Supporting Information

Nickel, copper, and zinc dinuclear helicates. How do bulky groups influence their architecture?

Sandra Fernández-Fariña,^b Marcelino Maneiro,^b Guillermo Zaragoza,^c José M. Seco,^d Rosa Pedrido,^{a,*} and Ana M. González-Noya^{a,*}

^a Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Galicia, E-15782, Spain.

^b Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, E-27002, Lugo, Spain.

^c Unidade de Difracción de Raios X, Edificio CACTUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Galicia, E-15782, Spain.

^d Departamento de Química Orgánica Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, E-15782, Spain.

Table of contents

1. Experimental data of Schiff base ligands (3-5)3
Figure S1. NMR spectrum of the ligand H ₂ L ³ 3 (400 MHz, acetone-d ₆)3
Figure S2. NMR spectrum of the ligand H ₂ L ⁴ 4 (400 MHz, acetone-d ₆)3
Figure S3. NMR spectrum of the ligand H_2L^5 5 (400 MHz, acetone-d ₆)4
2. Crystallographic data of ligands $H_2L^44^*$ and $H_2L^55^*\ldots\ldots$
3. Experimental data of nickel and zinc helicates6
Figure S4. Mass spectrum of [Ni ₂ (L ¹) ₂] 66
Figure S5. Mass spectrum of [Ni ₂ (L ⁴) ₂] 96
Figure S6. Mass spectrum of [Cu ₂ (L ³) ₂] 116
Figure S7. Mass spectrum of [Zn ₂ (L ²) ₂] 127
Figure S8. Mass spectrum of [Zn ₂ (L ⁵) ₂] 157
Figure S9. π - π interactions and hydrogen bonds in $[Zn_2(L^1)_2]$ 2.8CH ₃ OH 6 [*]
Figure S10. Intermolecular CH··· π interactions in the crystal lattice of the [Zn ₂ (L ¹) ₂] 2.8CH ₃ OH 6*
Figure S11. Intramolecular hydrogen bonds in [Ni ₂ (L ²) ₂]·CH ₃ CN 7*8
Figure S12. Intramolecular hydrogen bonds in [Ni ₂ (L ³) ₂]·2CH ₂ Cl 8*9
Figure S14. Intramolecular hydrogen bonds in [Zn ₂ (L ⁵) ₂]·2CH ₃ CN 18*10
Crystallographic data of helicates10

1. Experimental data of Schiff base ligands (3-5)

Figure S1. NMR spectrum of the ligand H₂L³ 3 (400 MHz, acetone-d₆).

Figure S2. NMR spectrum of the ligand H_2L^4 **4** (400 MHz, acetone-d₆).

Figure S3. NMR spectrum of the ligand H_2L^5 **5** (400 MHz, acetone-d₆).

2. Crystallographic data of ligands H_2L^4 4* and H_2L^5 5*

H₂**L**⁴**4***: C₄₃H₅₄N₂O₂, *Mw* = 630.88 g/mol, crystal dimensions: 0.34 × 0.22 × 0.05 mm³, triclinic, *P* 1, *a* = 9.0717(8), *b* = 9.9041(7), *c* = 22.0498(19) Å, *α* = 77.049(3), *β* = 78.483(4), *γ* = 79.415(4) $^{\circ}$, *V* = 1871.7(3) Å³, *Z* = 2, *μ* = 0.07 mm⁻¹, radiation λ (Mo-K_α) = 0.7107 Å, *T* = 100 K, measured/unique reflexions 139133/13629 (*R*_{int} = 0.068), *R* = 0.049, *wR* = 0.146, *GOF* = 1.032, max/min residual density 0.37/-0.27 e.Å⁻³.

H₂**L**⁵**5***: C₄₃H₅₄N₂O₂, *Mw* = 630.88 g/mol, crystal dimensions: 0.18 × 0.11 × 0.09 mm³, triclinic, *P* ¹, *a* = 9.9049(12), *b* = 13.1890(19), *c* = 15.798 (2) Å, *α* = 67.796(5), *β* = 82.499(5), *γ* = 76.969(5) ⁹, *V* = 1859.2 (4) Å³, *Z* = 2, μ = 0.07 mm⁻¹, radiation λ (Mo-K_α) = 0.7107 Å, *T* = 100 K, measured/unique reflexions 78814/9228 (*R*_{int} = 0.111), *R* = 0.065, *wR* = 0.135, *GOF* = 1.073, max/min residual density 0.27/-0.28 e.Å⁻³.

Table S1. Main bon	d distances and	l angles in H ₂ L ⁴	¹ 4*.
--------------------	-----------------	---	------------------

Bond distances (Å)				
C4—O1	1.3547 (13)	C23—O2	1.3509 (12)	
C8—N1	1.4339 (13)	C21—N2	1.2837 (13)	
01—H1…N1	0.94 (2)	02—H2…N2	0.923 (19)	
Bond angles (°)				
O1-C4-C3	119.18 (9)	O2-C23-C22	122.02 (9)	
01-C4-C5	121.98 (9)	O2-C23-C24	118.89 (9)	
C13-C8-N1	119.92 (9)	C17—C18—N2	118.62 (9)	
C9-C8-N1	118.39 (9)	C19—C18—N2	119.65 (9)	
N1-C7-C5	121.60 (9)	N2-C21-C22	120.80 (9)	
C13-C8-N1	119.92 (9)	C17—C18—N2	118.62 (9)	
C7-N1-C8	119.04 (9)	C21—N2—C18	122.22 (9)	

Table S2. Main bond distances and angles in H_2L^5 5*.

Bond distances (Å)

C18-01	1.348 (2)	C4—O2	1.351 (2)		
C6-N1	1.277 (2)	C16—N2	1.281 (2)		
C7—N1	1.435 (2)	C15—N2	1.420 (2)		
01—H1…N2	0.92 (2)	02—H2…N1	0.95 (2)		
	Bond angles (°)				
O1-C18-C19	119.39 (16)	O2—C4—C5	119.49 (17)		
O1-C18-C17	119.63 (17)	O2—C4—C3	119.32 (17)		
N1-C6-C5	122.89 (18)	C14-C15-N2	116.82 (16)		
C8-C7-N1	120.33 (16)	C32-C15-N2	122.59 (16)		
C28-C7-N1	118.24 (16)	N2-C16-C17	121.88 (17)		
C6-N1-C7	120.01 (16)	C16-N2-C15	123.51 (16)		
O1-C18-C19	119.39 (16)	O2-C4-C5	119.49 (17)		

3. Experimental data of nickel and zinc helicates

Figure S5. Mass spectrum of $[Ni_2(L^4)_2]$ **9**.

Figure S6. Mass spectrum of [Cu₂(L³)₂] 11.

Figure S7. Mass spectrum of $[Zn_2(L^2)_2]$ 12.

Figure S8. Mass spectrum of $[Zn_2(L^5)_2]$ 15.

Figure S9. π - π interactions and hydrogen bonds in $[Zn_2(L^1)_2]$ 2.8CH₃OH **6***.

Figure S10. Intermolecular CH··· π interactions in the crystal lattice of the $[Zn_2(L^1)_2]$ 2.8CH₃OH **6***: C66—H66c···centroid 3.86 Å, C33-H33c···centroid 3.69 Å.

Figure S11. Intramolecular hydrogen bonds in $[Ni_2(L^2)_2] \cdot CH_3 CN$ **7***: C33–H33B···O2 3.05 Å, C34–H34C···O2 2.94 Å, C64–H64B···O3 2.91 Å, C65–H65C···O3 2.99 Å, C69–H69B···O4 2.97 Å, C70–H70C···O4 2.99 Å, C29–H29B···O1 2.92 Å, C30–H30B···O1 3.03 Å.

Figure S12. Intramolecular hydrogen bonds in [Ni₂(L³)₂]·2CH₂Cl **8***: C29–H29B···O2 2.97 Å, C30–H30B···O1 2.98 Å, C37–H37A···O2 2.96 Å, C38–H38C···O2 3.00 Å.

Figure S13. Intramolecular hydrogen bonds in $[Cu_2(L^5)_2] \cdot 3CH_3CN$ **13***: C84–H84C···O4 3.04 Å, C86–H86B···O4 2.99 Å, C41–H41C···O2 3.03 Å, C42–H42B···O2 2.95 Å, C29–H29E···O1 3.02 Å, C30–H30F···O1 3.03 Å, C73–H73B···O3 2.96 Å, C74–H74C···O3 3.02 Å

Figure S14. Intramolecular hydrogen bonds in $[Zn_2(L^5)_2] \cdot 2CH_3CN$ **18***: C41–H41C_4···O2_4 2.91 Å, C42–H42B_4···O2_4 3.01 Å, C42–H42C···O2_3 3.01 Å, C43–H43B···O2_3 2.96 Å, C30–H30B···O1_4 2.99 Å, C31–H31C···O1_4 2.99 Å, C29–H29C···O1_3 2.95 Å, C30–H30B···O1_3 3.00 Å.

Figure S15. Synthesis of the Schiff base ligands H₂Lⁿ (n= 1-5).

Crystallographic data of helicates

[Ni₂(L²)₂]·CH₃CN 7*: C₇₂H₇₅N₅O₄Ni₂, *Mw* = 1191.79 g/mol, crystal dimensions: 0.18 × 0.16 × 0.04 mm³, triclinic, P^{1} , *a* = 11.7230(6), *b* = 13.6632(7), *c* = 19.6313(7) Å, *α* = 97.023(2), *β* = 100.791(2), *γ* = 101.103(2) °, *V* = 2989.8(2) Å³, *Z* = 2, *μ* = 0.69 mm⁻¹, Radiation λ (Mo-K_α) = 0.7107 Å, *T* = 100 K, measured/unique reflexions 96565/14845 (*R*_{int} = 0.061), *R* = 0.047, *wR* = 0.123, *GOF* = 1.042, max/min residual density 0.57/ - 1.11 e.Å⁻³.

[Ni₂(L³)₂]·2CH₂Cl₂ 8*: C₉₀H₁₀₈N₄Ni₂O₄Cl₄, *Mw* = 1375.18 g/mol, crystal dimensions: 0.13 × 0.04 × 0.03 mm³, monoclinic, *l2/α*, *α* = 19.7738(18), *b* = 17.4199(10), *c* = 23.6472(11) Å, *α* = 90, *β* = 100.801(1), *γ* = 90 °, *V* = 8001.2(9) Å³, *Z* = 4, μ = 0.59 mm⁻¹, Radiation λ (Mo-K_α) = 0.7107 Å, *T* = 100 K, measured/unique reflexions 160186/9930 (*R*_{int} = 0.065), *R* = 0.093, *wR* = 0.099, *GOF* = 1.02, max/min residual density 0.38/ -0.55 e.Å⁻³.

[Cu₂(L³)₂]·2CH₃CN 11*: C₉₀H₁₁₀N₆Cu₂O₄, *Mw* = 1466.91 g/mol, crystal dimensions: 0.24 × 0.12 × 0.11 mm³, monoclinic, *l2/α*, *a* = 19.6676(9), *b* = 17.5879(8), *c* = 23.6719(17) Å, *α* = 90, *β* = 101.008(2), *γ* = 90 °, *V* = 8038.7(8) Å³, *Z* = 4, μ = 0.65 mm⁻¹, Radiation λ (Mo-K_α) = 0.7107 Å, *T* = 100 K, measured/unique reflexions 46963/7369 (*R_{int}* = 0.065), *R* = 0.046, *wR* = 0.123, *GOF* = 1.02, max/min residual density 0.39/ -0.47 e.Å⁻³.

[Cu₂(L⁵)₂]·3CH₃CN 13*: 2(C₉₀H₁₁₀N₆Cu₂O₄)3(C₂H₃N), *Mw* = 2892.84 g/mol, crystal dimensions: 0.17 × 0.15 × 0.05 mm³, triclinic, P^{1} , *a* = 13.6211(3), *b* = 16.0269(4), *c* = 18.3522(5) Å, *α* = 92.519(1), *β* = 97.528(1), *γ* = 95.604(1) °, *V* = 3946.30(17) Å³, *Z* = 1, *μ* = 0.59 mm⁻¹, Radiation λ (Mo-K_α) = 0.7107 Å, *T* = 100 K, measured/unique reflexions 116110/22115 (*R*_{int} = 0.045), *R* = 0.045, *wR* = 0.121, *GOF* = 1.022, max/min residual density 0.56/ -0.57 e.Å⁻³.

[**Zn**₂(**L**¹)₂]·**2.8CH**₃**OH 14***: C₇₃H₈₄N₄O₇Zn₂, *Mw* = 1260.23 g/mol, crystal dimensions: 0.22 × 0.18 × 0.13 mm³, triclinic, P^{1} , *a* = 11.9567(6), *b* = 14.1684(5), *c* = 20.5193(10) Å, *α* = 88.561(2), *β* = 74.498(2), *γ* = 79.166(2) ^o, *V* = 3288.3(3) Å³, *Z* = 2, *μ* = 0.790 mm⁻¹, radiation λ (Mo-K_{*α*}) = 0.7107 Å, *T* = 100 K, measured/unique reflexions 80891/15651 (*R*_{int} = 0.046), *R* = 0.045, *wR* = 0.120, *GOF* = 1.055, max/min residual density 1.06/-0.55 e.Å³.

 $[\mathbf{Zn}_2(\mathbf{L}^5)_2]$ -**2CH**₃**CN 18***: C₉₀H₁₁₀Zn₂N₆O₄, *Mw* = 1470.63 g/mol, crystal dimensions: 0.08 × 0.06 × 0.03 mm³, triclinic, $P^{\overline{1}}$, *a* =16.3465(6), *b* = 19.9440(7), *c* = 25.4842(10) Å, *α* = 98.5050(10), *β* = 93.3200(10), *γ* = 97.5040(10) °, *V* = 8121.2(5) Å³, *Z* = 4, *μ* = 0.64 mm⁻¹, Radiation λ (Mo-K_{*α*}) = 0.7107 Å, *T* = 100 K, measured/unique reflexions 342113/9707 (R_{int} = 0.053), *R* = 0.079, *wR* = 0.121, *GOF* = 1.076, max/min residual density 0.64/-0.61 e.Å⁻³.

Bond distances (Å)				
N1—Ni1	1.9586 (19)	01—Ni1	1.8878 (16)	
N2—Ni2	1.906 (2)	02—Ni2	1.8464 (18)	
N3—Ni2	1.905 (2)	O3—Ni2	1.8796 (17)	
N4—Ni1	1.974 (2)	04—Ni1	1.8873 (16)	
	Bond a	ngles (°)		
04—Ni1—01	116.41 (7)	02—Ni2—03	87.96 (8)	
04—Ni1—N1	134.68 (8)	O2—Ni2—N3	161.01 (9)	
01—Ni1—N1	93.46 (8)	O3—Ni2—N3	90.84 (8)	
04—Ni1—N4	92.30 (8)	02—Ni2—N2	93.93 (8)	
01—Ni1—N4	118.27 (8)	O3—Ni2—N2	156.50 (8)	
N1—Ni1—N4	102.96 (8)	N3—Ni2—N2	94.68 (9)	
04—Ni1—01	116.41 (7)	02—Ni2—O3	87.96 (8)	

Table S3. Main bond distances and angles in $[Ni_2(L^2)_2]$ ·CH₃CN 7*.

Table S4. Main bond distances and angles in $[Ni_2(L^3)_2]$ ·2CH₂Cl₂ 8*.

Bond distances (Å)				
N1—Ni1	1.905 (2)	01—Ni1	1.8421 (19)	
N2—Ni1 ⁱ	1.903 (2)	O2—Ni1 ⁱ	1.8516 (19)	
Bond angles (°)				
01-Ni1-02 ⁱ	84.16 (9)	01-Ni1-N1	93.18 (9)	
N2 ⁱ -Ni1-N1	97.16 (10)	O2 ⁱ -Ni1-N1	160.70 (10)	
O1-Ni1-N2 ⁱ	159.14 (10)	O2 ⁱ -Ni1-N2 ⁱ	91.73 (9)	

Table S5. Main bond distances and angles in $[Cu_2(L^3)_2]$ ·2CH₃CN **11***.

Bond distances (Å)				
N1—Cu1	1.9661 (17)	01—Cu1	1.8952 (15)	
N2 ⁱ —Cu1	1.9640 (17)	O2—Cu1 ⁱ	1.8829 (15)	
Bond angles (°)				
01-Cu1-O2 ⁱ	89.15 (7)	01-Cu1-N1	91.96 (7)	
N2 ⁱ -Cu1-N1	100.40 (7)	O2 ⁱ -Cu1-N1	147.51 (8)	
O1-Cu1-N2 ⁱ	151.84 (7)	O2 ⁱ -Cu1-N2 ⁱ	93.56 (7)	

Bond distances (Å)				
N1—Cu1	1.9552 (16)	O1—Cu1	1.8919 (14)	
N2—Cu2	1.9798 (15)	O2—Cu2	1.8969 (14)	
N3—Cu1	1.9613 (15)	O3—Cu1	1.9012 (13)	
N4—Cu2	1.9558 (16)	O4—Cu2	1.9204 (13)	
	Bond a	ngles (°)		
01—Cu1—O3	92.11 (6)	02—Cu2—O4	88.25 (6)	
01-Cu1-N1	94.40 (7)	O2—Cu2—N4	150.24 (7)	
O3-Cu1-N1	141.15 (6)	O4—Cu2—N4	92.59 (6)	
O1-Cu1-N3	137.23 (7)	O2—Cu2—N2	93.59 (6)	
O3-Cu1-N3	93.98 (6)	O4—Cu2—N2	150.94 (6)	
N1—Cu1—N3	106.50 (6)	N4—Cu2—N2	99.76 (6)	
01—Cu1—O3	92.11 (6)	02—Cu2—O4	88.25 (6)	

Table S6. Main bond distances and angles in $[Cu_2(L^5)_2]$ ·3CH₃CN 13*.

Table S7. Main bond distances and angles in $[Zn_2(L^1)_2] \cdot 2.8CH_3OH$ **14***.

Bond distances (Å)				
N1—Zn1	2.0038 (18)	01—Zn1	1.9186 (16)	
N2—Zn2	2.003 (2)	O2—Zn2	1.9005 (17)	
N3—Zn2	2.003 (2)	O3—Zn2	1.9164 (16)	
N4—Zn1	2.0027 (19)	O4—Zn1	1.9185 (17)	
	Bond ar	igles (°)		
04—Zn1—01	116.81 (7)	02—Zn2—O3	110.01 (7)	
04—Zn1—N1	120.48 (7)	O2—Zn2—N3	126.14 (8)	
01—Zn1—N1	96.61 (7)	O3—Zn2—N3	96.41 (7)	
O4—Zn1—N4	96.04 (7)	O2—Zn2—N2	96.87 (8)	
01—Zn1—N4	120.26 (7)	O3—Zn2—N2	126.54 (8)	
N1—Zn1—N4	108.02 (8)	N3—Zn2—N2	103.74 (8)	
04—Zn1—01	116.81 (7)	02—Zn2—O3	110.01 (7)	

Table S8. Main bond distances and angles in $[Zn_2(L^5)_2] \cdot 2CH_3CN$ 18*.

Bond distances (Å)

N1—Zn1	1.998 (2)	N1 ⁱ —Zn1 ⁱ	2.012 (2)	
01—Zn1	1.924 (2)	O1 ⁱ —Zn1	1.920 (2)	
Bond angles (°)				
01 ⁱ —Zn1—O1	105.84 (9)	O1 ⁱ —Zn1—N1 ⁱ	94.25 (9)	
O1 ⁱ —Zn1—N1	124.79 (10)	O1—Zn1—N1 ⁱ	118.01 (10)	
01—Zn1—N1	95.57 (9)	N1—Zn1—N1 ⁱ	119.40 (10)	