Supplementary Information

Integrated electrochemical CO₂ reduction and hydroformylation

Brandon J. Jolly¹, Michael J. Pung,¹ Chong Liu^{1,2*}

¹Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States

²California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA

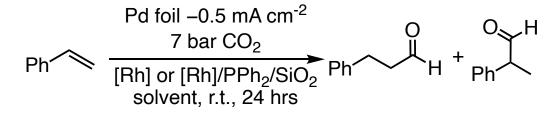
* To whom correspondence may be addressed. Email: <u>chongliu@chem.ucla.edu</u>

Table of Contents

Methods	
Section 1. Chemicals and methods	S3
Section 2. Coating of [Rh]/PPh ₂ /SiO ₂ onto Pd foil	S13
Supplementary Figures and Tables	
Table S1. Experiments and controls in integrated CO ₂ RR - hydroformylation	S5
Table S2. Integrated CO ₂ RR - hydroformylation for both [Rh] and [Rh]/PPh ₂ /SiO ₂	S 6
Figure S1. ¹ H NMR of [Rh]/PPh ₂ /SiO ₂	S 7
Figure S2. ¹³ C NMR of [Rh]/PPh ₂ /SiO ₂	S 8
Figure S3. ³¹ P NMR of [Rh]/PPh ₂ /SiO ₂	S 9
Figure S4. ²⁹ Si NMR of [Rh]/PPh ₂ /SiO ₂	S10
Figure S5. ATR-IR of [Rh]/PPh ₂ /SiO ₂	S11
Figure S6. Example chronopotentiometry traces from ± 0.5 mA cm ⁻² for 24 hours	S12
Additional references	S14

1. Chemicals and methods

1.1 Chemicals. All reagents were purchased from Sigma Aldrich and were used as received unless specified. *N*,*N*-dimethylformamide (DMF) was dried over 3 Å molecular sieves for at least 24 h prior to use. Styrene was distilled over MgSO₄ under an N₂ environment and stored in the glove box until use, purity was checked via NMR (Bruker, AV400 MHz) and GCMS (Agilent).


1.2 Synthesis of [Rh]/PPh₂/SiO₂. In an Ar glovebox, 78 mg of diphenylphosphinoethylfunctionalized onto silica gel (PPh₂/SiO₂, 0.7 mmol g⁻¹ of PPh₂ groups, 200 - 400 mesh) was added to 10 mL of anhydrous toluene in a Schlenk flask, then brought out of the glovebox to sonicate for 15 min, then brought back in. 50 mg of HRh(CO)(PPh₃)₃ ([Rh]) was then added and the mixture was allowed to stir overnight at ambient temperature. The [Rh] immobilized onto silica material ([Rh]/PPh₂/SiO₂) was isolated via vacuum filtration and washed with two volumes of toluene and one of dichloromethane (10 mL per wash). [Rh]/PPh₂/SiO₂ was then dried overnight in a Schlenk flask, yielding a yellow/gold material. 0.4 ± 0.02 wt% Rh was determined for the [Rh]/PPh₂/SiO₂ species via inductively coupled plasma - mass spectrometry (ICP-MS, Agilent QQQ).

1.2 Integrated CO₂RR and hydroformylation. Experiments in integrating CO₂RR and hydroformylation were carried out in a high pressure electrochemical reactor equipped with an additional glass vial housing the hydroformylation catalysts. Electrochemistry was performed using a Gamry Instruments Interface 1000-E potentiostat. The electrolyte solution consisted of 0.25 M TBAPF₆ dissolved in DMF. A custom-designed high-pressure electrochemical reactor (Parr Instruments) was used equipped with electrical leads.¹ The solution volume was 200 mL and the gas headspace volume was ca. 750 mL (the value used for Faradaic efficiency calculations¹). The reactor was purged three times, then pressurized using CO₂ (Airgas, 99.999%). A twoelectrode configuration was utilized under constant applied current (i_{appl}) and the headspace was sampled after electrolysis using a gas chromatograph (GC). Electrodes were cleaned post electrolysis via sequential rinsing and sonication in acetone, DI water, and dilute nitric acid. Unless noted otherwise, the average surface area of the Pd foil working electrodes was ~130 cm².

Hydroformylation catalysts, both the homogeneous [Rh] and its heterogeneous analogue [Rh]/PPh₂/SiO₂, were handled and prepared in an Ar glovebox until ready for use in integrated experiments. Catalyst concentrations were kept at 15 mM of [Rh] or 40 mg mL⁻¹ of [Rh]/PPh₂/SiO₂, both in a 1 mL DMF solution. [Rh]/PPh₂/SiO₂ solutions were first prepared in a Schlenk flask, taken outside of the glovebox and sonicated for 30 min to disperse [Rh]/PPh₂/SiO₂,

then brought back into the glovebox. Lastly, once the electrolyte and catalyst solutions were added to the high pressure reactor, styrene was then added to the hydroformylation compartment, with a fixed [styrene] = 0.5 M. The reactor was then sealed and pressurized with CO₂ as described above. 1.3 Gas product quantification. Gaseous products from CO₂ reduction electrolysis (CO₂RR) were quantified via online detection with a GC (SRI 8610C) equipped with both a flame ionization detector with a methanizer (FIDm), and a thermal conductivity detector (TCD). The concentration of CO and H₂ in the headspace were often too high and lead to detector saturation. Thus, headspace samples were diluted by 5/83 with air. The valve oven was set to 175 °C. Argon was used as a carrier gas at 15 psi and 40 mL min⁻¹. The GC method was as follows: 50 °C for 1 min, 20 °C min⁻¹ ramp rate up to 90 °C, hold at 90 °C for 3.75 min, then a 30 °C min⁻¹ ramp rate to a final temperature of 210 °C. Three columns employed: 0.5 m Haysep-D pre-column, 2 m MoleSieve5A column, and 2 m Haysep-D column in that order. H₂ was supplied to the FID via a H₂-100 Hydrogen Generator at 20 psi and a 30 mL min⁻¹ flow rate, air was also supplied at 5 psi and a 250 mL min⁻¹ flow rate. The retention times of CO was 5.45 min (FIDm), and H₂ was 1.25 min (TCD). A standard calibration gas mixture of consisting of 0.5% of CO₂, CO, H₂, and O₂ each in N_2 .

1.4 Liquid product quantification. Products from the hydroformylation vial were detected and quantified via GCMS analysis and using a naphthalene internal standard. The temperature profile method for the GC was as follows: 100 °C for 5 min followed by a 4 °C min⁻¹ ramp up to 160 °C. For experiments using the [Rh]/PPh₂/SiO₂ catalyst, the hydroformylation solution was first centrifuged and decanted prior to sample preparation. 0.5 mL of the hydroformylation solution was diluted to 1 mL using 50 μ L of a 20 mg mL⁻¹ naphthalene in acetone solution and 450 μ L of acetone. Additionally, product quantification by GCMS was corroborated by conducting an integrated experiment using *d*₇-DMF. This was achieved by taking advantage of the diagnostic benzylic ¹H-NMR shifts between styrene and 2-/3-phenylpropionadelhyde, and using residual styrene as a pseudo internal standard.² Linear:branched ratios were assessed using the area under the curve or integral of their NMR of the respective isomer's.

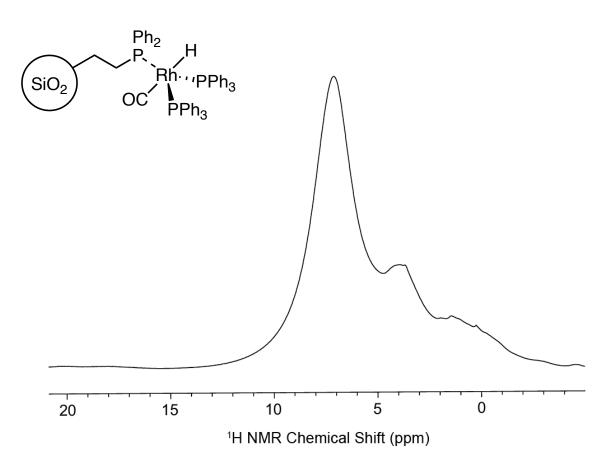
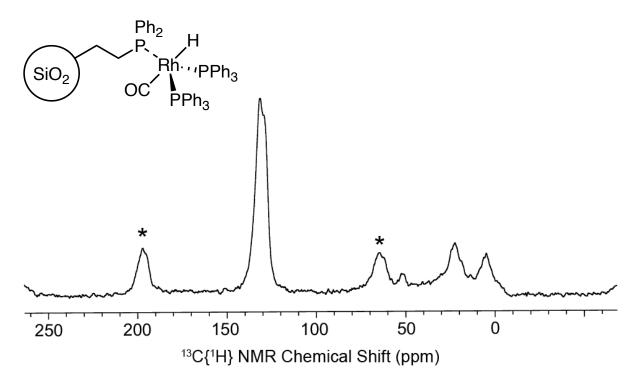

Entry	Catalyst	Solvent composition ^a	CO/H ₂	Aldehyde yield	l:b ^c
				(%) ^b	
1	[Rh]	Toluene	0.2	76	0.7:1
2	[Rh]	DMF	0.2	53±21	0.8:1
3	No [Rh]	DMF	0.1	0	_
4	[Rh]	0.25 M TBAPF ₆ , DMF	0.1	48	1:1
5	[Rh]	d7-DMF	0.04	31 (25) ^d	0.9:1
6	[Rh]	DMF	0.4	97°	0.6:1
7	[Rh]/PPh ₂ /SiO ₂	DMF	0.7	3±2	0.07:1
8	[Rh]/PPh ₂ /SiO ₂	DMF	0.3	43 ^f	0.2:1
9	Bare PPh ₂ /SiO ₂	DMF	0.6	0	_
10	[Rh]/PPh ₂ /SiO ₂ /Pd ^g	0.25 M TBAPF ₆ , DMF	0.6	0	_

Table S1. Experiments and controls in integrated CO_2RR - hydroformylation. [Rh] = HRh(CO)(PPh₃), kept at 15 mM, [Rh]/PPh₂/SiO₂ loading was kept at 40 mg mL⁻¹, styrene concentration was kept at 0.5 M. CO₂ pressure was 7 bar. Applied current density (*i*) was \pm 0.5 mA cm⁻² for 24 hours, resulting in an average of 0.21 bar CO and 0.44 bar H₂. Pd foils were used as the working and counter electrode. Electrolyte solution consisted of 0.25 M TBAPF₆ in DMF. ^aSolvent composition for hydroformylation compartment. ^bYield for both phenylpropionaldehyde species was determined from GCMS using a naphthalene internal standard. ^cLinear:branched ratio of phenylpropionaldehyde isomers. ^dYield determined from NMR. ^{e48} hours total reaction time, 24 hours electrolysis. ^{f72} hours total reaction time, 24 hours electrolysis. ^gSee section S2 for further details on [Rh]/PPh₂/SiO₂ coated onto Pd ([Rh]/PPh₂/SiO₂/Pd).


Ph	Pd foil –0.5 mA cm ⁻² 7 bar CO ₂	O L L	ОуН
	[Rh] or [Rh]/PPh ₂ /SiO ₂ Ph DMF, r.t., t hrs	∕`Н '	Ph

Catalyst	Electrolysis time	Total time	CO/H ₂	Aldehyde yield	l:b ^b
	(h)	(h)		(%) ^a	
	4	4	0.2	0.5	0.6:1
	8	8	0.3	9	0.9:1
[Rh]	16	16	0.2	40	0.6:1
	24	24	0.2	64	0.8:1
	24	48	0.2	97	0.6:1
	24	24	0.9	5	0.07:1
	24	36	0.5	11	0.05:1
[Rh]/PPh ₂ /SiO ₂	24	48	0.7	15	0.05:1
	24	60	0.4	37	0.13:1
	24	72	0.4	43	0.22:1

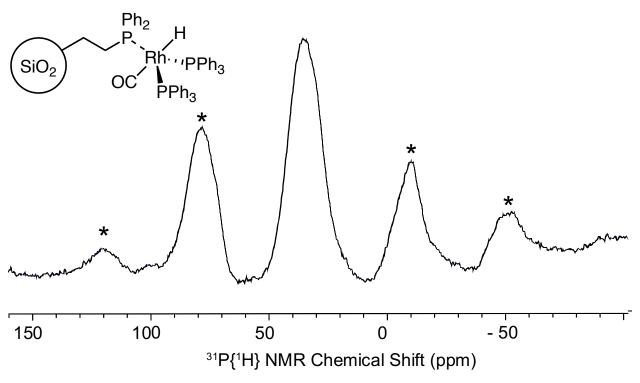

Table S2. Integrated CO₂RR - hydroformylation time course study for both [Rh] and [Rh]/PPh₂/SiO₂. [Rh] = HRh(CO)(PPh₃), kept at 15 mM, [Rh]/PPh₂/SiO₂ loading was kept at 40 mg mL⁻¹, styrene concentration was kept at 0.5 M. CO₂ pressure was 7 bar. Applied current density (*i*) was \pm 0.5 mA cm⁻² for 24 hours, resulting in an average of 0.21 bar CO and 0.44 bar H₂. Pd foils were used as the working and counter electrode. Electrolyte solution consisted of 0.25 M TBAPF₆ in DMF. ^aYield for both phenylpropionaldehyde species was determined from GCMS using a naphthalene internal standard. ^bLinear:branched ratio of phenylpropionaldehyde isomers.

Figure S1. ¹H NMR (600 MHz, 10 kHz) of [Rh]/PPh₂/SiO₂, δ (ppm): 7.03 (Ph), 3.76, 1.35.

Figure S2. ¹³C NMR of [Rh]/PPh₂/SiO₂ (151 MHz, 10 kHz), *δ* (ppm): 131.1 (PPh), 128.9 (PPh), 52.0, 22.6, 5.0.

Figure S3. ³¹P NMR of [Rh]/PPh₂/SiO₂ (243 MHz, 10 kHz), δ (ppm): 34.8 (PPh)

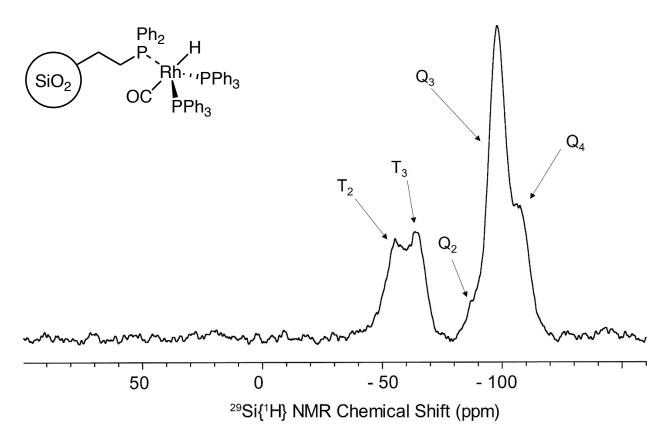


Figure S4. ²⁹Si NMR of [Rh]/PPh₂/SiO₂ (119 MHz, 10 kHz).

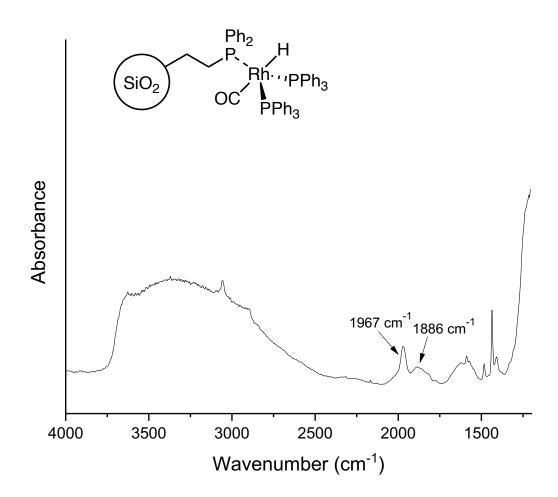
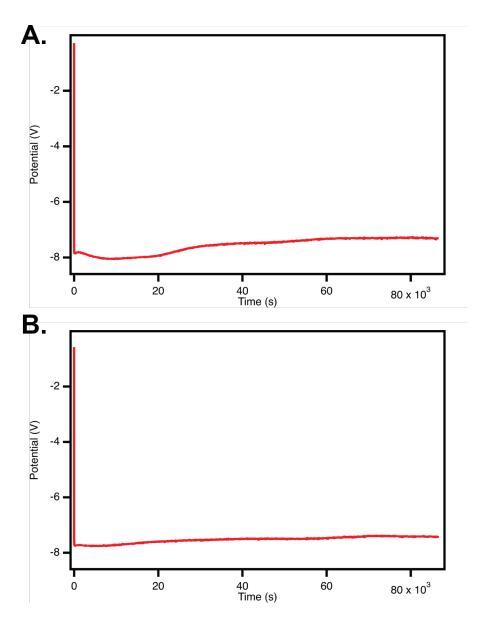



Figure S5. ATR-IR of [Rh]/PPh₂/SiO₂, Rh-H (1967 cm⁻¹), Rh-CO (1886 cm⁻¹).

Figure S6. Chronopotentiometry traces from two separate experiments conducted at -0.5 mA cm⁻² for 24 hours. Pd foils were used as the working and counter electrode. Electrolyte solution consisted of 0.25 M TBAPF₆ in DMF.

2. Coating of [Rh]/PPh₂/SiO₂ onto Pd foil

Spin coating, drop casting, and doctor blading were explored as methods of preparing a layer of [Rh]/PPh₂/SiO₂ onto Pd foil with an insulating layer of SiO₂ in between. Solutions of 1 - 5 wt% of either SiO₂ or [Rh]/PPh₂/SiO₂ in DMF, both with and without 2.5 wt% polyvinylidene fluoride (PVDF) as a binder, were tested. DMF was chosen on the basis of a prior report demonstrating superior dispersity and coating of SiO_2 compared to typical solvents such as H_2O . In a typical coating attempt, 50 - 600 µL of a particular wt% of SiO₂ first, then [Rh]/PPh₂/SiO₂ afterwards, were dispensed onto a sectioned 1 - 6 cm² area of a 5 x 5 cm² Pd foil, unless otherwise noted. For spin coating, Pd foil was taped down to a Si wafer, and spin rates between 200 - 800 rpm and 5 -60 s were tested. For drop casting, the Pd foil was gently heated to 30 °C until all DMF had evaporated. For doctor blade, 500 µL of a 10 wt% [Rh]/PPh₂/SiO₂ solution was dispensed onto a Pd foil, with thickness controlled by the amount of layers of ~20 µm thick tape around the area designated for coating. The excess [Rh]/PPh₂/SiO₂ dispersed in DMF was then scraped off, and the Pd foil was gently heated at 30 °C until all DMF had evaporated. Thicknesses of Pd foil samples coated with [Rh]/PPh2/SiO2 (denoted as [Rh]/PPh2/SiO2/Pd) were measured via optical microscopy and SEM. Thicknesses varied from 40 - 200 µm. Unfortunately, no [Rh]/PPh₂/SiO₂/Pd demonstrated any hydroformylation activity in our integrated catalytic reactor.

Additional references

- 1. H. M. Dodge, B. S. Natinsky, B. J. Jolly, H. C. Zhang, Y. Mu, S. M. Chapp, T. V. Tran, P. L. Diaconescu, L. H. Do, D. W. Wang, C. Liu and A. J. M. Miller, *ACS Catal.*, 2023, **13**, 4053-4059.
- 2. I. A. Tonks, R. D. Froese and C. R. Landis, *ACS Catal.*, 2013, **3**, 2905-2909.