UV-Assisted Photochemical Transformation of TetranuclearCopper(II) Complex: A DFT Supported Study in β-Lactamase Inhibitory Activity Towards Antibiotic Resistance

SnehaBiswas^a, SuhanaKarim^{a,b*}, PradipBhunia^a, SoumadipBanerjee^c, Abhijit K. Das^c and DebasisDas^{a*}

^aDepartment of Chemistry, University College of Science, University of Calcutta, 92 A. P. C.

Road, Kolkata 700009, India

^bDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

°School of Mathematical & Computational Sciences, Indian Association for the Cultivation

of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India

†Supplementary information (SI) available: Experimental details.

CCDC reference number 2294712-2294713

E-mail:dasdebasis2001@yahoo.com

SUPPORTING INFORMATION

Total number of pages: 20 Total number of Figs: 11 Total number of Tables: 7

Index

Sl. No.	Contents	Page No.
1.	FT-IR spectrum of complex 1(Fig S1)	S3
2.	UV-Vis spectra of complex 1 and complex 2 (Fig S2)	S3
3.	ESI-MS studies of complex 1 (Fig S3)	S4
4.	H-bonded structure of complex 1(Fig S4)	S 5
5.	Selected bond lengths and bond angles of complex 1 (Table S1 and Table S2)	S5-S6
6.	Geometrical features of hydrogen bonding interactions (distances (Å) and angles (°))in Complexes1 and 2(Table S3)	S7
7	H-bonded structure of complex 2 (Fig S5)	S8
8.	Selected bond lengths and bond angles of complex 2(Table S4)	S8-S9
9.	Bond valence sum (BVS) calculations for complexes 1 and 2(Table S5)	S9
10.	Non interfering behavior of nitrocefin in the transformation of C2 from C1 in methanol-water solvent under UV lamp(Fig S6)	S9
11.	FT-IR spectrum of complex 2 (Fig S7)	S10
12.	ESI-MS studies of complex 2 (Fig S8)	S10
13.	Isothermal titration calorimetry profiles for C2 binding to chloride ion(Fig S9)	S11
14.	The molecular electrostatic potential analysis (MEP) diagram of C1(Fig S10)	S11
15.	Calculated HOMO-LUMO energy gaps of C1 in the solvent phase(Table S6)	S12
16.	Schematic representation of photocatalytic mechanism of chlorate reduction in presence of C1 in 70:30 v/v MeOH-water medium (Fig S11)	S12
17.	Comparing the kinetic parameters with other analogous zinc or copper complexes for hydrolysis of nitrocefin (Table S7)	S13-S14
18.	Cartesian Co-ordinate of C1 (TPSSH optimized)	S14-S19
19.	References	S19-S20

Fig S1.FT-IR spectrum of complex 1

Fig S2.UV-Vis spectra of complex 1and complex 2

Fig S3.ESI-MS spectrum of complex 1

Fig S4.H-bonded structure of complex 1. H-bonds are shown by dotted lines.

Bond lengths (Å)					
Cu1–O11	1.987(4)	Cu3–O22	2.651(4)		
Cu1–O22	1.972(3)	Cu3 –O41	2.288(4)		
Cu1–O62	2.673(4)	Cu3–O42	1.956(3)		
Cu1–O81	2.305(4)	Cu3 –O51	1.992(5)		
Cu1–O82	1.973(4)	Cu3 –O62	1.968(3)		
Cu1–N14	1.922(4)	Cu3 –N54	1.905(4)		
Cu2–O21	2.324(4)	Cu4 –O42	2.758(4)		
Cu2–O22	1.973(3)	Cu4 –O61	2.297(5)		
Cu2–O31	1.957(4)	Cu4 –O62	1.991(3)		
Cu2–O42	1.947(4)	Cu4 –071	1.963(4)		
Cu2–O82	2.666(4)	Cu4–O82	1.970(4)		
Cu2–N83	1.923(5)	Cu4 –N74	1.924(5)		

Table S1. Selected bond lengths of complex 1

Table S2. Selected bond angles of complex 1

Bond angles (°)					
O11 – Cu1 – O22	175.64(15)	O22 – Cu3– O41	146.78(13)		
O11 – Cu1 – O62	97.95(14)	O22 – Cu3– O42	71.77(13)		
O11 – Cu1 – O81	87.11(16)	O22 – Cu3– O51	95.62(14)		
O11 – Cu1 – O82	94.06(15)	O22 – Cu3– O62	81.36(13)		
O11 – Cu1 – N14	83.62(18)	O22 - Cu3-N54	103.45(18)		
O22 – Cu1 – O62	80.72(13)	O41-Cu3-O42	75.24(14)		
O22 – Cu1 – O81	96.32(16)	O41– Cu3– O51	89.92(17)		
O22 – Cu1 – O82	89.47(14)	O41–Cu3–O62	94.62(16)		
O22 - Cu1 - N14	92.53(18)	O41-Cu3-N54	109.7(2)		
O62 - Cu1 - O81	145.87(13)	O42- Cu3- O51	93.24(15)		
O62 - Cu1 - O82	71.48(12)	O42- Cu3- O62	89.31(14)		
O62 - Cu1 - N14	100.67(14)	O42-Cu3-N54	173.8(2)		
O81 – Cu1 – O82	74.52(14)	O51–Cu3–O62	175.23(16)		
O81 – Cu1 – N14	113.45(16)	O51–Cu3–N54	83.23(19)		
O82 - Cu1 - N14	171.48(16)	O62-Cu3-N54	93.86(18)		
O21 – Cu2– O22	74.48(13)	O42- Cu4- O61	143.36(12)		
O21 – Cu2– O31	86.32(16)	O42- Cu4- O62	68.83(12)		
O21 – Cu2– O42	99.56(14)	O42- Cu4- O71	98.57(16)		
O21 – Cu2– O82	146.17(12)	O42- Cu4- O82	79.61(12)		
O21 - Cu2-N34	111.83(17)	O42-Cu4-N74	103.8(2)		
O22-Cu2-O31	94.39(16)	O61– Cu4– O62	74.76(14)		
O22–Cu2–O42	89.46(14)	O61– Cu4– O71	88.47(17)		
O22– Cu2– O82	71.77(12)	O61– Cu4– O82	95.95(14)		
O22- Cu2-N34	173.11(18)	O61-Cu4-N74	112.7(2)		
O31–Cu2–O42	173.67(16)	O62- Cu4- O71	95.15(16)		
O31–Cu2–O82	94.02(16)	O62– Cu4– O82	88.84(14)		
O31-Cu2-N34	83.49(17)	O62-Cu4-N74	172.2(2)		
O42– Cu2– O82	82.41(13)	O71–Cu4–O82	174.71(17)		
O42-Cu2-N34	92.11(16)	O71-Cu4-N74	83.3(2)		
O82 Cu2-N34	101.79(16)	O82 Cu4N74	92.3(2)		

Complex	D–H…A	D-H (Å)	H…A (Å)	D…A (Å)	∠D−H…A (°)
	$O(1) - H(1A) \cdots Cl(1)$	0.8500	2.3800	3.223(5)	171.00
	$O(1) - H(1B) \cdots Cl(3)$	0.8500	2.4000	3.225(5)	163.00
	$O(2) - H(2A) \cdots Cl(2)$	0.8800	2.3400	3.144(4)	153.00
I	$O(2) - H(2B) \cdots Cl(1)$	0.8800	2.2200	3.066(5)	161.00
	$O(3) - H(3A) \cdots Cl(3)$	0.8800	2.5100	3.185(5)	134.00
	$O(3) - H(3B) \cdots Cl(1)$	0.8800	2.2000	3.073(5)	175.00
	O(11) – H(11) … O(1)	0.86(8)	1.76(6)	2.581(7)	160(11)
	$O(1) - H(1A) \cdots O(23)$	0.8700	2.1600	2.885(8)	140.00
	O(1) – H(1B) … O(111)	0.8700	1.8100	2.656(9)	165.00
•	O(11) – H(11) ··· O(91)	0.88(3)	1.73(3)	2.584(6)	161(4)
2	O(31) – H(31) … O(101)	0.88(3)	1.78(3)	2.606(6)	156(4)
	$O(51) - H(51) \cdots O(1)$	0.879(14)	1.77(3)	2.592(7)	155(5)
	O(71) – H(71) … O(121)	0.88(2)	1.78(4)	2.519(9)	140(4)

Table S3. Geometrical features of hydrogen bonding interactions (distances (Å) and angles(°)) in Complexes1 and 2

Fig S5.H-bonded structure of complex 2. H-bonds are shown by dotted lines.

Bond lengths (Å)					
Cu1 –Cl1	2.7550(18)	Cu2 –Cl2	2.691(2)		
Cu1 –Cl2	2.2603(18)	Cu2 –Cl3	2.262(3)		
Cu1 – O11	1.985(6)	Cu2 – O2	1.970(3)		
Cu1 – O22	1.941(5)	Cu2 – O3	1.961(3)		
Cu1 – N14	1.923(6)	Cu2 – O21	2.329(4)		
		Cu2 – O22	2.023(5)		
	Bond an	ngles (°)			
Cl1 –Cu1–Cl2	95.80(6)	Cl2 –Cu2 – O21	149.18(15)		
Cl1 –Cu1– O11	97.05(14)	Cl2 –Cu2 – O22	76.45(14)		
Cl1 –Cu1– O22	89.48(11)	C13 –Cu2 – O2	94.21(14)		
Cl1 –Cu1– N14	94.21(14)	C13 –Cu2 – O3	91.20(16)		

 Table S4. Selected bond parameters of complex 2

Cl2 –Cu1– O11	94.03(13)	Cl3 –Cu2 – O21	100.70(15)
Cl2 –Cu1– O22	89.41(13)	Cl3 –Cu2 – O22	173.05(15)
Cl2 –Cu1– N14	169.66(17)	O2 –Cu2 – O3	174.6(2)
O11 –Cu1– O22	172.27(17)	O2–Cu2 – O21	86.72(16)
O11 –Cu1– N14	82.2(3)	O2 –Cu2 – O22	88.59(16)
O22 –Cu1– N14	93.3(2)	O3–Cu2 – O21	91.82(18)
C12 –Cu2 –C13	109.96(7)	O3 –Cu2 – O22	85.98(17)
Cl2 –Cu2 – O2	88.00(15)	O21 –Cu2 – O22	73.08(19)
Cl2 –Cu2 – O3	90.60(16)		

Table S5. Bond valence sum (BVS) calculations for complexes 1 and 2

Complex	atom	Calculated BVS*
1	Cu1	2.035
	Cu2	2.089
	Cu3	2.092
	Cu4	2.044
2	Cu1	2.108
	Cu2	2.021

Fig S6.Pictorial representation for transformation of (A) Set I' (C1 only) and (B)Set II' (C1 + nitrocefin) in methanol- H_2O into crystalline C2 under UV lamp.

Fig S7.FT-IR spectrum of complex 2

Fig S8.ESI-MS spectrum of complex 2

Fig S9. Isothermal titration calorimetry profiles for C2 binding to chloride ion. Top panel: heat effects against time for the titration of C2 (3 μ M) with chloride ion (4.5 μ M) in 70:30 methanol-water medium at 25 °C. Bottom panel: the integrated heat effects after correction of the heat of dilution against the molar ratio of chloride.

Fig S10.The molecular electrostatic potential analysis (MEP) diagram of C1

Table S6: Calculated HOMO-LUMO energy gaps of complex 1 in the solvent phase;Gas phase values are also mentioned in the parenthesis.

		DFT Functionals			
System	E & ΔE (all in eV)				
		B3LYP	TPSSH	BP86	
	E _{HOMO}	-4.81 (-4.44)	- 4.22 (-3.82)	-4.00 (-3.65)	
1	E _{LUMO}	-1.43 (-1.17)	-1.76 (-1.44)	-2.33 (-2.02)	
	ΔΕ	3.38 (3.27)	2.46 (2.38)	1.67 (1.63)	

Fig S11.Schematic representation of photocatalytic mechanism of chlorate reduction in presence of C1in 70:30 v/v MeOH-water medium.CB and VB present conduction and valence bands, respectively.

Table S7:Comparing the kinetic parameters with other analogous zinc or copper complexes for hydrolysis of nitrocefin

Metal-based catalysts for hydrolysis of nitrocefin	K _{cat} (S ⁻¹ or	pН	solvent	λ_{max}	Yearref
	min ⁻¹) or			ofhydrol.	
	V _{max} (mol L ⁻¹			pdt(nm)	
	S-1)				
[Cu ₂ L2(H ₂ O) ₂ Cl ₃](H ₂ O)	$5 \times 10^{3} \text{ min}^{-1}$	7.5	MeOH-	486	This
[III 2-4 shlars 2 ((2)) (2) (2) (2) (2) (2) (2) (2) (2)			water/tricine		article
[HL2-4-chloro-2 ((2hydroxypropyr)inhio)methyr)-o- methoxyphenol]					
[Cu ₂ L ₂ CH ₃ COO) ₂]	0.35× 10 ⁻⁸ mol	7	DMSO-	496	2017 ¹
L=saldman	L-1 S-1		phosphate		
			buffer		
[CuZnL ₂ CH ₃ COO) ₂]	0.48 × 10 ⁻⁸ mol	7	DMSO-	496	2017 ¹
L=saldman	L-1 S-1		phosphate		
			buffer		
$Cu_2(H_2pat^1)(OH)^+$	11.34 × 10 ⁻³ S ⁻¹	11.5	ACN-	390	2016 ²
			HEPES		
$[Zn_2L1(\mu\text{-OAc})(OAc)_2(H_2O)]$	4.12× 10 ⁻⁶ mol	7.5	DMSO-	oxacillin	2011 ³
HL1=2-((diethylamino)methyl)-6-	L ⁻¹ min ⁻¹		HEPES	at	
((dimethylamino)methyl)-4-methyl phenol				254 nm	
$[Zn_{2}L1(\mu-NO_{3})(NO_{3})_{2}]$	0.21 min ⁻¹	7	DMSO-	496	2001 ⁴
L1=N,N'-bis(6-methyl-2-pyridylmethyl)-N,N'-bis(2-			MOPS		
pyridylmethyl)- <i>N</i> . <i>N</i> '-bis(2-pyridylmethyl)ethane-1,2-					
diamine					
$[Zn_2(\mathbf{BPAN})(\mu\text{-OH})(\mu\text{-O}_2PPh_2)](ClO_4)_2$	0.075 min ⁻¹	7	DMSO-	496	2001 ⁴
BPAN= 2,7-bis[2-(2-pyridylethyl)aminomethyl]-1,8-			MOPS		
naphthyridine					
$[Zn_2L1(i-NO_3)(NO_3)_2]$	6 × 10 ³ min ⁻¹	7.5	DMSO-	486	2000 ⁵
[HL1 = 2,6-bis {[<i>N</i> -(2-dimethylaminoethyl)- <i>N</i> - methyl] aminomethyl}-4-methylphenol]			HEPES		
$[Zn_2L1(i-OMe)(NO_3)_2]$	4.2 × 10 ³ min ⁻¹	7.5	DMSO-	486	20005
[HL1=2,6-bis{[<i>N</i> -(2-dimethylaminoethyl)- <i>N</i> -methyl] aminomethyl}-4-methylphenol]			HEPES		
$[Zn_2L1(i-OH)(NO_3)_2]$	$3.1 \times 10^3 \text{ min}^{-1}$	7.5	DMSO-	486	20005
[HL1=2,6-bis{[N-(2-dimethylaminoethyl)-N-methyl]			HEPES		
aminomethyl}-4-methylphenol]					
$[Zn_2L2(NO_3)_3]$	13.7 × 10 ³ min ⁻	7.5	DMSO-	486	2000 ⁵
[HL2= <i>N</i> , <i>N</i> -bis(2-pyridylmethyl)- <i>tert</i> butylamine (bpta)]	1		HEPES		
Zn(cyclen)(NO ₃) ₂	2.8 × 10 ³ min ⁻¹	7.5	DMSO-	486	20005

			HEPES		
Zn(bpta)(NO ₃) ₂	$7.2 \times 10^3 \text{ min}^{-1}$	7.5	DMSO-	486	20005
			HEPES		
$[Cd_4(CO_2EtH_2L1)_2(CH_3COO)_{3.75}C_{10.25}(H_2O)_2](PF_6)_2$	9.4 × 10 ⁻³ S ⁻¹	8	ACN-	510	20126
[CO ₂ EtH ₂ L1=Ethyl 4-Hydroxy-3,5-bis(((2-			HEPES		
methoxyethyl)-(pyridin-2-ylmethyl)amino)					
Methyl)Benzoate)]					
$[Cd_2(CO_2EtL2)(CH_3COO)_2](PF_6)$	9.7 × 10 ⁻³ S ⁻¹	8	ACN-	510	20126
[CO ₂ EtL2=Ethyl 4-Hydroxy-3,5-bis(((2-			HEPES		
methoxyethyl)-(pyridin-2-ylmethyl)amino)					
Methyl)Benzoate]					

Cartesian Co-ordinate of 1 (TPSSH optimized)

01			
Cu	-0.90676800	1.95537500	-0.04380000
Cu	-0.90233300	-1.95734800	0.03840300
Cu	0.91053000	-0.03996500	-1.95228800
Cu	0.89843200	0.04196200	1.95758900
0	0.88693900	-1.84152800	-0.77629800
0	-0.87747900	0.77898300	-1.84505600
0	-0.88656300	-0.78221800	1.84092400
0	0.87765500	1.84385000	0.78227700
0	0.52864600	3.88000000	-0.91682300
0	-1.49260600	4.60194100	1.29935300
Н	-0.88594700	4.31218400	0.59727800
0	1.49587600	1.30712900	-4.59702500
Н	0.89150500	0.60251300	-4.30865300
0	-1.47360400	-4.60580200	-1.30850900

Н	-0.87150800	-4.31501300	-0.60293400
0	-0.54332400	0.91815800	3.87668400
0	1.47037000	-1.30226800	4.60723200
Н	0.86622400	-0.59941800	4.31412500
0	-0.51739400	-0.91831800	-3.88052100
0	0.53209900	-3.87998400	0.91909600
Ν	2.82242500	-0.23561500	-2.34611100
Ν	-2.81257900	-2.35989100	0.23109800
Ν	-2.81700400	2.35269100	-0.24749600
Ν	2.80733000	0.24240100	2.36370100
С	1.93260500	2.52375000	0.43847600
С	1.94119200	-2.51958900	-0.42687900
С	-1.92971500	0.43069600	-2.52687300
С	1.81714500	3.61492800	-0.48798900
С	-1.94391200	-0.43547400	2.51557400
С	-1.80822900	-0.49520300	-3.61789000
С	-3.57803900	-1.84122400	1.14016100
Н	-4.64529800	-2.10101000	1.09793800
С	3.58396100	-1.14647500	-1.82484100
Н	4.65240800	-1.10606700	-2.07999500
С	-3.57569100	1.83211500	-1.16111900
Н	-4.64384300	2.08915900	-1.12527400
С	-3.24499000	0.92604100	-2.24209000

S15

С	3.24519600	2.23657500	0.93952000
С	1.82251700	-3.61171500	0.49805700
С	3.56992200	1.15492600	1.84694700
Н	4.63682700	1.11725600	2.10888900
С	-3.45608000	3.22867700	0.73529300
Н	-3.35202800	2.77031200	1.72592800
Н	-4.53055100	3.33245300	0.51670800
С	4.35346100	-3.01810000	-0.48734000
Н	5.34141000	-2.78123400	-0.87559800
С	3.25612600	-2.22940000	-0.92006200
С	-3.25623500	-0.93390000	2.22275900
С	-2.82263800	4.63343100	0.79362000
Н	-2.83059800	5.05411800	-0.22523800
С	-2.90016400	-0.90007800	-4.36274000
Н	-2.76562000	-1.59894600	-5.18215600
С	0.35243700	4.27531700	-2.28292200
Н	-0.72164900	4.23165700	-2.46980700
Н	0.86689900	3.58045700	-2.95458800
Н	0.70360900	5.29974100	-2.45192200
С	-1.83147600	0.49175100	3.60647100
С	2.91667300	-4.35279500	0.90384700
Н	2.78409700	-5.17333800	1.60178400
С	2.91219200	4.35777700	-0.88811500

S16

Н	2.78216800	5.17741500	-1.58758300
С	4.34345900	3.02719700	0.51269000
Н	5.32958600	2.79260000	0.90690800
С	-2.80635700	-4.64062200	-0.81018300
Н	-2.81897600	-5.06133200	0.20861200
С	-3.44358800	-3.23742100	-0.75548800
Н	-3.33470900	-2.77876300	-1.74546800
Н	-4.51909300	-3.34382400	-0.54333800
С	4.19466700	4.06400500	-0.38527300
Н	5.04854500	4.65491400	-0.69946700
С	3.45902700	0.75029200	-3.22039100
Н	4.53459600	0.53624000	-3.32222300
Н	3.34993300	1.74026900	-2.76179100
С	4.20149800	-4.05598400	0.40885400
Н	5.05470500	-4.64548600	0.72748200
С	-4.18536500	-0.40284100	-4.07125800
Н	-5.03678600	-0.72071800	-4.66374000
С	-4.33995400	0.49441900	-3.03471100
Н	-5.32820400	0.88437900	-2.80194700
С	-0.33458300	-2.28285900	-4.27804700
Н	0.74004700	-2.46577400	-4.23110100
Н	-0.68169000	-2.45107900	-5.30399500
Н	-0.84881500	-2.95795000	-3.58634900

S17

С	-3.60470000	-5.55423700	-1.73598300
Н	-3.62002400	-5.14449100	-2.75162500
Н	-4.63732600	-5.66664700	-1.39065200
Н	-3.13890800	-6.54202400	-1.77598400
С	3.44075000	-0.74155400	3.24244500
Н	3.33683600	-1.73198300	2.78360400
Н	4.51516600	-0.52496500	3.35090200
С	2.82801500	0.80680400	-4.62632200
Н	2.84093500	-0.21175300	-5.04760500
С	-0.36616800	2.28314900	4.27505700
Н	-0.71978500	2.45069800	5.29889300
Н	-0.87787600	2.95690500	3.58018100
Н	0.70828900	2.46857500	4.23445400
С	-4.21124900	0.39447700	4.04468900
Н	-5.06714600	0.71098800	4.63142700
С	3.63171500	1.73195500	-5.53588000
Н	3.17028300	1.77327000	-6.52565800
Н	4.66429300	1.38512500	-5.64401300
Н	3.64679400	2.74731600	-5.12543200
С	-2.92906300	0.89495800	4.34386700
Н	-2.80138200	1.59502000	5.16335800
С	-4.35720100	-0.50411100	3.00804800
Н	-5.34307100	-0.89648500	2.76932300

С	-3.62841900	5.54507000	1.71491500
Н	-3.64834100	5.13532700	2.73047900
Н	-4.65939400	5.65482700	1.36384800
Н	-3.16537400	6.53404200	1.75744000
С	3.60132600	-1.72147600	5.55955600
Н	3.13382700	-1.76333200	6.54645900
Н	4.63236500	-1.37207300	5.67392200
Н	3.62142500	-2.73703800	5.14982000
С	0.34856100	-4.27502800	2.28434500
Н	0.85768000	-3.57895000	2.95879600
Н	0.70072900	-5.29870000	2.45583900
Н	-0.72668800	-4.23333000	2.46488700
С	2.80110200	-0.79879000	4.64445200
Н	2.80899000	0.22006300	5.06515600

References

- L. G. Ferraresso, E. G. R. de Arruda, T. P. L. de Moraes, R. B. Fazzi, A. D. C., Ferreira and C. Abbehausen, Copper (II) and zinc (II) dinuclear enzymes model compounds: The nature of the metal ion in the biological function, *Journal of molecular structure*, 2017, **1150**, 316-328.
- P., Comba, A., Eisenschmidt, N., Kipper and J. Schie
 ßl, Glycosidase-and βlactamase-like activity of dinuclear copper (II) patellamide complexes, *Journal of Inorganic Biochemistry*, 2016, 159, 70-75.
- Umayal, Muthaiah, and GovindasamyMugesh, Metallo-β-lactamase and phosphotriesterase activities of some zinc (II) complexes, *InorganicaChimicaActa*, 2011, **372**, 353-361.

- N. V. Kaminskaia, B. Spingler and S. J. Lippard, Intermediate in β-lactam hydrolysis catalyzed by a dinuclear zinc (II) complex: relevance to the mechanism of metallo-βlactamase, *Journal of the American Chemical Society*, 2001, **123**, 6555-6563.
- N. V. Kaminskaia, B. Spingler and S. J. Lippard, Hydrolysis of β-lactam antibiotics catalyzed by dinuclear zinc (II) complexes: Functional mimics of metallo-βlactamases, *Journal of the American Chemical Society*, 2000, **122**, 6411-6422.
- L. J. Daumann, L. R. Gahan, P. Comba and G. Schenk, Cadmium (II) complexes: mimics of organophosphate pesticide degrading enzymes and metallo-β-lactamases, *Inorganic chemistry*, 2012, **51**, 7669-7681.