Supporting Information for:

Site Specific Redox Properties in Ligand Differentiated Di-Nickel Complexes Inspired by the Acetyl CoA Synthase Active Site

Manuel Quiroz, Manish Jana, Kaiyang Liu, Nattamai Bhuvanesh, Michael B. Hall and Marcetta Y. Darensbourg*

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

Table of Contents

¹ H NMR spectroscopy	
UV-Vis spectroscopy	S3
ESI-MS data with isotopic bundles	S4
Electrochemical data from cyclic voltammograms with selected multiple scan rate studies	S5-7
Crystallographic refinement details	S8
Selected bond length and angles from x-ray crystal structures of 1, 2 ²⁻ , and 3	S9
X-ray crystal structures of 1, 2 ²⁻ , and 3 and packing diagrams	\$10-12
X-ray crystal structure of 1_{o2} and packing diagrams	S13
Crystallographic refinement details of 1_{02}	
Comparison of experimental and calculated XRD data 1, 2 ^{2–} , and 3	
ESP Maps and Spin density plots	S16
TD-DFT calculated electronic absorption spectrum of 1 ⁺	S16
Selected bond angles and lengths for the previously reported donor and receiver synthons	S17
Computational Coordinates	
References	

Figure S1. ¹H NMR spectrum for Ni(bme-dame)-Ni(dpdt) (1).

Figure S2. ¹H NMR spectrum for [Ni(ema)-Ni(dpdt)][NEt₄]₂ (2²⁻).

Figure S3. ¹H NMR spectrum for Ni(bme-dame)-Ni(mnt) (3).

Figure S4. UV–vis absorption spectra of **1**, **2**^{2–}, and **3** in acetonitrile. Inset: expanded spectra in the visible range.

Figure S5. Positive-ion ESI mass spectrum of **1** in CH_2Cl_2 ; inset shows theoretical and experimental isotopic distributions for **1**⁺.

Figure S6. Negative-ion ESI mass spectrum of **3** in CH_3CN ; inset shows theoretical and experimental isotopic distributions for **3**.

Figure S7. Negative-ion ESI mass spectrum of 2^{2-} in CH₃CN; inset shows theoretical and experimental isotopic distributions for $2^{2-} + CI^{-}$.

Figure S8. Stacked CV plots of 1 with varying potential windows in CH₃CN.

Figure S9. A) CV of Complex **1** at different scan rate (V/s). B) CVs of complex **1** are normalized to the square root of scan rate for direct comparison.

 $i_p = (2.99 \times 10^5) n (\alpha n_a)^{1/2} A D_0^{1/2} C_0^* v^{1/2}$

Where, i_p = current maximum in amps, n = number of electrons transferred in the redox event (usually 1), A = electrode area in cm², D_0 = diffusion coefficient in cm²/s, C_0^* = concentration in mol/cm³, v = scan rate in V/s, α = electron transfer coefficient.

For reversible system: $\alpha = 1$

$$i_p = (2.69 \times 10^5) n^{3/2} A D_0^{1/2} C_0^* v^{1/2}$$

Figure S10. A) Plot of peak current vs. square root of scan rate of **1** using Randles-Sevčik Equation. B) Equations showing the relationship between peak current and square root of scan rate for reversible and irreversible systems.

Figure S11. Stacked CV plots of 2^{2-} with varying potential windows in CH₃CN.

Figure S12. A) CV of Complex 2^{2-} at different scan rate (V/s). B) CVs of complex 2^{2-} are normalized to the square root of scan rate for direct comparison.

Figure S13. Plot of peak current vs. square root of scan rate of 2²⁻.

Figure S14. Scan rate dependence for the reduction event of 3 in CH₃CN.

Table S1. Crystal data and structure refinement for 1, 2²⁻, and 3.

	1	2 ^{2–}	3
Identification code	Ni(bme-dame)-Ni(dpdt)	Ni(ema)-Ni(dpdt)	Ni(bme-dame)- Ni(mnt)
Empirical formula	$C_{24}H_{32}Cl_4N_2Ni_2S_4$	$C_{36H_{58}N_4Ni_2O_2S_4}$	$C_{12}H_{18}N_4Ni_2S_4$
Formula weight	735.97	824.52	463.96
Temperature/K	110.00	110.00	110.00
Crystal system	monoclinic	triclinic	triclinic
Space group	P2 ₁ /n	P-1	P-1
a/Å	17.580(2)	13.2528(5)	8.2002(3)
b/Å	9.3786(10)	16.1861(7)	9.6581(3)
c/Å	18.147(2)	20.3139(8)	10.9978(4)
α/°	90	83.934(2)	94.2260(10)
β/°	91.065(4)	70.9880(10)	93.7670(10)
γ/°	90	68.434(2)	100.8030(10)
Volume/Å ³	2991.5(6)	3831.0(3)	850.43(5)
Z	4	4	2
$\rho_{calc}g/cm^3$	1.634	1.430	1.812
µ/mm⁻¹	1.914	1.239	2.703
F(000)	1512.0	1752.0	476.0
Crystal size/mm ³	$0.381 \times 0.067 \times 0.041$	0.519 × 0.482 × 0.322	0.3 × 0.3 × 0.3
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.89 to 50	3.57 to 55.136	3.726 to 60.258
Index ranges	$-20 \le h \le 20, -10 \le k \le 11, -21 \le l \le 21$	-17 ≤ h ≤ 17, -21 ≤ k ≤ 21, -26 ≤ l ≤ 26	-11 ≤ h ≤ 11, -13 ≤ k ≤ 13, -15 ≤ l ≤ 15
Reflections collected	62967	149361	57235
Independent reflections	5250 [R _{int} = 0.0450, R _{sigma} = 0.0181]	17644 [R _{int} = 0.0463, R _{sigma} = 0.0284]	5008 [R _{int} = 0.0388, R _{sigma} = 0.0193]
Data/restraints/parameters	5250/14/346	17644/595/961	5008/0/201
Goodness-of-fit on F ²	1.067	1.059	1.085
Final R indexes [I>=2o (I)]	$R_1 = 0.0246^a$, $wR_2 = 0.0541^b$	R ₁ = 0.0290 ^a , wR ₂ = 0.0682 ^b	R ₁ = 0.0215 ^a , wR ₂ = 0.0426 ^b
Final R indexes [all data]	$R_1 = 0.0278^{a}$, w $R_2 = 0.0567^{b}$	R ₁ = 0.0399 ^a , wR ₂ = 0.0718 ^b	$R_1 = 0.0269^a$, w $R_2 = 0.0453^b$
Largest diff. peak/hole / e Å ⁻³	0.97/-0.65	0.63/-0.81	0.46/-0.35
^a R ₁ = $\Sigma(F_o - F_c)/\Sigma F_o $. ^b w]/3.	$R_{2} = [\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma[w(F_{o}^{2})^{2}]]^{1/2}$, $w=1/[\sigma^2(F_o^2)+(ap)^2+bp]$, where	$p = [max(F_o^2, 0) + 2F_c^2]$

Table S2. Experimental XRD data for 1, 2²⁻, and 3.

Distances (Å)	1	2 ^{2–}	3
Ni1-Ni2	2.7202(5)	2.6885(6)	2.7871(3)
Ni1-S1	2.1562(7)	2.1383(5)	2.1436(4)
Ni1-S2	2.1651(6)	2.1446(7)	2.1544(4)
Ni1-N1	1.951(2)	1.8444(2)	1.938(1)
Ni1-N2	1.952(2)	1,838(2)	1.932(1)
Ni2-S1	2.2398(6)	2.2611(6)	2.2412(4)
Ni2-S2	2.2398(7)	2.2809(5)	2.2302(4)
Ni2-S3	2.1339(7)	2.1338(5)	2.1497(4)
Ni2-S4	2.1461(6)	2.1340(6)	2.1493(4)
S3-C1	1.766(2)	1.772(2)	1.738(2)
S4-C2	1.764(2)	1.760(2)	1.737(1)
C1-C2	1.348(3)	1.356(2)	1.361(2)
Ni1 _{disp} ^a	0.250	0.150	0.207
Angles			
S1-Ni1-S2	85.32(2)	90.18(2)	86.36(3)
S1-Ni2-S2	81.64(2)	83.80(2)	82.26(3)
S1-Ni2-S3	92.33(2)	91.24(2)	92.24(1)
S2-Ni2-S4	94.94(2)	94.00(2)	92.14(1)
S3-Ni2-S4	91.22(2)	90.81(2)	93.39(2)
Hinge ^b	111.82	114.08	117.98
Space Group	P2 ₁ /n	рĪ	рĪ

Figure S15. Thermal ellipsoid plot of 1 (50%, hydrogens and solvent molecules omitted for clarity).

Figure S16. X-ray crystal packing of **1** along the *b* axis.

Figure S17. Thermal ellipsoid plot of 2^{2-} (50%, hydrogens and NEt₄⁺ cations omitted for clarity).

Figure S18. X-ray crystal packing of 2^{2-} along the *b* axis.

Figure S19. Thermal ellipsoid plot of 3 (50%, hydrogens omitted for clarity).

Figure S20. X-ray crystal packing of **3** along the *a* axis.

Figure S21. Thermal ellipsoid plot of 1_{o2} (50%, hydrogens and solvent molecules omitted for clarity).

Figure S22. X-ray crystal packing of $\mathbf{1}_{02}$ along the *b* axis.

Identification code	Nibmedame_Nidpdt_O2_Q_0ma
Empirical formula	$C_{22}H_{28}N_2Ni_2O_2S_4$
Formula weight	598.12
Temperature/K	110.0
Crystal system	monoclinic
Space group	P21/n
a/Å	10.8029(6)
b/Å	9.5412(5)
c/Å	25.5522(13)
α/°	90
β/°	94.968(2)
γ/°	90
Volume/ų	2623.8(2)
Z	4
$\rho_{calc}g/cm^3$	1.514
µ/mm⁻¹	1.775
F(000)	1240.0
Crystal size/mm ³	0.3 × 0.3 × 0.3
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.234 to 51.402
Index ranges	$-13 \le h \le 13$, $-11 \le k \le 11$, $-31 \le l \le 31$
Reflections collected	57183
Independent reflections	4980 [R _{int} = 0.0521, R _{sigma} = 0.0212]
Data/restraints/parameters	4980/0/291
Goodness-of-fit on F ²	1.124
Final R indexes [I>=2σ (I)]	$R_1 = 0.0371$, $wR_2 = 0.1091$
Final R indexes [all data]	$R_1 = 0.0471$, $wR_2 = 0.1193$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.41

Table S4. Comparison of experimental and calculated XRD data for Ni(bme-dame)-Ni(dpdt) (1), [Ni(ema)-Ni(dpdt)]^{2–} (2^{2–}), and Ni(bme-dame)-Ni(dpdt) (3).

Distances (Å)	1		2 ^{2–}		3	
	Experimental	Calculated	Experimental	Calculated	Experimental	Calculated
Ni1-Ni2	2.7202(5)	2.7142	2.6885(6)	2.6560	2.7871(3)	2.7190
Ni1-S1	2.1562(7)	2.1714	2.1383(5)	2.1761	2.1436(4)	2.1711
Ni1-S2	2.1651(6)	2.1784	2.1446(7)	2.1734	2.1544(4)	2.1750
Ni1-N1	1.951(2)	1.9518	1.8444(2)	1.8634	1.938(1)	1.9493
Ni1-N2	1.952(2)	1.9619	1,838(2)	1.8538	1.932(1)	1.9590
Ni2-S1	2.2398(6)	2.2821	2.2611(6)	2.3181	2.2412(4)	2.2788
Ni2-S2	2.2398(7)	2.2816	2.2809(5)	2.3103	2.2302(4)	2.2770
Ni2-S3	2.1339(7)	2.1653	2.1338(5)	2.1657	2.1497(4)	2.1688
Ni2-S4	2.1461(6)	2.1658	2.1340(6)	2.1657	2.1493(4)	2.1686
S3-C1	1.766(2)	1.7830	1.772(2)	1.7833	1.738(2)	1.7597
S4-C2	1.764(2)	1.7836	1.760(2)	1.7845	1.737(1)	1.7593
C1–C2	1.348(3)	1.3678	1.356(2)	1.3706	1.361(2)	1.3853
$Ni1_{disp}{}^{a}$	0.250	0.183	0.150	0.153	0.207	0.190
Angles						
S1-Ni1-S2	85.32(2)	86.16	90.18(2)	90.36	86.36(3)	85.76
\$1-Ni2-S2	81.64(2)	81.31	83.80(2)	83.60	82.26(3)	80.96
S1-Ni2-S3	92.33(2)	94.22	91.24(2)	92.89	92.24(1)	93.05
S2-Ni2-S4	94.94(2)	93.92	94.00(2)	92.8	92.14(1)	93.08
S3-Ni2-S4	91.22(2)	90.72	90.81(2)	91.00	93.39(2)	92.90
Hinge ^b	111.82	109.56	114.08	109.07	117.98	109.13

Figure S23. A) ESP maps (color scale at a.u.) of **1**, 2^{2-} and **3** (iso surface values = 0.001 au). B) Spin Density plots of reduced complexes 1^{-} , 2^{3-} and 3^{-} (iso values = 0.001).

Figure S24. TD-DFT calculated electronic absorption spectrum of **1**⁺. Asterisk is excited state 9 which is shown in the main paper as the major contributing transition.

	N1 N2 S2	N1 N2 Ni1 S2		S3 Ni2 S4	S3 Ni2 S4
		S-	C (Å)	1.736	1.760
				1.731	1.772
		C-	C (Å)	1.356	1.347
Ni-S (Å)	2.166	2.179		2.139	2.146
	2.173			2.149	2.144
Ni-N (Å)	1.942	1.858			
	1.931				
∠S-Ni-S (°)	93.99	97.47		90.03	92.80
∠N-Ni-N (°)	88.31	85.58			
Ni _{disp} (Å)	0.003	0.027		0.007	0.012
τ ₄	0.13	0.09		0.07	0.01

Figure S25: Selected bond angles and lengths for the previously reported donor and receiver synthons.¹⁻⁴

Computational coordinates of optimized structures

Complex 1 (neutral closed shell singlet)					
Ni	-3.11810040	0.02440529	-0.27792077		
Ni	-0.52407220	-0.03944885	-1.07413611		
S	-2.17499129	1.42969935	-1.64351421		
S	-2.19455165	-1.53909172	-1.48127129		
S	0.96560537	-1.57048331	-0.717238833		
S	0.92345948	1.50992523	-0.63523820		
Ν	-3.46589737	1.42714973	1.03393422		
Ν	-3.80463700	-1.30904668	0.98686435		
С	-2.21849701	2.92384920	-0.52878073		
Н	-3.04491129	3.54840090	-0.88170071		
Н	-1.28462106	3.48098096	-0.64944057		
С	-2.38509818	2.47327177	0.91186471		
Н	-2.62552773	3.31950124	1.57225647		
Н	-1.45655834	2.00351787	1.24848056		

С	-3.32011123	0.69691804	2.34462386
Н	-2.25459455	0.48195484	2.46730670
Н	-3.65384552	1.33227484	3.17653308
С	-4.12164178	-0.59355066	2.28229070
Н	-5.19509308	-0.39024049	2.28774339
Н	-3.89308941	-1.24152361	3.13661268
С	-2.66244693	-2.27747517	1.16939849
Н	-1.83679278	-1.71442552	1.61472188
Н	-2.97469360	-3.07194644	1.86409537
С	-2.22961256	-2.86740184	-0.16841181
Н	-1.22642335	-3.29515995	-0.08986582
Н	-2.91475755	-3.64233799	-0.52476838
С	-4.81865850	2.05002340	0.90288872
Н	-5.58781335	1.27603232	0.94363680
Н	-4.97300510	2.77028615	1.71832166
Н	-4.88695067	2.56188337	-0.05919114
С	-5.03082610	-2.01631885	0.50499853
Н	-5.35244848	-2.75341719	1.25406669
Н	-5.82147098	-1.27811001	0.35100793
Н	-4.82243892	-2.51943994	-0.44067139
С	2.45200838	-0.70590999	-0.24354744
С	2.43999378	0.66265542	-0.23307573
С	3.58018475	-1.56982914	0.18172983
С	4.28760771	-1.31051109	1.37679140
Н	4.00285589	-0.45841685	1.98954569
С	5.33422997	-2.14112399	1.78844707
Н	5.86121362	-1.92151988	2.71520712
С	5.69610328	-3.25825859	1.02314678
Н	6.50896885	-3.90543966	1.34571875
С	4.99434426	-3.53770275	-0.15689184
Н	5.26426849	-4.40276859	-0.75983011
С	3.94795527	-2.70695368	-0.57082408
Н	3.41440657	-2.92868558	-1.49261278
С	3.61104859	1.54149025	0.00724038
С	4.84116241	1.31074363	-0.64738312
Н	4.92942107	0.47131275	-1.33319301

С	5.93629673	2.15468034	-0.43862096
Н	6.87231095	1.95833388	-0.95831536
С	5.82942065	3.25494723	0.42305944
Н	6.68139650	3.91239991	0.58283957
С	4.61156766	3.50515764	1.06910903
Н	4.51547143	4.35684544	1.74002974
С	3.51515757	2.66177833	0.86139141
Н	2.57581264	2.86053589	1.37299272

Complex [1]⁺ (cation doublet)

Ni	-3.07218756	0.06167977	-0.26385003
Ni	-0.58130245	0.03891308	-1.06503043
S	-2.19394567	1.55502506	-1.57992842
S	-2.22917902	-1.42751668	-1.61728719
S	0.86515877	-1.51721464	-0.66851261
S	0.93636340	1.53790291	-0.70851514
Ν	-3.32938151	1.37225536	1.15428739
Ν	-3.69564226	-1.34818566	0.94779332
С	-2.17434021	2.97737625	-0.37607805
Н	-3.02205210	3.60997772	-0.65560033
Н	-1.25312911	3.55076876	-0.51548284
С	-2.26964124	2.44220170	1.04203017
Н	-2.49720324	3.24773686	1.75384906
Н	-1.32239155	1.97347110	1.32124554
С	-3.09667126	0.55476080	2.40229683
Н	-2.02744108	0.32554911	2.43171255
Н	-3.36325727	1.13919009	3.29257722
С	-3.91517370	-0.72137235	2.31176084
Н	-4.98331448	-0.51392000	2.40761576
Н	-3.63181649	-1.42981081	3.09780963
С	-2.57272258	-2.35446634	0.98781973
Н	-1.70821578	-1.84812014	1.42654520
Н	-2.86836365	-3.19288660	1.63465431
С	-2.23921507	-2.85156975	-0.41357496

Н	-1.25706826	-3.33256806	-0.43074501
Н	-2.97779003	-3.56071824	-0.79758709
С	-4.69898154	1.97590801	1.13457824
Н	-5.45012778	1.18351305	1.13264083
Н	-4.82879278	2.61221863	2.01978112
Н	-4.81501296	2.57366390	0.22825835
С	-4.97081642	-1.98105591	0.48303754
Н	-5.27182729	-2.76081077	1.19506757
Н	-5.74264230	-1.20950493	0.43095975
Н	-4.83153148	-2.41914027	-0.50661011
С	2.35318028	-0.71241970	-0.23089001
С	2.38982040	0.67577422	-0.26393103
С	3.46631714	-1.59223458	0.19670299
С	4.16174849	-1.34047857	1.39859811
Н	3.88339011	-0.48685457	2.01140261
С	5.18732753	-2.19290370	1.81527350
Н	5.70851709	-1.98965240	2.74830750
С	5.53918799	-3.30745091	1.04212864
Н	6.34042177	-3.96721796	1.36742281
С	4.85187692	-3.56921769	-0.14991122
Н	5.12095444	-4.43024394	-0.75785617
С	3.82052850	-2.72369910	-0.56799505
Н	3.29854036	-2.92534185	-1.50065532
С	3.59204392	1.50944587	-0.02721379
С	4.80957292	1.21809378	-0.67862615
Н	4.86586026	0.36987232	-1.35610261
С	5.93139136	2.02586046	-0.47673119
Н	6.86022152	1.79358907	-0.99324176
С	5.86101020	3.13363202	0.37881689
Н	6.73730174	3.75828406	0.53697382
С	4.65588246	3.43487956	1.02581174
Н	4.59396165	4.29133921	1.69366819
С	3.52822571	2.63472833	0.82116328
Н	2.59802488	2.86662803	1.33496873

Complex [1]⁻ (anion doublet)

Ni	-3.12913849	0.04678318	-0.37134394
Ni	-0.55931310	-0.01931907	-1.06969698
S	-2.14804236	1.56365812	-1.67442701
S	-2.17145169	-1.61068899	-1.54567817
S	0.94725287	-1.57305752	-0.72203048
S	0.92660577	1.52787620	-0.61433017
N	-3.44149119	1.46470514	1.11052550
Ν	-3.87217295	-1.34703453	0.98642619
С	-2.14824813	2.96045640	-0.43816312
Н	-2.95479174	3.64039513	-0.73558506
Н	-1.20057101	3.50406740	-0.50761935
С	-2.32120609	2.44359204	0.99042218
Н	-2.48015540	3.28802560	1.68382980
Н	-1.40569166	1.91564919	1.27581612
С	-3.31658023	0.65710031	2.35934176
Н	-2.25840636	0.39688235	2.46684920
Н	-3.62126010	1.23869281	3.24514216
С	-4.16676886	-0.61173655	2.25705582
Н	-5.23002160	-0.35416634	2.24309063
Н	-3.99222907	-1.25295802	3.13391483
С	-2.71129445	-2.27437361	1.15360320
Н	-1.89481553	-1.69290795	1.59443751
Н	-2.98391605	-3.08557437	1.85252295
С	-2.24295120	-2.87502787	-0.17638547
Н	-1.24585402	-3.30565086	-0.04306798
Н	-2.91583149	-3.66843276	-0.52091718
С	-4.75086466	2.16091506	1.04268917
Н	-5.56382744	1.43205252	1.09398278
Н	-4.85473720	2.87942190	1.87297288
Н	-4.82678395	2.69482613	0.09167187
С	-5.07359231	-2.09771427	0.54144297

Н	-5.34905826	-2.87658740	1.27196139
Н	-5.90714335	-1.39925875	0.42519102
Н	-4.87170541	-2.56602930	-0.42565069
С	2.43427705	-0.71531206	-0.23927196
С	2.43202783	0.65867805	-0.22135796
С	3.56171728	-1.57594401	0.19457523
С	4.27102505	-1.30818068	1.38822261
Н	3.98807428	-0.44910116	1.99223047
С	5.31478286	-2.13691843	1.81169022
Н	5.83942533	-1.90838761	2.73790514
С	5.67671063	-3.26338001	1.06005615
Н	6.48702916	-3.90952962	1.39130166
С	4.97459122	-3.55268530	-0.11828204
Н	5.24277726	-4.42516755	-0.71168434
С	3.93016952	-2.72467339	-0.54199645
Н	3.39410983	-2.95750411	-1.45959841
С	3.62323445	1.51433610	0.00577601
С	4.84407090	1.25930014	-0.65949683
Н	4.91021187	0.41436510	-1.34127582
С	5.95718753	2.08442390	-0.46971226
Н	6.88286158	1.86775963	-1.00021495
С	5.88178581	3.19216570	0.38589846
Н	6.74719027	3.83548211	0.53108052
С	4.67502353	3.46745455	1.04373198
Н	4.60151387	4.32520930	1.71014489
С	3.56093576	2.64361118	0.85270761
Н	2.62986567	2.86460875	1.37022128

Complex 2²⁻ (dianion closed shell singlet)

Ni	3.16659209	-0.00114830	-0.35434799
Ni	0.61843884	0.05675406	-1.10112248
S	2.26633180	-1.46298925	-1.69126787
S	2.27564648	1.61621195	-1.50062270

S	-0.88223384	1.58130664	-0.76275793
S	-0.80898697	-1.50456115	-0.63738660
0	3.22494719	-3.45919208	1.67378889
0	3.69668478	3.32998528	1.85226808
Ν	3.65469955	-1.34080740	0.84525490
N	3.75886110	1.20106703	0.92651691
С	2.39987080	-2.90909244	-0.52566577
Н	1.38995006	-3.25253320	-0.27723492
Н	2.91106979	-3.71730545	-1.06190829
С	3.14644612	-2.58453456	0.77212331
С	4.17672094	-0.85534902	2.14287533
Н	5.00246059	-1.48406689	2.50231991
Н	3.37356002	-0.90114929	2.89430839
С	4.63806464	0.59870993	1.94338050
Н	4.59768586	1.16460063	2.88227779
Н	5.67705882	0.61698754	1.58023192
С	3.36671510	2.48383234	0.97999043
С	2.40704404	2.89375315	-0.14432910
Н	2.74883469	3.82994456	-0.59851927
Н	1.40490383	3.05602329	0.26844056
С	-2.35223534	0.70626022	-0.25483172
С	-2.32693991	-0.66375114	-0.22588141
С	-3.48423815	1.56064576	0.17862568
С	-3.87776613	2.68660258	-0.57843002
Н	-3.35964303	2.90656241	-1.50939879
С	-4.92860770	3.50823665	-0.15764127
Н	-5.21739207	4.36434380	-0.76481194
С	-5.61059877	3.23180510	1.03484167
Н	-6.42658712	3.87227593	1.36310093
С	-5.22302023	2.12686913	1.80541964
Н	-5.73296148	1.91012129	2.74243357
С	-4.17195039	1.30552006	1.38649154
Н	-3.86699360	0.46390068	2.00400864
С	-3.48944079	-1.54635633	0.04001072

С	-4.73210160	-1.32983245	-0.59653243
Н	-4.83696347	-0.49696773	-1.28812189
С	-5.81862115	-2.17880563	-0.36392184
Н	-6.76369642	-1.99262327	-0.87104499
С	-5.69171338	-3.27146080	0.50484958
Н	-6.53687634	-3.93302380	0.68327338
С	-4.46185587	-3.50817338	1.13340961
Н	-4.34916939	-4.35369153	1.80966108
С	-3.37421233	-2.65981378	0.90130654
Н	-2.42556591	-2.84840661	1.39931408

Complex 2⁻ (anion doublet)

Ni	3.06820301	-0.00931754	-0.29143899
Ni	0.72987639	0.06047210	-1.11707005
S	2.34134698	-1.46854605	-1.74371911
S	2.36161617	1.62256271	-1.55628710
S	-0.77553122	1.56675739	-0.77982895
S	-0.71453626	-1.48843690	-0.68263571
0	2.92884789	-3.48684694	1.67632838
0	3.45334908	3.33751142	1.89810680
N	3.39970976	-1.34771910	0.94744963
N	3.51349757	1.18767162	1.04349631
С	2.36347517	-2.92777048	-0.59698310
Н	1.34488339	-3.31354482	-0.48627452
Н	2.96883992	-3.70209103	-1.08171936
С	2.93108580	-2.60496666	0.78913580
С	3.73741974	-0.86730410	2.30882991
Н	4.49705638	-1.50784812	2.77351933
Н	2.83465982	-0.90450229	2.93572770
С	4.23987610	0.57797465	2.17486201
Н	4.07267393	1.14817244	3.09576257
Н	5.31751426	0.58734130	1.95626697
С	3.18201146	2.49304088	1.01488903

С	2.38994719	2.92370987	-0.22654524
Н	2.84257782	3.82031477	-0.66179566
Н	1.35885559	3.16032696	0.05828590
С	-2.23137609	0.71426117	-0.27649900
С	-2.21101844	-0.66458805	-0.26029020
С	-3.36556184	1.56862647	0.15191743
С	-3.78173794	2.66402692	-0.63385324
Н	-3.28803420	2.85987357	-1.58318467
С	-4.83356729	3.48444507	-0.21464259
Н	-5.14633554	4.31869227	-0.83920764
С	-5.48521001	3.23243084	0.99937665
Н	-6.30239144	3.87215052	1.32546591
С	-5.07335171	2.15405124	1.79394467
Н	-5.56475699	1.95810199	2.74479249
С	-4.02357986	1.33069212	1.37749939
Н	-3.69790467	0.50721878	2.00830451
С	-3.37473711	-1.54373806	0.01143599
С	-4.60906329	-1.32742690	-0.63756578
Н	-4.70749803	-0.50224252	-1.33865118
С	-5.69512467	-2.17504783	-0.40228104
Н	-6.63708880	-1.99650041	-0.91685176
С	-5.57147833	-3.25485905	0.48247140
Н	-6.41834947	-3.91287054	0.66464879
С	-4.34884337	-3.48470996	1.12597633
Н	-4.24336646	-4.31956147	1.81569464
С	-3.25888071	-2.64093794	0.89047394
Н	-2.31562515	-2.81919812	1.40198602

Complex 2^{3–} (trianion doublet)

Ni	-3.14542540	-0.11220680	-0.33340795
Ni	-0.62704041	-0.24119774	-1.02952476
S	-2.40967746	1.12750187	-1.98822842
S	-2.39166659	-1.97315455	-1.21313507

S	1.06166616	-1.70444811	-0.78688019
S	0.73827311	1.44787440	-0.40200662
0	-3.45666757	3.70908504	0.93914362
0	-3.89555934	-3.04773269	2.36157575
Ν	-3.67423859	1.42611946	0.59716422
Ν	-3.75417070	-1.06687679	1.15327806
С	-2.61867991	2.76615040	-1.12511869
Н	-1.62848971	3.21232681	-0.97746732
Н	-3.19356936	3.43521644	-1.77761567
С	-3.30476256	2.66649235	0.24043614
С	-4.15596136	1.18223445	1.97203238
Н	-4.97239124	1.86727293	2.23984382
Н	-3.33242905	1.35883127	2.68270549
С	-4.61606640	-0.28338574	2.05326802
Н	-4.56336618	-0.66237987	3.08244219
Н	-5.66364423	-0.36509435	1.72016037
С	-3.48143074	-2.35906312	1.38498971
С	-2.54853804	-2.98867094	0.34463731
Н	-2.91767747	-3.98594489	0.07978656
Н	-1.54969477	-3.10225836	0.78555206
С	2.44811472	-0.70992372	-0.27031228
С	2.31011020	0.65872723	-0.12066040
С	3.68583329	-1.45648664	0.06700306
С	4.20469795	-2.44954377	-0.79744209
Н	3.69196894	-2.64499737	-1.73696431
С	5.35869457	-3.16859911	-0.47228201
Н	5.73878222	-3.91677266	-1.16645912
С	6.02834383	-2.93132856	0.73815892
Н	6.92292797	-3.49550736	0.99427232
С	5.52064975	-1.96422947	1.61680964
Н	6.01697779	-1.77888084	2.56834652
С	4.36928315	-1.24043365	1.28787044
Н	3.97969857	-0.50479588	1.98825806
С	3.43882725	1.57876172	0.17095953

С	4.65450987	1.50833482	-0.55002761
Н	4.76701123	0.75194675	-1.32388762
С	5.70210298	2.40215449	-0.30072256
Н	6.62082645	2.32708832	-0.88070739
С	5.56990075	3.39802624	0.67691749
Н	6.38327576	4.09494739	0.86910151
С	4.36860932	3.48964590	1.39668408
Н	4.24888441	4.25712984	2.16001819
С	3.32031839	2.60016188	1.14282136
Н	2.39176645	2.68315505	1.70374928

Complex 3 (neutral closed shell singlet)

Ni	-1.89202411	0.05651473	-0.39238346
Ni	0.78579950	-0.02541363	-0.85502301
S	-0.83778935	-1.47825713	-1.51657054
S	-0.76390453	1.47748231	-1.58481414
S	2.22228432	1.52194580	-0.35900906
S	2.11767998	-1.61730457	-0.22678134
Ν	-2.74793170	-1.29884390	0.73370503
Ν	-2.36868302	1.42048661	0.91606236
Ν	5.62197375	2.00576343	1.08661367
С	4.70999650	1.36521694	0.72630636
С	-2.38639325	0.64624113	2.21070312
Н	-2.80201528	1.26416050	3.01797100
Н	-1.34613206	0.40404515	2.44698152
С	3.59119828	0.62268112	0.28455525
С	-0.92483734	2.94115395	-0.43966396
Н	-1.69951452	3.57682944	-0.87920854
Н	0.01654532	3.49787764	-0.43397564
С	-3.19880947	-0.62284974	2.01234931
Н	-3.07753227	-1.30641297	2.86025487
Н	-4.26253890	-0.39800248	1.90588495
С	-3.92758083	-1.94252439	0.07512107

Н	-3.62137709	-2.41451100	-0.86000386
Н	-4.66957206	-1.16995672	-0.13968458
Н	-4.35982368	-2.69655507	0.74715513
С	-1.08305636	-2.85859104	-0.28422354
Н	-0.11964107	-3.34242409	-0.10171256
Н	-1.74485017	-3.58213212	-0.76935176
Ν	5.48677028	-2.20473569	1.25057089
С	-3.69162834	2.06347274	0.64509762
Н	-4.45959166	1.29465684	0.53839433
Н	-3.63189548	2.63131711	-0.28538801
Н	-3.94931289	2.73583661	1.47462537
С	-1.27115795	2.45600802	0.95663471
Н	-0.39710261	1.96930224	1.39819960
Н	-1.58528870	3.28915378	1.60181017
С	-1.66424039	-2.31060275	1.01361423
Н	-2.08304912	-3.12331467	1.62530659
Н	-0.88713301	-1.79480892	1.58519944
С	3.54622051	-0.76080973	0.33974340
С	4.61643570	-1.53713753	0.83993922

Complex [3]⁺ (cation doublet)

Ni	-1.86147288	0.06552751	-0.39835066
Ni	0.70181106	0.00194833	-0.79350632
S	-0.84199636	-1.45936504	-1.58856262
S	-0.76915207	1.52614796	-1.59271826
S	2.19216773	1.51325079	-0.35636078
S	2.03362877	-1.59665047	-0.18411047
Ν	-2.67005850	-1.31331290	0.73605537
Ν	-2.29824552	1.40199019	0.95209679
Ν	5.62407596	1.96601727	0.99755114
С	4.69139256	1.34262255	0.67174990
С	-2.25573111	0.60267470	2.23495639
Н	-2.63884568	1.20975148	3.06483595
Н	-1.20531411	0.36252062	2.42150004
С	3.54554528	0.61075311	0.27181612

С	-0.91462814	2.96838151	-0.42088323
Н	-1.70675136	3.59376232	-0.84336763
Н	0.01863778	3.53880888	-0.43665424
С	-3.07048383	-0.66389726	2.04958352
Н	-2.90316688	-1.36624301	2.87263746
Н	-4.13911876	-0.44692657	1.99398135
С	-3.88271942	-1.91130916	0.08989572
Н	-3.61587271	-2.36446144	-0.86613947
Н	-4.61165315	-1.11500406	-0.07693628
Н	-4.30790173	-2.67211271	0.75678838
С	-1.06378338	-2.86409507	-0.38197001
Н	-0.10475633	-3.37399529	-0.25236717
Н	-1.75264180	-3.55733556	-0.87326703
Ν	5.41844874	-2.25187260	1.19497605
С	-3.64795220	2.01200502	0.72174588
Н	-4.39166783	1.22292693	0.59144539
Н	-3.61871050	2.62317150	-0.18198027
Н	-3.90982188	2.63560739	1.58558304
С	-1.22265637	2.46294029	0.97672255
Н	-0.33283767	1.99652478	1.40701300
Н	-1.54843497	3.28494471	1.62806006
С	-1.59052854	-2.34491668	0.94954070
Н	-2.00196170	-3.17051854	1.54619462
Н	-0.79221703	-1.85625796	1.51517923
С	3.47643074	-0.77344801	0.34211342
С	4.54839002	-1.57310642	0.81185696

Complex [3]⁻ (anion doublet)

Ni	-1.85389031	0.20834083	-0.38627390
Ni	0.74669114	0.13041197	-0.82028583
S	-0.95145014	-1.10402514	-1.88993919
S	-0.77560535	1.91029845	-1.25083217
S	2.57436934	1.41949186	-0.73774247
S	1.77681651	-1.54166580	0.27860900

N	-2.81709888	-1.33606059	0.40606672
N	-2.25903798	1.24286119	1.24681636
N	6.10986004	1.36209159	0.43340085
С	5.03752935	0.90660600	0.27807640
С	-2.31316343	0.17429540	2.30151290
Н	-2.68110326	0.58362032	3.25374311
Н	-1.28752478	-0.18079276	2.44243843
С	3.73843659	0.39202126	0.08085276
С	-0.78544126	3.00145026	0.26389046
Н	-1.51922199	3.79625310	0.09464963
Н	0.20314462	3.45834246	0.37116870
С	-3.20764697	-0.95926306	1.81548767
Н	-3.13037757	-1.83009496	2.47832717
Н	-4.25460028	-0.64605779	1.79284287
С	-4.03604334	-1.73350054	-0.35868435
Н	-3.76027207	-1.97025289	-1.38827253
Н	-4.73836720	-0.89613903	-0.36115529
Н	-4.50776315	-2.60987186	0.11015445
С	-1.28189256	-2.71461625	-1.00232985
Н	-0.34702361	-3.28094303	-0.94964464
Н	-1.99617886	-3.28239740	-1.60683135
N	5.08805324	-2.42963597	1.72437152
С	-3.53468566	2.01233677	1.18293080
Н	-4.36419293	1.33739213	0.96197913
Н	-3.46604619	2.75277112	0.38296380
Н	-3.71667597	2.51900738	2.14239035
С	-1.10027553	2.16817868	1.49759309
Н	-0.24022698	1.53183552	1.72993326
Н	-1.32373119	2.80644956	2.36715265
С	-1.80867162	-2.45299919	0.40591882
Н	-2.27453008	-3.35950844	0.82487749
Н	-0.98885939	-2.13810729	1.05852793
С	3.39050573	-0.89205666	0.52284114
С	4.32744983	-1.71861398	1,17896289

References:

- 1. H. J. Kruger, G. Peng and R. H. Holm, *Inorg. Chem.*, 1991, **30**, 734–742.
- 2. E. R. Hosler, R. W. Herbst, M. J. Maroney and B. S. Chohan, *Dalton Trans.*, 2011, **41**, 804–816.
- 3. K. D. Karlin and S. J. Lippard, J. Am. Chem. Soc., 1976, 98, 6951–6957
- 4. N. G. Connelly and W. E. Geiger, *Chem. Rev.*, 1996, **96**, 877–910.