Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting information

Nitridochromate(IV) fluoride - LiCa₈[CrN₃]₂N₂F

Natalia Gloriozova^a, Yurii Prots^a, Mitja Krnel^a, Ulrich Burkhardt^a, Marcus Schmidt^a, Alim Ormeci^a, Franziska Jach^{a,b,c}, Peter Höhn*^a and Yuri Grin^a

^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany

^bFaculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany

^cFraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058 Erlangen, Germany

Table of Contents

Figure S1. The projection of the crystal structure of LiCa ₈ [CrN ₃] ₂ N ₂ F along (a) [010] and (b) [001] direction. Anisotropic displacement parameters correspond to 98 % probability	3
Table S1. Anisotropic displacement parameters (Ų) of $LiCa_8[Cr^{IV}N_3]_2N_2F$	4
Table S2. Interatomic distances in LiCa8[CrN3]2N2F	5
Figure S2. Coordination of $[CrN_3]^{x-}$ units in (a) LiCa ₈ $[CrN_3]_2N_2F$, (b) Sr ₃ $[CrN_3]$, and (c) Ca ₃ $[CrN_3]$, viewed perpendicular (top), and along (bottom) trigonal planar units	6
Figure S3. Atomic coordination in the ideal structure of $LiCa_8[Cr^{IV}N_3]_2N_2F$ structure	7
Table S3. Expected internal vibrational modes for $[CrN_3]^{5-}$ anion within LiCa ₈ $[CrN_3]_2N_2F$ crystal structure accorto molecular site group analysis	rding 8
Figure S4. Inverse susceptibility vs. temperature fitted with Curie equation of LiCa ₈ [CrN ₃] ₂ N ₂ F	9
Figure S5. Electrical resistivity of LiCa ₈ [CrN ₃] ₂ N ₂ F in the temperature range 120 K to 300 K	10
Table S4.Synthesis of $LiCa_8[CrN_3]_2N_2F$	11
Figure S6. PXRD of ground crystals of LiCa ₈ [CrN ₃] ₂ N ₂ F (in blue) and theoretical pattern from single crystal data red).	3 (in 12
References	13

Figure S1. The projection of the crystal structure of $LiCa_8[CrN_3]_2N_2F$ along (a) [010] and (b) [001] direction. Anisotropic displacement parameters correspond to 98 % probability.

Table S1. Anisotropic displacement parameters	(Ų)	of $LiCa_8[Cr^{IV}N_3]_2N_2F$.
---	-----	---------------------------------

atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Cr1	0.0091(2)	0.0140(2)	0.0058(2)	0	0	-0.00199(16)
Ca1	0.0120(3)	0.0150(3)	0.0056(3)	0	0	0.0002(2)
Ca2	0.0088(3)	0.0126(3)	0.0065(3)	0	0	0.00049(19)
Ca3	0.0130(3)	0.0125(3)	0.0066(3)	0	0	-0.0011(2)
Ca4	0.0089(3)	0.0234(3)	0.0086(3)	0	0	0.0019(2)
N1	0.0098(10)	0.0160(13)	0.0066(12)	0	0	-0.0058(9)
N2	0.0128(12)	0.0170(13)	0.0073(12)	0	0	0.0010(9)
N3	0.0151(13)	0.0276(16)	0.0107(13)	0	0	0.0049(11)
N4	0.0101(11)	0.0144(12)	0.0072(11)	0	0	-0.0008(9)

atoms			d, Å	atom	atoms		<i>d,</i> Å
Cr1	-N3	×1	1.728(3)	Ca4	-N4	×1	2.353(3)
	-N1	×1	1.730(3)		-N2	×1	2.470(3)
	-N2	×1	1.735(3)		-N3	×2	2.5933(10)
Cr1	–Ca5A	×1	2.7535(5)		-N3	×1	3.152(3)
	-Ca1	×1	3.1511(9)	N1	–Ca5A	×1	2.181(3)
	–Ca4	×1	3.1791(8)	N1	-Li1	×1	2.181(3)
	–Ca2	×2	3.1948(5)	N2	-Li1	×1	2.571(3)
	–Ca3	×2	3.2666(6)	F1	-F1A	×1	0.33(2)
	–Ca4	×1	3.3796(6)	F1	-Li1	×2	2.4716(2)
Cr1	-Li1	×1	2.7535(5)	F1	–Ca5A	×1	2.4716(2)
Ca1	-N4	×2	2.4721(2)	F1A	-F1A	×1	0.67(5)
	-N1	×1	2.549(3)	F1	–Ca5A	×1	2.14(2)
	-N1	×1	2.623(3)	F1A	-Li1	×1	2.14(2)
	-N2	×1	2.689(3)				
	-N3	×1	2.870(3)				
Ca1	-Li1	×1	3.3574(7)				
Ca1	–Ca3	×2	3.3915(6)				
	–Ca2	×2	3.4022(6)				
Ca2	-F1	×1	2.2911(6)				
	-F1A	×2	2.315(3)				
Ca2	-N4	×1	2.384(3)				
	-N4	×1	2.468(3)				
	-N1	×2	2.4904(4)				
Ca2	–Ca2	×1	3.1080(12)				
	–Ca4	×1	3.3391(9)				
Ca2	-Li1	×1	3.3702(5)				
Ca3	-N4	×1	2.325(3)				
	-N3	×1	2.496(3)				
	-N2	×2	2.5040(5)				
Ca3	-F1	×1	2.6789(6)				
	-F1A	×2	2.700(3)				

Table S2. Selected interatomic distances in $LiCa_8[CrN_3]_2N_2F$.

Figure S2. Coordination of $[CrN_3]^{x-}$ units in (a) $LiCa_8[CrN_3]_2N_2F$, (b) $Sr_3[CrN_3]$, and (c) $Ca_3[CrN_3]$, viewed perpendicular (top), and along (bottom) trigonal planar units. Red spheres: Cr; green spheres: N; blue spheres: Li; yellow spheres: alkaline-earth metals.

Figure S3. Atomic coordination in the ideal structure of $LiCa_8[Cr^{IV}N_3]_2N_2F$ structure. Red spheres: Cr; green spheres: N; blue spheres: Li; yellow spheres: Ca; purple spheres: F.

molecular	molecular	molecular	site	factor	solid-state	n	umber of
vibration	point	selection	symmetry	group	selection rules	expe	ected bands
	group	rules					
	D _{3h}		Cs	D _{2h}		IR	Raman
U _s (CrN ₃)	A1'	R	A´	A_g	R		
				B_{1g}	R		
				B _{2u}	IR		
				B _{3u}	IR		
υ _{as} (CrN ₃)	Ε´	IR, R	2 A′	2 A _g	2 R	6	6
				2 <i>B</i> _{1g}	2 R		
				2 B _{2u}	2 IR		
				2 B _{3u}	2 IR		
δ(NCrN)	E´	IR, R	2 A'	2 A _g	2 R		
				2 <i>B</i> _{1g}	2 R	4	4
				2 B _{2u}	2 IR		
				2 B _{3u}	2 IR		
γ(NCrN)	A ₂ ″	IR	Α″	A _u	-		
				B _{1u}	IR		
				B_{2g}	R	1	2
				B_{3g}	R		

Table S3. Expected internal vibrational modes for $[CrN_3]^{5-}$ anion within $LiCa_8[CrN_3]_2N_2F$ crystal structure according to molecular site group analysis.

Figure S4. Inverse susceptibility vs. temperature fitted with Curie equation (black line) of $LiCa_8[CrN_3]_2N_2F$.

Figure S5. Electrical resistivity of $LiCa_8[CrN_3]_2N_2F$ in the temperature range 120 K to 300 K.

sample	starting materials / molar ratio						obtained phases
	Ca_2N	Ca_3N_2	Cr	CaF ₂	Li₃N	Li	
1	1	0.6	0.9	0.5	1.5	22	$LiCa_8[CrN_3]_2N_2F$, Li_3N
2	-	1	1.3	0.9	1.8	12	$LiCa_8[CrN_3]_2N_2F, Ca_6[Cr_2N_6]F, {}^1Li_3N$

Table S4.Synthesis of LiCa8[CrN3]2N2F.

Figure S6. PXRD of ground crystals of $LiCa_8[CrN_3]_2N_2F$ (in blue) and theoretical pattern calculated from single crystal data (in red).

References

1. N. Gloriozova, P. Höhn, unpublished work.