Polymorph transformation in a mixed-stacking nickel-dithiolene complex with the derivative of 4,4'-bipyridinium Yan Gao,^a Lei Xu,^a Zi-Heng Feng,^a Yin Qian,*^a Zheng-Fang Tian,^b Xiao-Ming

Yan Gao,^a Lei Xu,^a Zi-Heng Feng,^a Yin Qian,^{*a} Zheng-Fang Tian,^o Xiao-Ming Ren^{*a,c}

^aState Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China

^bHubei Key Laboratory of Processing and Application of Catalytic materials, Huanggang Normal University, Huanggang, 438000, P. R. China

^cState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China

Email: yinqian@njtech.edu.cn (Y.Q.); xmren@njtech.edu.cn (X.M.R.)

Contents

Experimental section

Materials

Synthesis of [C₄-4, 4'-BiPy][Ni(mnt)₂] (1-g)

Physical measurements

X-Ray single crystallography

Table S1. Crystal data and structure refinement parameters for 1-r

Table S2. Enthalpy and entropy changes of phase transitions in 1-g and 1-r, together

 with the peak temperature of thermal anomalies

Figure S1. IR spectrum of 1-r and 1-g in 4000-500 cm⁻¹.

Figure S2. Schematic illustration for the dihedral angles between the mean-molecular planes of anions as well as between the mean-molecular planes of bipyridyl rings in the neighboring mixed-stacking columns of 1-r.

Figure S3. Top and side views of C_4 -4,4'-Bipy²⁺ cation in the crystal structure of 1-r at 296 K (in the high-temperature phase), where the butyl chains show all-trans conformation.

Figure S4. Top and side views of two crystallographically different C_4 -4,4'-Bipy²⁺ cations in the crystal structure of **1**-r at 100 K (in the low-temperature phase), where the butyl chains show all-trans conformation.

Figure S5. Experimental PXRD patterns of 1-g, 1-r and 1-r ground together with the simulated PXRD pattern of 1-r.

Figure S6. Variable-temperature UV-visible-near IR spectra of (a) 1-g and (b) 1-r.

Figure S7. Variable-temperature images of 1-g, displaying the sequence of temperature changes following the direction of the arrow.

Figure S8. Variable-temperature images of 1-r, displaying the sequence of temperature changes following the direction of the arrow.

Figure S9. PXRD patterns of 1-g, 1-r annealed at 473 and 523 K and the measurement performed at room temperature.

References

Experimental section

Materials

All reagents and chemicals were purchased from commercial sources and used directly. Disodium maleonitriledithiolate (Na_2mnt) ,¹ 1,1'-dibutyl-4,4'-bipyridinium dibromide ($[C_4-4, 4'-BiPy]Br_2$)² were prepared following the published procedures.

Synthesis of [C₄-4, 4'-BiPy][Ni(mnt)₂] (1-g)

 $[C_4-4,4'-Bipy][Ni(mnt)_2]$ (1-g): Na₂mnt (372 mg, 2 mmol) and NiCl₂·6H₂O (237 mg, 1 mmol) were mixed under stirring with 100 mL H₂O at ambient temperature, subsequently, a solution of $[C_4-4, 4'-BiPy]Br_2$ (430 mg, 1 mmol) with 30 mL H₂O was added to the mixture. The precipitate was immediately formed, and the mixed solution was vigorously stirred for 10 min. and then filtered off, washed with 15 mL of H₂O (3×5 mL). The crude product was collected by suction and dried in an oven at 40°C for 4h to give light green microcrystals, with yield of ~84% (calc. based on NiCl₂·6H₂O). Anal. Calc. for C₂₆H₂₆N₆S₄Ni (1-g): C, 51.24; H, 4.30; N, 13.79%. Found: C, 51.13; H, 4.30; N, 13.94%. 1-g underwent immersion in MeOH and was subjected to ultrasonic treatment for half hour, yielding a microcrystalline sample that appeared red in color (denoted as 1-r), and microanalysis found: C, 51.21; H, 4.28; N, 14.08%.

The single crystals suitable for X-ray structure analysis were grown by diffusion method in a sealed test tube, i.e., the solution of **1**-r in 3 mL of DMF and 10 mL EtOH are placed on the bottom and top of a test tube, respectively. This tube was sealed at ambient temperature, and the plate-shaped crystals of **1**-r were obtained for ~10 days.

Physical measurements

Elemental analyses for C, H, and N were performed on an Elementar Vario EL III analytic instrument. IR spectra in 4000–450 cm⁻¹ were recorded on Bruker Tensor FTIR instrument that was equipped with an attenuated total reflection cell (Harrick) (ATR-FTIR). Powder X-ray diffraction (PXRD) data were collected on a MiniFlex600 X-ray diffractometer with Cu K_{α} (λ = 1.5404 Å) radiation at ambient temperature.

Thermogravimetric (TG) analyzer experiments were performed using a s3

simultaneous SDT 2960 thermal, the sample was held in a platinum pan under nitrogen flow in the rate of 100 mL min⁻¹ and heated at a ramping rate of 20 °C min⁻¹ from 303 to 1073 K (from 30 to 800 °C). Differential scanning calorimeter (DSC) experiments were carried out on Shimadzu DSC-60 differential scanning calorimeter in the temperature range of 186-523 K (from -87 to 250 °C).

Dielectric constant and loss measurements were carried out using Concept 80 system (Novo control, Germany) in the ranges of 1-10⁷ Hz and 173-403 K; the powdered sample of 1-r was pressed to a pellet with a thickness of ca. 1.216 mm and a diameter of 7.0 mm (an area of 38.5 mm²) under a static pressure of 8 MPa for 5 min., which two surfaces were gold-plated, such pellet was sandwiched by the copper electrodes for dielectric measurements, and the temperatures range from 173 to 473 K and the alternating current (AC) frequencies change from 1 to 10⁷ Hz. Solid-state UV-vis-NIR absorption spectra were recorded on a Shimadzu UV3600PLUS equipped with Integrating Spheres.

X-Ray single crystallography

Single-crystal X-ray diffraction data were collected on a Bruker D8 QUEST Apex III CCD area detector diffractometer with graphite-monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) at room temperature. Data reduction and absorption correction were performed with the SAINT³ and SADABS⁴ software packages, respectively. The crystal structure was solved by direct method and refined on F² using full matrix leastsquares method with SHELXTL package.⁵ All hydrogen atoms were placed at the calculated positions and refined as riding on their parent atoms with fixed isotropic displacement parameters. X-ray diffraction data collection, structure refinement, and crystallography are summarized in Table S1.

-	-				
Chemical formula	C ₂₆ H ₂₆ N ₆ NiS ₄	$C_{26}H_{26}N_6NiS_4$			
CCDC number	2311213	2311215			
Formula weight	609.48	609.48			
Temperature (K)	100	296			
Wavelength (Å)	0.71073	0.71073			
Crystal system	triclinic	monoclinic			
Space group	<i>P</i> -1	<i>P</i> 2/c			
a (Å)	7.1650(7)	8.864(2)			
b (Å)	9.2160(8)	8.089(2)			
c (Å)	21.1039(18)	20.473(5)			
α (°)	94.597(3)	90.00			
β (°)	94.082(3)	98.664(9)			
γ (°)	93.219(3)	90.00			
V (Å ³) / Z	1382.9(2)	1451.1(7)			
D_{calc} (g/cm ³)	1.464	1.395			
Abs. coefficient (mm ⁻¹)	1.031	0.983			
F(000)	632	632			
θ range for data collection	2.221-26.405	2.32-26.40			
Index range	-8 <h<8< td=""><td colspan="4">-11<h<11< td=""></h<11<></td></h<8<>	-11 <h<11< td=""></h<11<>			
	-10 <k<11< td=""><td>-10<k<10< td=""></k<10<></td></k<11<>	-10 <k<10< td=""></k<10<>			
	-26<1<26	-25<1<24			
Reflections collected	15728	12093			
Independent reflections	5634	2928			
R _{int}	0.0615	0.0852			
Refinement on F ²	Full-matrix least-squares	Full-matrix least-squares			
Data / restraints / parameters	5634 / 0 / 337	2928 / 0 / 169			
Goodness-of-fit on F ²	1.034	1.013			
Final R indices $[I > 2\sigma(I)]$	0.0447	0.0540			
R indices (all data)	0.0680	0.1246			
Residual (eÅ ⁻³)	0.663/-0.682	0.230/-0.249			

Table S1. Crystal data and structure refinement parameters for 1-r

1-g												
Mode	T _{peak} /K			$\Delta H/kJ mol^{-1}$		ol ⁻¹	$\Delta S/J \text{ mol}^{-1} \text{ K}^{-1}$		N ₂ /N ₁			
Heating	1 st	2 nd	3 rd	1 st	2 nd	3 rd	1^{st}	2 nd	3 rd	1^{st}	2 nd	3 rd
	399.0	400.7	400.1	8.3	6.2	6.0	20.8	15.5	15.0	12.2	6.5	6.1
Cooling	1 st	2 nd	3 rd	1 st	2 nd	3 rd	1 st	2 nd	3 rd	1 st	2 nd	3 rd
	366.0	363.1	362.5	8.7	7.7	7.2	23.8	21.2	19.8	17.5	12.8	10.8
1 -r												
Heating	1 st	2 nd	3 rd	1 st	2 nd	3 rd	1^{st}	2 nd	3 rd	1^{st}	2 nd	3 rd
	274.2	402.1	402.5	1.05	4.6	4.6	3.8	11.4	11.4	1.58	3.9	3.9
Heating	$1^{\rm st}$	2^{nd}	3 rd	$1^{\rm st}$	2^{nd}	3^{rd}	$1^{\rm st}$	2^{nd}	3^{rd}	$1^{\rm st}$	2^{nd}	3^{rd}
	494.8	480.2	479.1	16.6	2.1	2.1	33.6	4.4	4.4	56.9	1.7	1.7
Cooling	$1^{\rm st}$	2^{nd}	3 rd	$1^{\rm st}$	2^{nd}	3^{rd}	$1^{\rm st}$	2^{nd}	3^{rd}	$1^{\rm st}$	2^{nd}	3^{rd}
	380.2	381.8	381.8	6.8	7.2	7.2	18.0	18.8	18.8	8.7	9.6	9.6

Table S2. Enthalpy and entropy changes of phase transitions in 1-g and 1-r, together

 with the peak temperature of thermal anomalies

Figure S1. IR spectrum of 1-r and 1-g in 4000–500 cm⁻¹.

The most intense vibrational band of $v_{C=N}$ (less than 2200 cm⁻¹) indicates that the valence of anion species is -2, band located at 735.7 cm⁻¹ is assigned to the number of alkyl chain length is less than three carbon atoms.

Figure S2. Schematic illustration for the dihedral angles between the mean-molecular planes of anions as well as between the mean-molecular planes of bipyridyl rings in the neighboring mixed-stacking columns of **1**-r. θ 1 = 57.83° at 296 K, 61.19° at 100 K; θ ₂ = 63.72° at 296 K, 72.74° at 100 K.

Figure S3. Top and side views of C_4 -4,4'-Bipy²⁺ cation in the crystal structure of 1-r at 296 K (in the high-temperature phase), where the butyl chains show all-trans conformation.

Figure S4. Top and side views of two crystallographically different C_4 -4,4'-Bipy²⁺ cations in the crystal structure of **1**-r at 100 K (in the low-temperature phase), where the butyl chains show all-trans conformation.

Figure S5. Experimental PXRD patterns of 1-g, 1-r and 1-r ground together with the simulated PXRD pattern of 1-r.

Figure S6. Variable-temperature UV-visible-near IR spectra of (a) 1-g and (b) 1-r.

Figure S7. Variable-temperature images of 1-g, displaying the sequence of temperature changes following the direction of the arrow. 1-g is a poor conductor of heat, leading to non-uniform heating of its constituent particles. Consequently, certain particles in the sample back to 298 K attain higher temperatures than others, manifesting as a slight red hue in some powdered particles.

Figure S8. Variable-temperature images of 1-r, displaying the sequence of temperature changes following the direction of the arrow. 1-r is a poor conductor of heat, leading to non-uniform heating of its constituent particles. Consequently, certain particles in the sample back to 298 K attain higher temperatures than others, manifesting as a slight red hue in some powdered particles.

Figure S9. PXRD patterns of 1-g, 1-r annealed at 473 and 523 K and the measurement performed at room temperature.

References

- 1. A. Davidson, H. R. Holm, Metal complexes derived from cis-1,2-dicyano-1,2ethylenedithiolate and bis(trifluoromethyl)-1, 2-dithiete, *Inorg. Synth.*, 1967, **10**, 8–26.
- H. B. Duan, X. M. Ren, L. J. Shen, W. Q. Jin, Q. J. Meng, Z. F. Tian, S. M. Zhou, A low-dimensional molecular spin system with two steps of magnetic transitions and liquid crystal property, *Dalton Trans.*, 2011, 40, 3622–3630.
- 3. Bruker, APEX 2, SAINT, XPREP, Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
- 4. Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
- Sheldrick, G. M. SHELXS-2014, Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 2014.