ELECTRONIC SUPPORTING INFORMATION (ESI)

(TeCl₄)₄(TiCl₄) with Isolated Te₄Cl₁₆ and TiCl₄ Molecules and Second-Harmonic-Generation

Maxime A. Bonnin[†], Klaus Beier[†], Lkhamsuren Bayarjargal[‡], Björn Winkler[‡]*, and Claus Feldmann[†]*

[†]Institute for Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131 Karlsruhe (Germany), E-mail: claus.feldmann@kit.edu

[‡]Institute of Geosciences, Goethe University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt a. M. (Germany), E-mail: b.winkler@kristall.uni-frankfurt.de

Content

- 1. Analytical Techniques
- 2. Material Characterization
- 3. Calculations

1. Analytical Techniques

X-ray powder diffraction (XRD). X-ray powder diffraction analysis (XRD) of (TeCl₄)₄(TiCl₄) was performed on a Stoe Stadi-P diffractometer (Stoe, Germany) using Cu– K_{al} radiation (λ =154.06 pm) with a Ge-monochromator. Rietveld refinements were performed with the program TOPAS-Academic (Version 5), using the *cif*-data to confirm the phase purity of the title compound. The refinement was carried out by a simple axial model.

Fourier-transform infrared (FT-IR) spectra of (TeCl₄)₄(TiCl₄) was recorded on a Bruker Vertex 70 FT-IR spectrometer (Bruker, Germany). The samples were measured in reflection with a Platinum A 225 ATR unit.

Thermogravimetry (TG) of (TeCl₄)₄(TiCl₄) was carried out on a Netzsch STA 449 F3 Jupiter device (Netzsch, Germany), using α -Al₂O₃ as a crucible material and reference. Buoyancy effects were corrected by baseline subtraction based on a blank measurement. The samples were measured under dried nitrogen up to 1200 °C with a heating rate of 5 K/min. The Netzsch software PROTEUS Thermal Analysis (Version 5.2.1) was used for graphical illustration.

2. Material Characterization

The crystallographic data and refinement details of $(TeCl_4)_4(TiCl_4)$ are listed in Table S1. The data of the Rietveld refinement are summarized in Table S2. The unit cell of $(TeCl_4)_4(TiCl_4)$ is shown in Figure S1.

Figure S1. Unit cell of (TeCl₄)₄(TiCl₄).

Compound	(TeCl ₄) ₄ (TiCl ₄)
$\overline{W(g \cdot mol^{-1})}$	1267.30
Space group	<i>I</i> Ā
Flack parameter	0.50(4)
<i>a</i> (pm)	1210.4(2)
<i>c</i> (pm)	1015.2(2)
V (10 ⁶ pm ³)	1487.2(4)
Ζ	2
$\rho_{calc.}(g \cdot cm^{-3})$	2.83
$\mu (mm^{-1})$	5.93
λ (Mo–K _{α}) (pm)	71.073
T (K)	210
Observed reflections	3863
Independent reflections	1960
$R_1 (I \ge 2\sigma_I)$	0.0191
R ₁ (all data)	0.0211
$wR_2 (I \ge 2\sigma_I)$	0.0435
wR ₂ (all data)	0.0438
GooF	0.997

Table S1. Crystallographic data and refinement details of (TeCl₄)₄(TiCl₄) (recorded at 210 K).

Table S2. Rietveld refinement details of (TeCl₄)₄(TiCl₄) (recorded at 20 °C)

Compound	(TeCl ₄) ₄ (TiCl ₄)
a (pm)	1222.2
<i>c</i> (pm)	1013.8
R _{wp}	0.0183

In regard of the body-centred cubic (*bcc*) packing of $(\text{TeCl}_4)_4$ with TiCl₄ in half of the tetrahedral voids (Figure S2), it must be noticed that these tetrahedral voids are distorted as not all edges have the same length.^{S1} Compressing a single axis to a tetragonal lattice changes the distortion so that all edges of the tetrahedra become identical (995.1(1) pm). The distortion is related to angles of 98.6(1)° being much smaller than the tetrahedral angle (109.5°). The distance between the center of the TiCl₄ tetrahedra and the tetrahedral corners is 656.2(1) pm.

Figure S2. Reduced building units of $(TeCl_4)_4(TiCl_4)$ in a $(2 \times 2 \times 2)$ supercell showing (a) selected and (b) all occupied tetrahedral voids.

The purity of (TeCl₄)₄(TiCl₄) was confirmed by X-ray powder diffraction with Rietveld refinement (*see main paper: Figure 2*), Fourier-transform infrared (FT-IR) spectroscopy (*see main paper: Figure 4a*) and thermogravimetry (TG, Figure S3a) and differential thermal analysis (DTA, Figure S3b). Thermally, the title compound shows three-step decomposition with the first step at 100-150 °C with 14 % mass loss, the second step at 200-400 °C with a mass loss of 82 %, and the third step beginning at 700 °C with a mass loss of 4 %. These mass losses can be attributed to the sublimation of TiCl₄ (calculated: 15 %) and the sublimation of TeCl₄ (calculated: 85 %). The third minor mass loss of 4 % can be ascribed to the sublimation of elemental tellurium as an impurity, which was already indicated by XRD (*see main paper: Figure 2*).

Figure S3. Thermal properties of (TeCl₄)₄(TiCl₄): a) TG and b) DTA (*melting point of TeCl₄).

3. Calculations

Atomistic model calculations were carried out within the framework of DFT^{S2} and the method using the CASTEP simulation package.^{S3} pseudopotential Norm-conserving pseudopotentials were generated "on the fly" using the parameters provided with the CASTEP distribution. These pseudopotentials have been extensively tested for accuracy and transferability.^{S4} The pseudopotentials were employed in conjunction with plane waves up to a kinetic energy cutoff of 630 eV. The calculations were carried out with the PBE exchange-correlation functional.^{S5} Monkhorst-Pack grids^{S6} were used for Brillouin zone integrations with a distance of < 0.025 Å⁻¹ between grid points. A dispersion correction according to Grimme et al. was used.^{S7} Convergence criteria included an energy change of $< 5 \times 10^{-6}$ eV/atom, a maximal force of < 0.008 eV/Å, and a maximal deviation of the stress tensor < 0.02 GPa from the imposed stress tensor. Optical properties were computed as described by Refson et al.^{S8} Phonon frequencies were obtained from density functional perturbation theory (DFPT) calculations. Raman intensities and NLO properties were computed using DFPT with the '2n+1' theorem approach.^{S9} It should be stressed that all calculations were carried out in the athermal limit, i.e., the influence of temperature and zero-point motion were not taken into account.

Band structure calculations resulted in a band gap of 2.9 eV. However, the apparent agreement with the experimentally determined optical band gap of 2.8 eV (*see main paper: Figure 5*) is somewhat fortuitous as DFT-GGA-PBE calculations are known to underestimate the band gap systematically. The top-most valence bands and the lower-most conduction bands are nearly dispersionless.

References

- S1 C. E. Mortimer and U. Müller, Chemie Das Basiswissen der Chemie. Thieme, Stuttgart 2003.
- S2 P. Hohenberg and W. Kohn, *Phys. Rev. B*, 1964, **136**, 864-871.
- S3 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567-570.
- S4 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- S5 K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, et al. Science, 2016, 351, aad3000-1-aad3000-7.
- S6 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- S7 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104(1-19).
- S8 K. Refson, P. R. Tulip and S. J. Clark, *Phys. Rev. B*, 2006, **73**, 155114(1-12).
- S9 K. Miwa, *Phys. Rev. B*, 2011, **84**, 094304(1-13).