Supporting Information

Designing a hybrid nanomaterial based on Cr-containing polyoxometalate

and graphene oxide as an electrocatalyst for the hydrogen evolution

reaction

Maryam Khalaji-Verjani, Majid Masteri-Farahani*

Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran

Materials

^{*} Corresponding author. Tel.: 00982634551023; E-mail address: mfarahani@khu.ac.ir.

Sodium molybdate dihydrate (Na₂MoO₄.2H₂O), disodium hydrogen phosphate (Na₂HPO₄), nitric acid (HNO₃), 3-aminopropyltrimethoxysilane (APTS), H₃PMo₁₂O₄₀, Cr(acac)₃ complex, toluene, and methanol were purchased from Merck. The graphite powder was purchased from Sinchem Company. Nafion solution (5 wt%) was purchased from electrochemiabaspar-Iran.

Equipment

Chemical analyses of samples were carried out with VARIAN VISTA-MPX ICP-OES spectrometer. CHN analysis was conducted with using Thermo Finnigan (Flash 1112 series EA) CHN analyzer. X-ray diffraction (XRD) patterns were collected using a X'Pert Pro instrument with Cu Ka radiation. Field emission Scanning Electron Microscope (FE-SEM) imaging and energy dispersive X-ray (EDX) spectroscopy were carried out on a TESCAN MIRA III instrument for micro-elemental analysis and mapping. Fourier transform infrared spectroscopy (FT-IR) spectra were measured through a Perkin-Elmer Spectrum RXI spectrometer using the standard KBr pellet method. Transmission electron microscopy (TEM) images were taken on a Zeiss-EM10C instrument with an accelerating voltage of 100 kV. Samples were prepared for TEM analysis by placing a few droplets of a suspension of the specimen in ethanol on a polymer microgrid supported on a Cu grid. The X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Kratos AXIS Ultra HSA spectrometer equipped with a monochromatized Al Ka X-ray source (1468.71 eV). Specific surface area of each sample was analyzed with Brunauer-Emmett-Teller (BET) N2 method using a surface area analyzer (BEISORP Mini/Microtrac BEL Corp, Japan). ³¹P NMR spectra of the products were recorded on Bruker Avance 300.

Preparation of PMo₁₁-Cr-GO

A solution of PMo_{11} -Cr (200 mg) in deionized water (10 mL) was added to a mixture of GO (500 mg) in deionized water (10 mL). After stirring for 3 h, the solid was collected via centrifugation, rinsed with cold water, and dried to obtain PMo_{11} -Cr-GO.

Preparation of PMo₁₂-mGO, PMo₁₁-mGO, and Cr-mGO

First, 200 mg of mGO was dispersed in deionized water (10 mL). Next, a mixture of 200 mg of precursor (PMo₁₂, PMo₁₁, or Cr(acac)₃) in 10 mL of deionized water was added to the mixture. After stirring for 3 h, the solid was collected via centrifugation, rinsed with cold water, and dried to obtain PMo₁₂-mGO, PMo₁₁-mGO, and Cr-mGO, respectively.

Testing conditions for electrochemical analysis

Electrochemistry measurements of the samples were carried out on a PalmSens electrochemical workstation with a three-electrode setup: Ag/AgCl as the reference electrode, glassy carbon electrode as the working electrode, and graphite rod as the counter electrode. HER polarization curves were collected at a scan rate of 5 mV.s⁻¹ via LSV in H_2SO_4 0.5 M. The working electrodes were scanned for several times until the signals were stabilized and then the data for polarization curves were collected.

³¹P NMR spectra

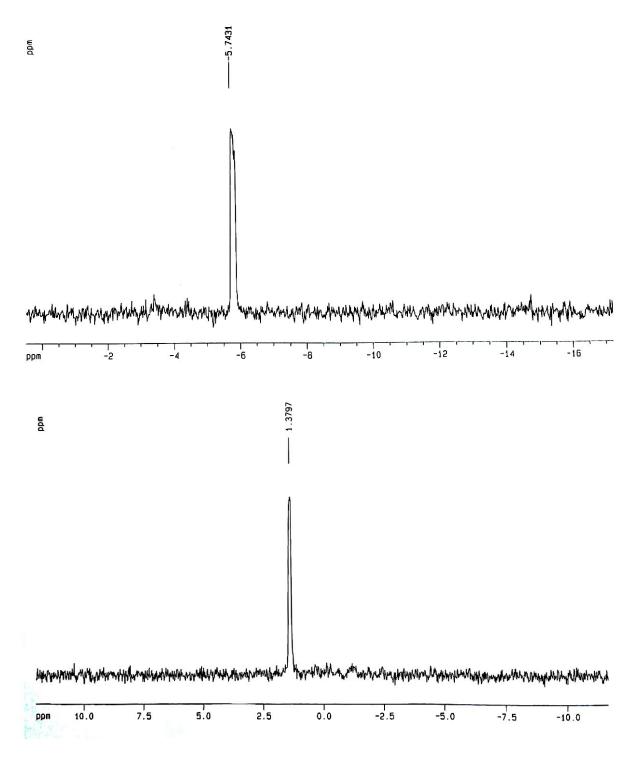


Fig. S1. ³¹P NMR spectra of PMo_{12} (top) and PMo_{11} (bottom).

Elemental analysis

No.	Element	Percent (Calculated)	Mole (%)
1	С	5.35 (5.31)	0.445
2	Р	1.27 (1.37)	0.041
3	Мо	45.01 (46.71)	0.469
4	Cr	2.39 (2.30)	0.046
5	Na	5.76 (6.10)	0.250

Table S1. The results of elemental analysis of PMo₁₁-Cr.

Thermogravimetric analysis

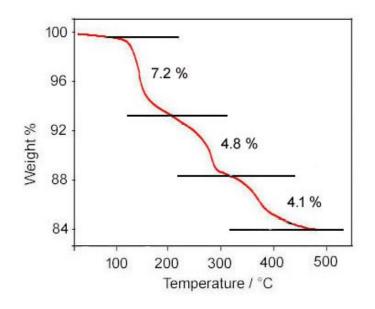
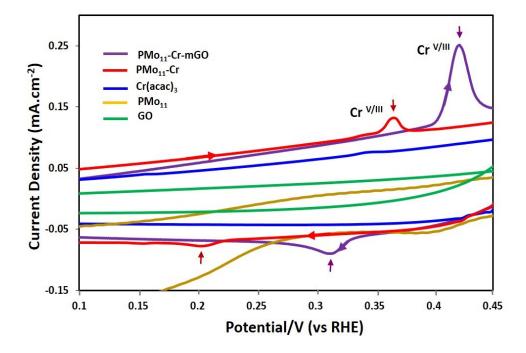
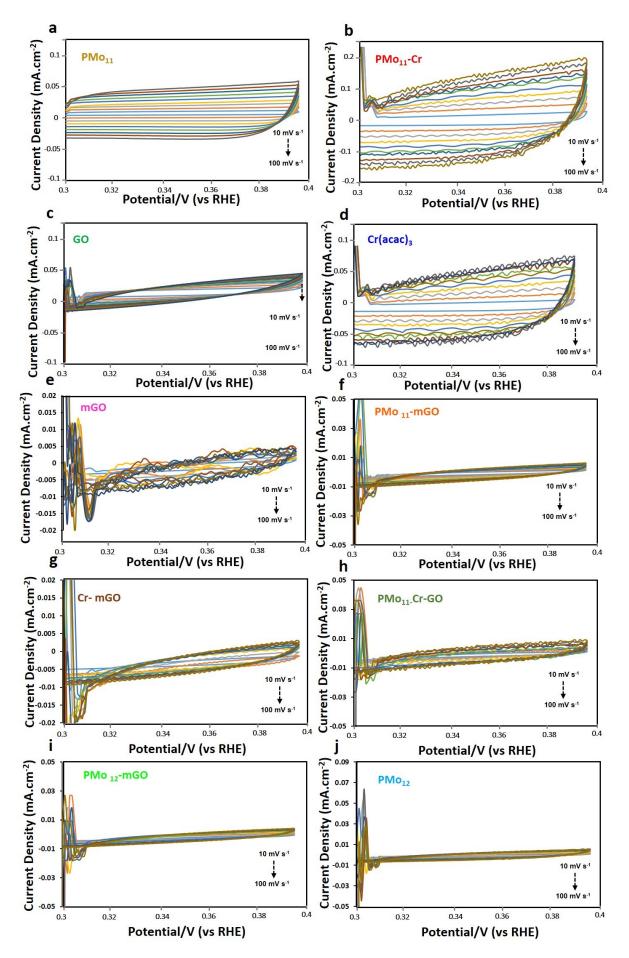



Fig. S2. TGA curve of PMo₁₁-Cr.

Cyclic voltammetry and electrochemical analyses

The cyclic voltammetry (CV) analyses of PMo₁₁-Cr-mGO, PMo₁₁-Cr, PMo₁₁, Cr(acac)₃, and GO modified GCE conducted in the 0.5 M H₂SO₄ solution indicate the electrocatalytic HER activity of PMo₁₁-Cr-mGO as a heterogeneous catalyst (Fig. S3). In fact, there is no any peak in the CV curves of PMo₁₁, Cr(acac)₃, and GO in the range of 0.1-0.45 V. However, in the CV curve of PMo₁₁-Cr, a hump can be observed at around +0.36 V vs RHE assigned to the oxidation of Cr^{III}. The oxidation process of Cr^{III} is irreversible, with its corresponding reduction wave appearing at 0.19 V vs RHE.¹ Furthermore, the CV analysis of PMo₁₁-Cr-mGO indicates an irreversible cycle too. The observed shift could be attributed to strong interaction of PMo₁₁ species with Cr(acac)₂ species which results in decreasing the electron density on the PMo₁₁ and the stabilization of its energy levels.^{2,3} Therefore, PMo₁₁-Cr immobilized on mGO represents enhanced catalytic properties in the HER process.


Fig. S3. CV curves of PMo₁₁-Cr-mGO, PMo₁₁-Cr, PMo₁₁, Cr(acac)₃, and GO in 0.5M H₂SO₄. Scan rate of 10 mV.s⁻¹.

References

(1) Liu, W.; Al-Oweini, R.; Meadows, K.; Bassil, B. S.; Lin, Z.; Christian, J. H.; Dalal, N. S.; Bossoh, A. M.; Mbomekalle, I. M.; de Oliveira, P. Cr^{III} -substituted heteropoly-16-tungstates $[Cr^{III}_2 (B-\beta-X^{IV}W_8O_{31})_2]14-(X=Si, Ge)$: magnetic, biological, and electrochemical studies. Inorganic Chemistry **2016**, 55 (21), 10936-10946.

(2) Shen, F.-C.; Wang, Y.-R.; Li, S.-L.; Liu, J.; Dong, L.-Z.; Wei, T.; Cui, Y.-C.; Wu, X. L.; Xu, Y.; Lan, Y.-Q. Self-assembly of polyoxometalate/reduced graphene oxide composites induced by ionic liquids as a high-rate cathode for batteries:"killing two birds with one stone". Journal of Materials Chemistry A **2018**, 6 (4), 1743-1750.

(3) Shahsavarifar, S.; Masteri-Farahani, M.; Ganjali, M. R. Design and application of a polyoxometalate-ionic liquid-graphene oxide hybrid nanomaterial: New electrocatalyst for water oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects **2022**, 632, 127812.

Fig. S4. CV curves in the region of 0.3~0.4 V *vs.* RHE for the (a) PMo₁₁, (b) PMo₁₁-Cr, (c) GO, (d) Cr(acac)₃, (e) mGO, (f) PMo₁₁-mGO, (g) Cr-mGO, (h) PMo₁₁-Cr-GO, (i) PMo₁₂-mGO, and (j) PMo₁₂.

Table S2. The double layer capacitance and ECSA of PMo₁₁-Cr-mGO, PMo₁₁-Cr, PMo₁₁, Cr(acac)₃, mGO, PMo₁₁-mGO,

No.	Sample	C_{dl} (mF.cm ⁻²)	ECSA (m^2 .g ⁻¹)
1	PMo ₁₁ -Cr-mGO	32	46.7
2	PMo ₁₁ -Cr	7	10.23
3	$Cr(acac)_3$	4	5.85
4	PMo ₁₁	2	~3
5	GO	0.5	~1
6	mGO	-	-
7	PMo ₁₁ -mGO	0.3	~0.5
8	PMo ₁₂ -mGO	-	-
9	PMo ₁₁ -Cr-GO	-	-
10	PMo ₁₂	-	-
11	Cr-mGO	-	-

PMo₁₂-mGO, PMo₁₁-Cr-GO, PMo₁₂, Cr-mGO, and GO.