Supporting Information for "Centrosymmetric to non-centrosymmetric transition in the $Ca_{2-x}Mn_xTi_2O_6$ double perovskite system studied through structural analysis and dielectric properties"

Elisabeth Albrecht,¹ Tuomo Siponkoski,² Eeva-Leena

Rautama,
1 Maarit Karppinen,
1 and Antti J. Karttunen
1, \ast

¹Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland

²Microelectronics Research Unit, University of Oulu, P.O. Box 4500, FI-90014 University of Oulu (Finland)

 $^{^{\}ast}$ antti.karttunen@aalto.fi

Table I. Lattice parameters of $Ca_{2-x}Mn_xTi_2O_6$ for x = 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; and 1.0, determined by Rietveld refinement of powder XRD data. The amount of impurity phases was found to be less than 2%. Standard deviations for the lattice parameters are given in parentheses.

x	space group	a [Å]	b [Å]	c [Å]
0.2	Pbnm	5.36427(3)	5.43357(3)	7.63254(4)
0.3	Pbnm	5.38581(2)	5.39712(2)	7.6232(3)
0.4	$P4_2mc$	7.61263(3)		7.63618(5)
0.5	$P4_2mc$	7.59972(3)		7.64011(5)
0.6	$P4_2mc$	7.58661(3)		7.63863(4)
0.7	$P4_2mc$	7.58054(5)		7.63439(7)
0.8	$P4_2mc$	7.56404(3)		7.62478(4)
1.0	$P4_2mc$	7.54291(3)		7.60323(4)

Figure 1. Rietveld refined powder X-ray diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ (x = 0.2) in space group *Pbnm*. Measured pattern in black, calculated pattern in red, difference curve in blue, and Bragg positions in green. R_p : 8.39; R_{wp} : 11.3; χ^2 : 4.25; R_{Bragg} : 8.97.

Figure 2. Rietveld refined diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ with x = 0.3 in space group *Pbnm*. Measured pattern in black, calculated pattern in red, measured minus calculated pattern in blue, and the Bragg positions in green. R_p : 16.2; R_{wp} : 21.5; χ^2 : 15.9; R_{Bragg} : 9.66.

Figure 3. Rietveld refined diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ with x = 0.4 in space group $P4_2mc$. Measured pattern in black, calculated pattern in red, measured minus calculated pattern in blue, and the Bragg positions in green. R_p : 10.4; R_{wp} : 13.9; χ^2 : 9.20; R_{Bragg} : 15.2.

Figure 4. Rietveld refined diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ with x = 0.5 in space group $P4_2mc$. Measured pattern in black, calculated pattern in red, measured minus calculated pattern in blue, and the Bragg positions in green. R_p : 11.2; R_{wp} : 14.9; χ^2 : 11.1; R_{Bragg} : 15.5.

Figure 5. Rietveld refined diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ with x = 0.6 in space group $P4_2mc$. Measured pattern in black, calculated pattern in red, measured minus calculated pattern in blue, and the Bragg positions in green. R_p : 11.2; R_{wp} : 15.1; χ^2 : 10.6; R_{Bragg} : 10.0.

Figure 6. Rietveld refined diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ with x = 0.7 in space group $P4_2mc$. Measured pattern in black, calculated pattern in red, measured minus calculated pattern in blue, and the Bragg positions in green. R_p : 14.2; R_{wp} : 19.2; χ^2 : 3.74; R_{Bragg} : 17.1.

Figure 7. Rietveld refined diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ with x = 0.8 in space group $P4_2mc$. Measured pattern in black, calculated pattern in red, measured minus calculated pattern in blue, and the Bragg positions in green. R_p : 13.3; R_{wp} : 17.9; χ^2 : 13.0; R_{Bragg} : 14.7.

Figure 8. Rietveld refined diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ with x = 1.0 in space group $P4_2mc$. Measured pattern in black, calculated pattern in red, measured minus calculated pattern in blue, and the Bragg positions in green. R_p : 11.6; R_{wp} : 16.6; χ^2 : 12.5; R_{Bragg} : 13.9.

Figure 9. Diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ with x = 0.3 (blue) and x = 0.4 (red). The peak belonging to an orthorhombic space group is marked with 'o' while the peaks belonging to a tetragonal unit cell are marked with 't'. The most general orthorhombic space group *Pmmm* and the space group *Pbnm* were used for 'o' and the most general tetragonal space group *P4/mmm* and the space group *P4_2mc* were used for 't'. While these space groups are the best fit for the peaks shown here, the peak splitting in x = 0.4 alone is not sufficient evidence for a tetragonal space group. The missing peak splitting for x = 0.3 arises from a fairly pseudo-cubic and highly pseudo-tetragonal unit cell.

Figure 10. Changes around $2\theta = 28.8^{\circ}$ in the powder diffraction pattern of $Ca_{2-x}Mn_xTi_2O_6$ from $CaTiO_3$ (x = 0) to $CaMnTi_2O_6$ (x = 1). The Miller indices of the peaks (112) and (121) appear only in the structure with the space group $P4_2mc$ and are given in red.

Figure 11. Relation between the lattice parameters a and b and the amount of Mn(II) substitution in Ca_{2-x}Mn_xTi₂O₆. The lattice parameters of those samples refined in space group *Pbnm*, x = 0.0to 0.3 were scaled by a factor of $\sqrt{2}$.

Figure 12. Polarization vs. electric field hysteresis curve of $Ca_{2-x}Mn_xTi_2O_6$ (x = 0.4) obtained with a maximum electric field of 15 V/ μ m at 20 Hz.

Figure 13. Polarization vs. electric field hysteresis curve of $Ca_{2-x}Mn_xTi_2O_6$ (x = 1.0) obtained with a maximum electric field of 0.5 V/ μ m at 20 Hz.