2.48405
С	0.38193	1.21162	2.86746
Н	1.03361	1.34943	3.74281
Н	1.03059	1.23948	1.98788
С	0.12534	3.17984	-2.67614
Н	-0.32457	3.57995	-3.59641
Н	-0.68993	3.12689	-1.93969
С	-5.79275	-1.24574	0.75171
С	-5.5787	-1.34332	-0.66888
С	6.11831	-2.43959	1.74243

Table S8. Cartesian coordinates (in angstrom) of (R)-1d in the S₀ state^[a].

Н	5.98216	-2.24234	2.80292
С	-0.65522	2.3411	2.81972
Н	-1.32254	2.25722	3.69091
Н	-1.29025	2.21713	1.93194
С	-4.27637	-1.21972	-1.18306
Н	-4.1096	-1.29159	-2.25405
С	-7.97371	-1.68239	-0.96662
Н	-8.82618	-1.8514	-1.61964
С	6.48069	-2.95288	-0.99912
Н	6.61179	-3.14876	-2.06117
С	-6.71499	-1.5657	-1.50422
Н	-6.5651	-1.6415	-2.5784
С	5.22736	-2.44557	-0.5482
С	-8.18151	-1.58478	0.43804
Н	-9.18556	-1.67999	0.84148
С	-0.04476	3.75525	2.80222
Н	-0.86117	4.48687	2.8858
Н	0.57995	3.89452	3.69746
С	-4.67431	-1.02359	1.56863
Н	-4.82246	-0.93806	2.64389
С	-7.11344	-1.3713	1.27352
Н	-7.258	-1.29501	2.34907
С	7.31284	-2.92964	1.27287
Н	8.12775	-3.12148	1.96628
С	7.5021	-3.19094	-0.11312
Н	8.45495	-3.57795	-0.46277
С	1.29429	5.52963	1.51979
Н	0.43893	6.22212	1.51746
Н	1.82216	5.7148	2.46617
С	0.6048	5.48178	-1.66257
Н	0.18853	6.0224	-2.52482
Н	-0.25009	5.28125	-1.00183
С	2.2488	5.87885	0.35441
Н	2.87959	5.00702	0.1327
Н	2.94185	6.65856	0.69804
С	1.59981	6.4079	-0.94163
Н	1.08393	7.35045	-0.70775
Н	2.40693	6.67325	-1.6402
С	1.19222	4.14649	-2.14234
Н	1.71216	3.65579	-1.30929
Н	1.95768	4.33242	-2.91015
С	0.78412	4.07785	1.54896

Н	1.64923	3.40322	1.49303
Н	0.17656	3.8658	0.65995

atom х z у Pt -0.23342 -1.08055 0.19923 0 1.57407 -0.91016 1.10473 -0.69198 0 -2.04435 -1.28579 0.61679 -1.73186 -1.55132 Ν Ν -1.07737 -0.45754 1.96026 \mathbf{C} 2.92107 -0.66671 -1.90226 \mathbf{C} 2.72772 -1.34388 0.65191 С 3.84478 -1.25433 1.49193 Н 3.69713 -0.83077 2.4813 С 1.10348 5.12237 -1.69257 С 6.25734 -1.60711 1.96552 -1.18502 2.95889 Η 6.12644 С 7.49104 -2.04854 1.5533 -1.97497 Н 8.34285 2.22464 \mathbf{C} 7.67357 -2.60353 0.25528 Н 8.65809 -2.94645 -0.04973 \mathbf{C} 6.60628 -2.70187 -0.60215 Н 6.73189 -3.12393 -1.59692 С 5.31072 -2.25502 -0.20889 С -1.05361 4.19423 -2.3352 Н 4.32394 -2.74976 -2.05196 С 1.87823 -2.0201 -1.65061 Н 2.21201 -2.4025 -2.61916 С -3.42671 -0.68021 1.22094 -1.09931 \mathbf{C} -3.2239 -0.14714 -4.36022 \mathbf{C} -1.32312 -0.93513 Н -4.20545 -1.63871 -1.96297 С -5.66711 -1.16142 -0.44444 С -6.82297 -1.39328 -1.25001 -2.28225 Η -6.68451 -1.70527 С -8.0859 -1.22774 -0.73592 Н -8.95326 -1.40954 -1.36547 С -8.27881 -0.82028 0.61428 Н -9.28657 -0.69558 1.00003 С -7.19204 -0.5875 1.41972 Η -7.3253 -0.27552 2.45337 \mathbf{C} -5.86617 -0.74922 0.921 С -4.7286 -0.52153 1.70871 Н -4.86436 -0.20653 2.74198

Table S9. Cartesian coordinates (in angstrom) of (R)-1e in the S₀ state^[a].

С	-2.36042	-0.39814	2.14539
Н	-2.69286	-0.09061	3.13951
С	-0.1839	-1.90184	-2.78896
Н	-1.20855	-2.11529	-2.48908
Н	0.21301	-2.77328	-3.32396
С	-0.12639	-0.66452	-3.70564
Н	0.92323	-0.35426	-3.79684
Н	-0.43716	-0.98164	-4.71136
С	-1.00417	0.5132	-3.25501
Н	-0.89288	0.66556	-2.17733
Н	-2.05698	0.23981	-3.40218
С	-0.71903	1.83245	-3.99382
Н	-0.84566	1.6859	-5.0767
Н	-1.48643	2.56051	-3.69531
С	0.66827	2.45207	-3.72952
Н	1.45447	1.83546	-4.18879
Н	0.71282	3.42078	-4.24573
С	0.994	4.42866	2.48578
Н	1.88394	3.78526	2.53578
Н	1.29587	5.38941	2.92785
С	-0.13014	3.84585	3.36052
Н	-0.97034	4.55509	3.36461
Н	0.22809	3.79536	4.39914
С	-0.67303	2.45898	2.96742
Н	-1.48865	2.21814	3.66628
Н	-1.13318	2.50188	1.97206
С	0.3721	1.33352	3.00616
Н	1.00889	1.45606	3.895
Н	1.03628	1.37905	2.13782
С	-0.2171	-0.08338	3.10298
Н	0.5962	-0.80735	3.14524
Н	-0.81394	-0.17082	4.02025
С	0.98898	2.63684	-2.23822
Н	0.14856	3.15103	-1.75165
Н	1.04908	1.65194	-1.75953
С	0.6164	4.65812	1.01508
Н	0.52042	3.69286	0.5022
Н	-0.37666	5.1299	0.96183
С	2.30106	3.38662	-1.94881
Н	3.09979	2.95488	-2.56939
Н	2.59835	3.18949	-0.9101
С	1.62236	5.55062	0.26712

Н	2.63843	5.15562	0.41192
Н	1.62022	6.53804	0.74853
С	1.33588	5.70983	-1.24738
Н	1.42514	6.7676	-1.52693
Н	0.28952	5.44212	-1.44892
С	2.27138	4.90854	-2.17533
Н	2.00017	5.12306	-3.21848
Н	3.29363	5.29266	-2.04712

atom	X	У	Z
Pt	-0.55084	-1.43596	-0.15715
Ο	1.18557	-1.90172	0.78204
Ν	-2.29516	-1.00009	-1.09771
С	0.3484	-1.48178	-2.00061
С	-1.44912	-1.42026	1.68672
С	2.53966	-2.30507	-1.20298
Н	2.31331	-2.27596	0.22375
С	3.36824	-2.66427	1.05911
С	3.19622	-2.6365	2.13134
Н	4.61387	-3.08395	0.56172
С	5.68572	-3.48322	1.41628
Н	5.53045	-3.46009	2.49211
С	6.89	-3.88897	0.89487
Н	7.69391	-4.1888	1.56233
С	7.10385	-3.92335	-0.51198
Н	8.06413	-4.24781	-0.90253
С	6.09714	-3.54693	-1.36571
С	6.24753	-3.56824	-2.44295
Н	4.83374	-3.12014	-0.86113
С	3.78035	-2.72268	-1.69721
Н	3.93616	-2.73539	-2.77469
С	1.56725	-1.88958	-2.17822
Н	1.92282	-1.91569	-3.21202
Н	-3.72966	-0.92401	0.87012
С	-3.47462	-0.82662	-0.54886
Н	-4.5585	-0.53442	-1.38691
Н	-4.36581	-0.46667	-2.45384
С	-5.86132	-0.33447	-0.8997
Н	-6.96328	-0.03595	-1.75723
Н	-6.78539	0.03879	-2.82721
С	-8.22377	0.1542	-1.24572
Н	-9.04961	0.38113	-1.91518
Н	-8.46798	0.05842	0.15339
С	-9.47286	0.21247	0.53603
Н	-7.43401	-0.22794	1.0095
Н	-7.60678	-0.3043	2.08087
С	-6.11236	-0.43165	0.51504
Н	-5.02787	-0.72703	1.35362
Н	-5.20315	-0.80406	2.42539

Table S10. Cartesian coordinates (in angstrom) of (R)-1f in the S₀ state^[a].

С	-2.71948	-1.21458	1.85299
Н	-3.08816	-1.26567	2.88002
Н	-0.36997	-1.04023	-3.2209
С	-1.43459	-1.18029	-3.04191
Н	-0.06425	-1.69601	-4.04563
Н	-0.06467	0.42294	-3.58995
С	1.02573	0.54768	-3.63468
Н	-0.43422	0.58717	-4.61257
Н	-0.68831	1.46752	-2.6534
0	-0.45661	1.21032	-1.61225
Ν	-1.78042	1.40721	-2.73872
С	-0.22448	2.90996	-2.91588
С	-0.40792	3.1866	-3.965
С	-0.8487	3.5833	-2.31167
Н	1.23099	2.44864	4.1323
С	1.98873	1.70533	3.8477
С	1.69145	3.05585	4.92506
Н	0.00061	1.74594	4.73223
С	-0.72137	2.51347	5.04625
Н	0.30925	1.2263	5.65104
С	-0.72664	0.73396	3.82687
Н	-1.60071	0.36223	4.38285
С	-1.12614	1.23996	2.93875
Н	0.14182	-0.45837	3.39761
С	0.73216	-0.80742	4.25788
С	0.85869	-0.16797	2.62411
Н	-0.64751	-1.67991	2.90123
С	0.04802	-2.48417	2.66335
Н	-1.32755	-2.02527	3.69101
С	0.93352	3.35711	2.93032
Н	0.60909	2.75093	2.07267
Н	0.08727	4.01701	3.17474
С	2.1359	4.21884	2.51666
Н	3.00342	3.56938	2.32654
Н	2.42108	4.86622	3.35967
С	1.24985	3.158	-2.55863
Н	1.45942	2.67788	-1.59039
Н	1.9088	2.66455	-3.28695
С	1.63185	4.64064	-2.45451
Н	1.45666	5.14616	-3.41573
Н	0.96027	5.12386	-1.73221
С	1.86993	5.08208	1.27668

Н	1.64838	4.42248	0.42793
Н	0.96025	5.67984	1.43832
С	3.094	4.83835	-2.02632
Н	3.7499	4.50721	-2.84405
Н	3.31528	4.16783	-1.18412
С	3.47822	6.27633	-1.64006
Н	4.56751	6.31199	-1.4947
Н	3.26483	6.94723	-2.48503
С	2.80851	6.85169	-0.37444
Н	3.20671	7.86481	-0.23184
Н	1.7307	6.98238	-0.54356
С	3.02533	6.0328	0.92133
Н	3.96207	5.46108	0.84295
Н	3.16931	6.72078	1.7658

atom	Х	У	Z	
Pt	0.022934	-0.015046	-0.00453	
0	1.796416	-0.068207	0.895033	
0	-1.73506	-0.2712	-0.896616	
Ν	0.914314	0.085372	-1.836033	
Ν	-0.883404	0.282221	1.797331	
С	3.184881	-0.496315	-1.067976	
С	2.943018	-0.448373	0.362079	
С	3.972424	-0.773923	1.248917	
Н	3.754473	-0.724999	2.311842	
С	5.263101	-1.148567	0.805291	
С	6.307149	-1.481184	1.703069	
Н	6.108306	-1.445565	2.771595	
С	7.557582	-1.846892	1.235735	
Н	8.348599	-2.101113	1.935392	
С	7.806543	-1.89022	-0.153977	
Н	8.790285	-2.178073	-0.515216	
С	6.809161	-1.569311	-1.057444	
Н	7.005862	-1.603934	-2.126393	
С	5.516298	-1.191983	-0.611675	
С	4.469618	-0.858536	-1.499781	
Н	4.670217	-0.884998	-2.568916	
С	2.204729	-0.120396	-2.031683	
Н	2.56998	0.017936	-3.050773	
С	-3.144206	-0.412426	1.096646	
С	-2.888105	-0.565107	-0.323687	
С	-3.911309	-1.010104	-1.163467	
Н	-3.683839	-1.112912	-2.22051	
С	-5.207336	-1.310837	-0.683834	
С	-6.247812	-1.758849	-1.536165	
Н	-6.040257	-1.874384	-2.597321	
С	-7.503934	-2.044807	-1.033858	
Н	-8.29167	-2.387696	-1.698658	
С	-7.766839	-1.891121	0.346831	
Н	-8.756752	-2.11719	0.734044	
С	-6.77497	-1.455708	1.205118	
Н	-6.979994	-1.338684	2.266678	
С	-5.474425	-1.154297	0.722396	
С	-4.432973	-0.707911	1.564166	
Н	-4.640753	-0.587176	2.625499	

Table S11. Cartesian coordinates (in angstrom) of (R)-1a in the T₁ state^[a].

С	-2.168694	0.07575	2.014825
Н	-2.534266	0.311869	3.016568
С	0.145261	0.70984	-2.923567
Н	-0.679761	0.044443	-3.196383
Н	0.803831	0.811239	-3.795701
С	-0.446529	2.083778	-2.528377
Н	-1.28861	1.894046	-1.858254
Н	-0.8777	2.526007	-3.437439
С	0.531193	3.081955	-1.873252
Н	1.28857	2.540216	-1.2959
Н	1.081546	3.623733	-2.654706
С	-0.166592	4.106603	-0.950968
Н	-0.986585	4.581247	-1.508732
Н	0.54289	4.913026	-0.716275
С	-0.731493	3.544127	0.372302
Н	-1.425426	4.285239	0.794669
Н	-1.337624	2.653542	0.169978
С	0.326393	3.21996	1.446017
Н	0.816551	4.161468	1.73014
Н	1.116777	2.585592	1.028682
С	-0.243505	2.554146	2.725545
Н	0.291269	2.943858	3.602398
Н	-1.294769	2.84702	2.857796
С	-0.137938	1.013739	2.832358
Н	0.906485	0.707085	2.766229
Н	-0.517873	0.706681	3.817096

atom	Х	У	Z
Pt	0.000041	0.320774	-0.000029
0	1.773495	0.44293	-0.886654
0	-1.773401	0.443049	0.886593
Ν	0.869727	0.190249	1.841944
Ν	-0.869669	0.190085	-1.841984
С	2.938732	0.716789	-0.332172
С	-2.161783	0.368646	-2.049541
Н	-2.50719	0.249445	-3.077655
С	-0.062906	-0.304835	-2.968004
Н	-0.677133	-0.264201	-3.877153
Н	0.789004	0.36652	-3.102552
С	3.171486	0.696237	1.098632
С	4.471643	0.966323	1.551959
Н	4.663012	0.946417	2.62296
С	0.606664	-2.798727	2.462806
Н	1.30955	-2.424171	1.708994
Н	1.199297	-2.966716	3.373524
С	0.465535	-1.73598	-2.744942
Н	1.034186	-2.016904	-3.643467
Н	1.187744	-1.700989	-1.924669
С	0.062918	-0.304496	2.968007
Н	0.67714	-0.263864	3.877161
Н	-0.788913	0.36697	3.102495
С	-2.938638	0.716885	0.332101
С	2.161845	0.368777	2.049496
Н	2.507236	0.249666	3.077626
С	5.545165	1.263485	0.683923
С	-0.539275	-4.150666	0.548914
Н	-1.161869	-5.04761	0.41999
Н	-1.214464	-3.296105	0.41174
С	6.855532	1.541407	1.151775
Н	7.044299	1.525493	2.222605
С	0.538787	-4.150818	-0.548536
Н	1.16124	-5.047845	-0.419503
Н	1.214112	-3.296347	-0.411467
С	-6.855436	1.541472	-1.151855
Н	-7.044215	1.525474	-2.222682
С	-3.993924	1.0107	1.19965
Н	-3.781887	1.016638	2.264861

Table S12. Cartesian coordinates (in angstrom) of (R)-1b in the T₁ state^[a].

С	-0.465709	-1.735587	2.745034
Н	-1.034436	-2.016356	3.643558
Н	-1.187881	-1.700565	1.924726
С	-4.471563	0.966304	-1.55203
Н	-4.662946	0.946313	-2.623026
С	5.301621	1.286231	-0.735075
С	3.994037	1.010509	-1.199726
Н	3.782013	1.016365	-2.264941
С	-6.372753	1.583613	1.613413
Н	-6.181726	1.598675	2.683848
С	-5.545067	1.263559	-0.684001
С	0.018687	-4.144038	1.988218
Н	-0.779935	-4.444021	2.68183
Н	0.793211	-4.920134	2.066891
С	-0.019176	-4.144278	-1.987839
Н	-0.793807	-4.920278	-2.066421
Н	0.779402	-4.444447	-2.681421
С	7.879273	1.82884	0.267211
Н	8.876409	2.039429	0.644559
С	-7.639509	1.851087	1.124858
Н	-8.45136	2.078244	1.80986
С	6.372884	1.583335	-1.613506
Н	6.181872	1.598316	-2.683944
С	-5.301508	1.286415	0.734993
С	-7.87916	1.828999	-0.2673
Н	-8.876297	2.039579	-0.644651
С	-0.606977	-2.798943	-2.462578
Н	-1.199647	-2.966957	-3.373268
Н	-1.309801	-2.424204	-1.708798
С	7.639637	1.85082	-1.124953
Н	8.451501	2.077904	-1.809963
С	-3.171403	0.696222	-1.098699

atom	Х	У	Z
Pt	-0.074366	-0.642068	0.00639
0	1.707033	-0.69943	0.88067
0	-1.853561	-0.776687	-0.860778
Ν	0.773122	-0.663547	-1.853241
Ν	-0.920493	-0.450935	1.857793
С	2.066918	-0.84186	-2.055544
Н	2.397829	-0.832051	-3.094978
С	2.87866	-0.963381	0.336127
С	3.952188	-1.147746	1.211842
Н	3.750497	-1.077626	2.276771
С	-0.073243	-0.114279	3.013512
Н	0.748899	-0.832221	3.053089
Н	-0.672718	-0.234068	3.925651
С	-2.221703	-0.531271	2.070961
Н	-2.549113	-0.404147	3.103723
С	-3.040303	-0.883457	-0.296733
С	-0.050851	-0.359794	-3.035024
Н	-0.881129	-1.070084	-3.068348
Н	0.565679	-0.518257	-3.929163
С	0.398451	2.191392	-2.802495
Н	0.957937	1.967499	-1.887044
Н	1.137748	2.216636	-3.617406
С	5.264582	-1.413528	0.754795
С	-0.622788	1.070819	-3.035944
Н	-1.132225	1.216446	-3.999745
Н	-1.396895	1.128344	-2.264228
С	-3.264742	-0.766457	1.129569
С	3.096937	-1.046625	-1.093619
С	4.401649	-1.308028	-1.539967
Н	4.581867	-1.368086	-2.611393
С	0.511735	1.308498	2.954368
Н	1.136935	1.435341	3.851018
Н	1.186656	1.361499	2.09548
С	-0.276516	3.565414	-2.666322
Н	-0.721797	3.848679	-3.630638
Н	-1.118152	3.474588	-1.966096
С	-5.687969	-1.091388	0.73805
С	-5.452244	-1.212249	-0.677273
С	6.354041	-1.601496	1.640777

Table S13. Cartesian coordinates (in angstrom) of (*R*)-1c in the T_1 state^[a].

Н	6.17401	-1.537165	2.711301
С	-0.526504	2.435278	2.889612
Н	-1.207843	2.352045	3.749556
Н	-1.150224	2.304377	1.997021
С	-4.123562	-1.106409	-1.151374
Н	-3.916172	-1.192323	-2.214004
С	0.317237	4.23636	0.339055
Н	-0.464332	5.011629	0.351549
Н	-0.198755	3.284907	0.158516
С	-7.839684	-1.53145	-1.044799
Н	-8.673729	-1.700441	-1.719885
С	6.8082	-1.765753	-1.124675
Н	6.986102	-1.829479	-2.195587
С	1.298654	4.50958	-0.812016
Н	2.029382	3.690055	-0.855053
Н	1.881076	5.412673	-0.579068
С	-6.552218	-1.432281	-1.54266
Н	-6.367147	-1.522376	-2.610444
С	5.493405	-1.496848	-0.6644
С	-8.071685	-1.412702	0.343594
Н	-9.085075	-1.491169	0.728129
С	1.010013	4.192628	1.709771
Н	1.470082	5.1722	1.903337
Н	1.843721	3.477984	1.668578
С	0.088016	3.849336	2.89568
Н	-0.728661	4.58451	2.934081
Н	0.656762	3.980296	3.827746
С	-4.585155	-0.873164	1.592912
Н	-4.769465	-0.783939	2.661618
С	0.647396	4.703441	-2.195698
Н	0.063299	5.634861	-2.182856
Н	1.4438	4.855907	-2.938352
С	-7.019598	-1.197473	1.215657
Н	-7.202307	-1.106539	2.283779
С	7.62498	-1.863311	1.159535
Н	8.450908	-2.006271	1.850408
С	7.850124	-1.945376	-0.232621
Н	8.85036	-2.151121	-0.604391

atom	Х	У	Z
Pt	0.084127	-0.909402	-0.112268
0	-1.699281	-0.805679	-0.975088
0	1.871687	-1.084463	0.732646
Ν	-0.762804	-1.223998	1.722933
Ν	0.922533	-0.553721	-1.943473
С	-3.10589	-1.376786	0.933133
С	-2.886949	-1.064169	-0.463922
С	-3.973805	-1.023929	-1.341103
Н	-3.772914	-0.785349	-2.381491
С	-5.298124	-1.281408	-0.916468
С	-6.40239	-1.240932	-1.804189
Н	-6.223717	-1.000334	-2.849517
С	-7.684591	-1.501833	-1.355856
Н	-8.52139	-1.467744	-2.047664
С	-7.909132	-1.813726	0.004303
Н	-8.91915	-2.017512	0.349694
С	-6.854046	-1.861243	0.896499
Н	-7.030416	-2.101373	1.942385
С	-5.526299	-1.599345	0.469235
С	-4.421117	-1.636202	1.346785
Н	-4.599558	-1.873012	2.393767
С	-2.059565	-1.412225	1.897744
Н	-2.379161	-1.622575	2.92011
С	3.282919	-0.792655	-1.232074
С	3.065277	-1.040702	0.177895
С	4.161103	-1.249799	1.021474
Н	3.96016	-1.440319	2.071688
С	5.495334	-1.216917	0.550948
С	6.606804	-1.420833	1.404903
Н	6.427148	-1.608486	2.460874
С	7.899694	-1.382879	0.910983
Н	8.742794	-1.541031	1.577324
С	8.123822	-1.138375	-0.461468
Н	9.140731	-1.109564	-0.843668
С	7.059409	-0.935804	-1.322622
Н	7.237022	-0.748123	-2.378906
С	5.723228	-0.968417	-0.848816
С	4.608258	-0.767691	-1.692949
Н	4.787415	-0.582557	-2.750094

Table S14. Cartesian coordinates (in angstrom) of (R)-1d in the T₁ state^[a].

С	2.226159	-0.572914	-2.160451
Н	2.544055	-0.398676	-3.189063
С	0.04499	-1.226782	2.958373
Н	1.068363	-1.486551	2.69295
Н	-0.343442	-2.014667	3.617716
С	0.009209	0.121143	3.704193
Н	-1.041077	0.391657	3.876321
Н	0.452792	-0.03713	4.698271
С	0.750374	1.265275	2.99753
Н	0.412493	1.330594	1.956836
Н	1.817435	1.01161	2.94487
С	0.592932	2.63485	3.684942
Н	0.879522	2.540486	4.742618
Н	1.315618	3.332895	3.242011
С	-0.819122	3.250553	3.61074
Н	-1.539853	2.558368	4.066215
Н	-0.840517	4.154419	4.236673
С	-1.306522	3.613702	2.195819
Н	-2.389178	3.799538	2.232435
Н	-1.178052	2.75129	1.528951
С	-0.631367	4.852251	1.583319
Н	-0.912565	5.731	2.180586
Н	0.462182	4.771428	1.661292
С	-1.012234	5.084033	0.108355
Н	-0.868919	6.142298	-0.150534
Н	-2.086866	4.885281	-0.020468
С	-0.206948	4.22767	-0.883192
Н	-0.173009	3.186989	-0.533662
Н	0.83568	4.579791	-0.886821
С	-0.771102	4.27075	-2.311224
Н	-1.733031	3.739469	-2.330743
Н	-1.001962	5.313365	-2.573894
С	0.166196	3.7075	-3.395018
Н	1.044428	4.364394	-3.472597
Н	-0.345007	3.768989	-4.366797
С	0.665576	2.266801	-3.183483
Н	1.346242	2.018852	-4.011791
Н	1.271002	2.218045	-2.269937
С	-0.443811	1.210243	-3.113375
Н	-1.10446	1.308999	-3.988023
Н	-1.069794	1.365459	-2.22875
С	0.067118	-0.241303	-3.100536

Н	-0.784872	-0.922012	-3.086011
Н	0.642249	-0.437095	-4.015501

atom	Х	У	Z
Pt	0.264848	-1.115039	-0.284541
0	-1.52896	-0.938088	-1.112461
0	2.065303	-1.3337	0.518893
Ν	-0.540282	-1.865242	1.440876
Ν	1.060007	-0.349744	-2.006601
С	-2.88476	-1.955108	0.63957
С	-2.698705	-1.344495	-0.660113
С	-3.798762	-1.163433	-1.502434
Н	-3.622242	-0.700613	-2.469018
С	-5.105549	-1.56079	-1.135322
С	-6.223384	-1.377611	-1.987358
Н	-6.069762	-0.911657	-2.957835
С	-7.487519	-1.781942	-1.597966
Н	-8.335077	-1.63567	-2.261475
С	-7.679565	-2.386924	-0.3351
Н	-8.675558	-2.702025	-0.035665
С	-6.610498	-2.579953	0.520088
Н	-6.76175	-3.045459	1.491186
С	-5.300654	-2.176982	0.151366
С	-4.182391	-2.353494	0.994686
Н	-4.336061	-2.815807	1.967692
С	-1.824878	-2.152574	1.569124
Н	-2.121923	-2.601736	2.518518
С	3.434819	-0.503604	-1.317358
С	3.24657	-1.054386	0.008477
С	4.359725	-1.322419	0.811671
Н	4.180511	-1.740951	1.797671
С	5.682982	-1.066193	0.380749
С	6.811371	-1.331136	1.194876
Н	6.653697	-1.744513	2.188243
С	8.093085	-1.071463	0.740399
Н	8.949428	-1.279795	1.3753
С	8.288691	-0.535047	-0.551007
Н	9.296972	-0.333153	-0.902586
С	7.207251	-0.265025	-1.371478
Н	7.362923	0.147916	-2.365337
С	5.881813	-0.519426	-0.936246
С	4.750205	-0.259751	-1.741342
Н	4.907657	0.150106	-2.736911

Table S15. Cartesian coordinates (in angstrom) of (R)-1e in the T₁ state^[a].

С	2.359934	-0.213381	-2.204825
Н	2.658803	0.167612	-3.181842
С	0.278488	-2.117729	2.644537
Н	1.306141	-2.289096	2.327483
Н	-0.088113	-3.040322	3.113523
С	0.212017	-0.963759	3.665895
Н	-0.8426	-0.689913	3.8004
Н	0.553261	-1.349416	4.637389
С	1.04856	0.26903	3.289286
Н	0.927015	0.483036	2.222891
Н	2.111405	0.025254	3.420677
С	0.72019	1.5352	4.100276
Н	0.841108	1.329169	5.173936
Н	1.468357	2.301516	3.852534
С	-0.682353	2.128089	3.856575
Н	-1.453725	1.460406	4.266591
Н	-0.762233	3.061153	4.430971
С	-1.138981	4.481797	-2.26285
Н	-2.013762	3.819678	-2.331371
Н	-1.476742	5.460447	-2.634001
С	-0.02576	3.985647	-3.202532
Н	0.792819	4.719684	-3.18926
Н	-0.414882	3.985396	-4.231289
С	0.568958	2.595784	-2.908123
Н	1.364698	2.4165	-3.646596
Н	1.063251	2.595135	-1.928574
С	-0.44505	1.443913	-2.973972
Н	-1.098735	1.582481	-3.848671
Н	-1.096283	1.447821	-2.093756
С	0.182231	0.046291	-3.121795
Н	-0.613489	-0.694869	-3.202328
Н	0.771088	0.010161	-4.048167
С	-0.994622	2.395496	2.375827
Н	-0.162339	2.955595	1.926531
Н	-1.030957	1.438854	1.840611
С	-0.729282	4.626927	-0.789776
Н	-0.60161	3.633905	-0.339929
Н	0.255147	5.115482	-0.72943
С	-2.321439	3.133461	2.123034
Н	-3.112844	2.64827	2.712508
Н	-2.61013	2.992394	1.072883
С	-1.735579	5.449563	0.03388

Н	-2.747097	5.044854	-0.116661
Н	-1.761546	6.465516	-0.383107
С	-1.423077	5.518012	1.54993
Н	-1.528938	6.553669	1.898045
Н	-0.367799	5.261133	1.715839
С	-2.32473	4.639278	2.440254
Н	-2.043716	4.797463	3.490878
Н	-3.357473	5.005495	2.348917

atom	Х	У	Z
Pt	-0.549805	-1.47249	-0.168432
0	1.182008	-1.920039	0.688357
0	-2.293226	-1.067652	-1.024148
Ν	0.305663	-1.474312	-2.02713
Ν	-1.395126	-1.462152	1.694379
С	2.549819	-2.237666	-1.30433
С	2.330399	-2.242687	0.126958
С	3.372629	-2.603742	0.98486
Н	3.172717	-2.593131	2.052372
С	4.650434	-2.976944	0.506792
С	5.709422	-3.343501	1.374561
Н	5.532592	-3.334085	2.447494
С	6.945863	-3.707759	0.872586
Н	7.748312	-3.986851	1.549468
С	7.16782	-3.717961	-0.523135
Н	8.1416	-4.005303	-0.910657
С	6.156148	-3.365302	-1.397137
Н	6.33072	-3.373665	-2.470481
С	4.876186	-2.986529	-0.915262
С	3.81722	-2.616306	-1.772317
Н	3.995433	-2.619174	-2.845772
С	1.554152	-1.851211	-2.24533
Н	1.873712	-1.866746	-3.288926
С	-3.700307	-0.92878	0.960196
С	-3.469379	-0.864456	-0.467752
С	-4.53437	-0.582341	-1.329212
Н	-4.326684	-0.552464	-2.39482
С	-5.845713	-0.338551	-0.856624
С	-6.923848	-0.043777	-1.726751
Н	-6.73549	-0.002648	-2.796972
С	-8.195177	0.188742	-1.230552
Н	-9.012697	0.413849	-1.909411
С	-8.430951	0.13328	0.16059
Н	-9.430943	0.316817	0.544439
С	-7.399358	-0.153075	1.037571
Н	-7.58567	-0.194938	2.108109
С	-6.085713	-0.396282	0.561811
С	-5.004747	-0.694003	1.421363
Н	-5.193892	-0.741716	2.491817

Table S16. Cartesian coordinates (in angstrom) of (*R*)-**1f** in the T_1 state^[a].

С	-2.679752	-1.233135	1.905324
Н	-3.013056	-1.290267	2.941995
С	-0.437009	-1.04263	-3.228322
Н	-1.499827	-1.187657	-3.040694
Н	-0.148401	-1.700027	-4.059248
С	-0.152448	0.421547	-3.61668
Н	0.93582	0.558494	-3.663876
Н	-0.527866	0.576687	-4.638813
С	-0.785333	1.462206	-2.682244
Н	-0.556364	1.203175	-1.640747
Н	-1.877784	1.399907	-2.774616
С	-0.327995	2.90901	-2.932087
Н	-0.510321	3.192725	-3.97938
Н	-0.956273	3.575113	-2.323863
С	1.30616	2.361894	4.159114
Н	2.06456	1.631374	3.844309
Н	1.783028	2.967247	4.94356
С	0.103728	1.637064	4.789171
Н	-0.614651	2.392521	5.138798
Н	0.449024	1.108352	5.689615
С	-0.644368	0.631108	3.894125
Н	-1.495837	0.242534	4.472515
Н	-1.078315	1.145235	3.027309
С	0.217842	-0.547429	3.418151
Н	0.818347	-0.921681	4.261295
Н	0.927221	-0.225675	2.648918
С	-0.577093	-1.752003	2.884987
Н	0.117839	-2.551866	2.627631
Н	-1.243137	-2.126152	3.67418
С	0.962007	3.278189	2.975665
Н	0.619853	2.676244	2.121939
Н	0.115182	3.924962	3.251238
С	2.141195	4.158974	2.535796
Н	3.01117	3.522271	2.315767
Н	2.44195	4.802311	3.376482
С	1.144849	3.159383	-2.570288
Н	1.357701	2.665288	-1.609829
Н	1.805852	2.680827	-3.306393
С	1.517959	4.642334	-2.4429
Н	1.329094	5.163967	-3.392901
Н	0.850971	5.107786	-1.704669
С	1.831618	5.030589	1.311864

Н	1.598103	4.377099	0.46136
Н	0.918363	5.614283	1.502298
С	2.983379	4.842939	-2.027787
Н	3.631859	4.526922	-2.857298
Н	3.218302	4.162668	-1.197224
С	3.362079	6.278505	-1.627445
Н	4.453298	6.322274	-1.499833
Н	3.128357	6.959058	-2.45922
С	2.708826	6.829616	-0.342712
Н	3.093419	7.847522	-0.196935
Н	1.625819	6.944306	-0.488618
С	2.965532	6.000597	0.939164
Н	3.907523	5.442046	0.833558
Н	3.120067	6.681744	1.787315